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Abstract

Text-level discourse rhetorical structure (DRS)
parsing is known to be challenging due to the
notorious lack of training data. Although re-
cent top-down DRS parsers can better leverage
global document context and have achieved cer-
tain success, the performance is still far from
perfect. To our knowledge, all previous DRS
parsers make local decisions for either bottom-
up node composition or top-down split point
ranking at each time step, and largely ignore
DRS parsing from the global view point. Ob-
viously, it is not sufficient to build an entire
DRS tree only through these local decisions. In
this work, we present our insight on evaluat-
ing the pros and cons of the entire DRS tree
for global optimization. Specifically, based on
recent well-performing top-down frameworks,
we introduce a novel method to transform both
gold standard and predicted constituency trees
into tree diagrams with two color channels. Af-
ter that, we learn an adversarial bot between
gold and fake tree diagrams to estimate the
generated DRS trees from a global perspective.
We perform experiments on both RST-DT and
CDTB corpora and use the original Parseval
for performance evaluation. The experimental
results show that our parser can substantially
improve the performance when compared with
previous state-of-the-art parsers.

1 Introduction

As the main linguistic theory on discourse rhetor-
ical structure (DRS), Rhetorical Structure Theory
(RST) (Mann and Thompson, 1988) describes an
article as a discourse tree (DT). As illustrated in
Figure 1, each leaf node of the tree corresponds to
an Elementary Discourse Unit (EDU), and relevant
leaf nodes are connected by relation and nuclear-
ity (nucleus (N) or satellite (S)) tags to
form high-layer discourse units (DUs), where the
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Figure 1: An example RST-style discourse tree.

nucleus is considered more important than the
satellite. Since the RST structure can well
describe the organization of an article, it has been
playing a central role in various down-stream tasks
like summarization (Xu et al., 2020), text catego-
rization (Ji and Smith, 2017), and so on.

With the release of various discourse corpora,
text-level DSR parsing has been drawing more and
more attention in the last decade. However, since
the corpus annotation is usually time-consuming,
existing DRS corpora are much limited in size.
For example, the English RST-DT (Carlson et al.,
2001) corpus only contains 385 WSJ articles, and
the Chinese CDTB (Li et al., 2014b) corpus only
contains 500 newswire articles. In this situation,
previous studies usually rely on multifarious hand-
engineered features (Hernault et al., 2010; Feng
and Hirst, 2014; Ji and Eisenstein, 2014; Li et al.,
2014a, 2016; Braud et al., 2017). And all these sys-
tems perform DRS parsing in a bottom-up fashion.
Until recently, some researchers turn to top-down
DRS parsing (Lin et al., 2019; Zhang et al., 2020;
Kobayashi et al., 2020) to explore the potential
capabilities of data-driven models. Nevertheless,
text-level DRS parsing is still challenging and wor-
thy of in-depth exploration.

Theoretically, in supervised learning, annotated
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Figure 2: Local and global optimization of DRS trees.

data corpora can provide neural models with spe-
cific learning objectives, and the corpus size limi-
tation will weaken the learning of these goals. To
mitigate this problem, we researchers need (i) an
efficient model to better learn from the limited data
and (ii) more high-quality training objectives to
enhance the model learning. Existing studies on
text-level DRS parsing show that

• Compared with bottom-up DRS parsers, recent
top-down frameworks can better leverage global
document context and have achieved promising
results in text-level DRS parsing (Zhang et al.,
2020; Kobayashi et al., 2020).

• All previous studies produce their DRS parsers
with local decisions made at each time step for
either bottom-up node composition or top-down
split point selection (Figure 2 (a)), and no global
decisions are made for the entire DRS structure
(Figure 2 (b)). Therefore, it is difficult for them
to achieve global optimization. Although some
studies (Braud et al., 2017; Mabona et al., 2019)
leverage “beam-search” to traverse the solution
space to find the optimal parsing route, the algo-
rithms are time-consuming to some extent.

Considering the above-mentioned status quo, in
this work, we study a global optimization method
based on the well-performing top-down parsers.
For model structure, we take the top-down parser
of Zhang et al. (2020) as our baseline system and
make some improvements to it. For global opti-
mization, we first utilize a novel strategy to trans-
form both gold standard and predicted DRS trees
into tree diagrams with two color channels. After
that, an LSGAN-based adversarial bot is structured
between gold and fake tree diagrams as an exam-
iner for global estimation and optimization. Exper-
imental results on the RST-DT and CDTB corpora
show that our approaches are effective.

2 Related Work

In the literature, previous studies on RST-style
DRS parsing mainly consist of two categories, i.e.,

bottom-up and top-down frameworks.
For the first category, early studies on DRS pars-

ing heavily relied on hand-crafted features and lin-
guistic characteristics (Hernault et al., 2010; Joty
et al., 2013; Feng and Hirst, 2014). During the
past decade, more and more researchers turned to
data-driven approaches, and some effective strate-
gies were proposed to adapt to the small-scale data
corpora. Among these studies, (Ji and Eisenstein,
2014; Li et al., 2014a, 2016; Mabona et al., 2019)
used some trivial features as auxiliaries in their
data-driven systems; Braud et al. (2016; 2017) har-
nessed task supervision from related tasks, alter-
native views on discourse structures, and cross-
lingual data to alleviate the data insufficiency prob-
lem; Wang et al. (2017) introduced a two-stage
parser to first parse a naked tree structure and
then determine rhetorical relations for different
discourse levels to mitigate data sparsity; Yu et
al. (2018) employed both syntax information and
discourse boundaries in their transition-based sys-
tem and achieved good performance.

For the second category, some researchers (Lin
et al., 2019; Liu et al., 2019; Zhang et al., 2020;
Kobayashi et al., 2020) turned to top-down frame-
works to tap the potential capabilities of data-driven
models. Among them, (Lin et al., 2019; Liu et al.,
2019) have achieved certain success in sentence-
level DRS parsing. Nevertheless, due to the long-
distance dependency over the discourse, text-level
DRS parsing remains challenging. To alleviate this
problem, Zhang et al. (2020) proposed a top-down
architecture tailored for text-level DRS parsing.
Kobayashi et al. (2020) used contextualized word
representation and proposed to parse a document
in three granularity levels for good performance.

In the past decade, GANs have achieved great
progress in NLP (Wu et al., 2019; Elazar and Gold-
berg, 2018; Chen and Chen, 2019; Zou et al., 2020).
However, to our knowledge, there is still no re-
search on adversarial learning in DRS parsing so
far. In this work, we explore to adversarially train
a discriminator to estimate the quality of the entire
DRS tree for global optimization. Notably, we pro-
pose to transform each DRS tree into a continuous
tree diagram, and thus our adversarial method does
not suffer from the “discrete data” problem.

3 Baseline Top-Down Architecture

In this section, we give a brief introduction to our
baseline system, the top-down parser of Zhang et
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al. (2020), and make some improvements to it. The
parsing process is illustrated in Figure 3.

Hierarchical Split Point Encoding. For split
point representation1, Zhang et al. (2020) intro-
duced a hierarchical RNN-CNN architecture in
their paper. Firstly, they use an attention-based
GRU encoder to encode each EDU, obtaining ei.
Then, the obtained EDU vectors are fed into an-
other BiGRU for context modeling, as shown in
Figure 3. Next, a CNN net with a window size of
2 and a stride size of 1 is built for each window
of EDUs in the discourse for split point encoding.
To our knowledge, Zhang et al. (2020) produced
dummy split points at both ends of a discourse.
Since the dummy split points do not participate
in the split point selection process, they could be
redundant. Here, we try to simplify the parsing
procedure with the dummy split points discarded,
as shown in Figure 3. Following previous work (Yu
et al., 2018; Kobayashi et al., 2020), we also splice
the sentence- and paragraph-level boundary fea-
ture vectors to the representation of split points to
enhance the encoder model.

Top-Down Split Point Ranking. After achiev-
ing split point representations, an encoder-decoder
is used to rank the split points, as shown in Fig-
ure 3. During encoding, the previously obtained
split point vectors are taken as input to the BiGRU
encoder, obtaining H0, . . . ,Hn−2. During decod-
ing, a uni-directional GRU with an internal stack is
used to control the split point ranking process. Ini-
tially, the stack contains only one element, i.e., in-
dexes of the boundary split points in the discourse.
Notably, since we do not add dummy split points in
this parser, we allow patterns like (τ, τ) to appear
in the stack. At the j-th step, the tuple (B,E) is
popped from the stack and we enter the concate-
nated cj = (HB;HE) into the decoder for dj .

After that, a biaffine function (Dozat and Man-
ning, 2017) is built between the encoder and de-
coder outputs for split point ranking. Different
from (Zhang et al., 2020), all split points in the
interval [B,E] are selectable in this work. At the
step j, we calculate the attention score between Hi

and dj as:

sj,i = HT
i Wdj + UHi + V dj + b (1)

where W,U, V, b are model parameters and sj,i ∈
1The split position between any two neighboring EDUs is

called the split point.
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Figure 3: Neural architecture of the encoder-decoder.

Rk denotes the score of the i-th split point over dif-
ferent categories (for split point ranking, k equals
1). With this attention function used, at each time
step, split position with the highest score is selected
as the split point and the original text span is split
into two adjacent text spans. Meanwhile, newly
generated text spans with unselected split points
are pushed onto the stack for following steps, as
shown in Figure 3. In this way, a DRS tree is built
after 5 iterations with the split points (1, 0, 2, 3, 4)
detected in turn.

To our knowledge, Zhang et al. (2020) use three
biaffine classifiers in their parser for structure, nu-
clearity and relation prediction, respectively. Con-
sidering the differences between the three learn-
ing objectives, using three independent classifiers
could weaken the “Full” performance. To alleviate
this problem, we combine nuclearity and relation
tags into N-R tags and only use two classifiers for
DRS parsing. Therefore, for N-R prediction, the
category number k equals 41 and 46 for the RST-
DT and CDTB corpus respectively.

4 Adversarial Learning for DRS Parsing

This section introduces the proposed adversarial
learning method which consists of two parts: graph-
ical representation of gold and fake DRS trees and
the adversarial model learning process.

4.1 Graphical Representation of DRS Trees
In this study, we aim to learn from the entire DRS
tree to optimize our model from a global perspec-
tive. Usually, our computer understands DRS trees
in two ways: either language description or graphi-
cal representation. Since tree diagrams can reflect
the structural features more intuitively and are easy
for machines to understand, we explore graphical
representation of DRS trees in this work.

For gold standard trees, we propose to trans-
form each tree into multi-pattern matrices which
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Figure 4: Graphical representation of DRS structure for adversarial learning of text-level DRS parsing.

is similar to a low resolution image with two color
channels (i.e., the structure (ST) and nuclearity-
relation (NR) channels). Formally, given a DRS
tree of heightm with n split points, each split point
corresponds to a specific non-leaf node in the tree,
and we construct two matrices, XST and XNR, of
size m × (n + 2) corresponding to the two color
channels, as shown in Figure 4. (i) For the ST
channel, all the elements in the matrix XST are
initialized2 to -2. With the upper left corner of the
matrix as the origin of the coordinate axis, given
the split point j at the i-th tree layer (top-down
direction), we directly set the element at (i-1, j+1)
by zero. Besides, if the left span of the split point
is an EDU, then we set the element at (i, j) by -1,
and the right span is processed in a similar way.
With this method, we can recursively construct the
tree diagram from top to down. Additionally, some
EDU positions are actually shared in the matrix,
and this does not affect the understanding of these
nodes. For the example in Figure 4, although e2
and e3 share a same position in the ST channel, the
following two patterns in the matrix can still reveal
an accurate representation of each node:

N1 :

[
0 −2
−2 −1

]
N2 :

[
−2 0
−1 −2

]
(2)

(ii) For the NR channel, we set the positions repre-
senting non-leaf nodes to specific N-R labels and
the positions of leaf nodes to −1 and other non-
node positions to zero.

For the automatically parsed trees, we directly
use our model outputs to build the tree diagram
with two color channels, X ′ST and X ′NR. And the

2We set these non-node positions to -2 in two reasons: (i)
we apply a log-softmax function to the attention weights for
split point ranking with the output ranging (−∞, 0]; (ii) we
simply set the non-node positions by -2 to distinguish them
from the leaf nodes marked with -1.

two matrices of size m × (n + 2) are initialized
with zero. (i) For the ST channel, as stated be-
fore, a set of attention weights are assigned to the
encoder outputs during pointing and a split point
is selected according to the weights. Obviously,
each split point corresponds to a group of attention
weights (after log-softmax). Therefore, we directly
add these n-dimensional attention weights of each
split point in the i-th tree layer (top-down direc-
tion) to the i-th line of X ′ST. Notably, the first and
last columns of the matrices are actually placehold-
ers initialized with unlearnable scalars representing
leaves or non-node positions, so we only add the
split point attention weights to the range from 1 to
n in each row. (ii) For the NR channel, we simply
replace these elements corresponding to split points
in X ′ST with predicted N-R labels3 and other ele-
ments keep the same as XNR. Alternatively, only
the replaced elements in the matrix X ′NR are learn-
able, while other positions serve as static features
in the image. In this way, the model outputs are
also abstracted as a tree diagram with two color
channels.

Through the above methods, we achieve graphi-
cal representation for both gold standard and auto-
matically predicted DRS trees. And the graphical
representation can provide our model with a global
perspective, which makes the global optimization
(Subsection 4.2) of DRS parsing possible.

4.2 Adversarial Model Learning
For model learning, we have two goals: (i) learning
of DRS parsing at each time step for local optimiza-
tion and (ii) learning an adversarial bot to evaluate

3Here, we need to map the attention score, sj,i ∈ Rk,
to a specific N-R label. Since the argmax function does not
support gradient calculation, we give an alternative solution:
Lj,i = Fsigmoid(wl · sj,i + bl)×K, where K is the number
of N-R labels and Lj,i ∈ R1 is the learnable N-R label.
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the pros and cons of the entire tree for global op-
timization. For the first goal, we use two negative
log-likelihood loss terms to optimize the parsing
model. For split point ranking, we use Ls to maxi-
mize the probability of correct split point selection
at each decoding step. For N-R prediction, given
the selected split point, we use Lnr to maximize
the probability of correct N-R labeling for the split
point. Since the convergence speeds of the two loss
terms are different, we add two loss weights before
the loss terms to balance the model training as:

LDRS = α1Ls + α2Lnr (3)

For the second goal, we explore to learn from
the entire DRS tree for global optimization. To that
end, we produce an adversarial bot in our parser
to estimate the generated DRS tree diagrams, as
shown in Figure 4. Since the composition and
sources of gold and generated tree diagrams are
completely different, we use two isomorphic fea-
ture extractors to understand the two kinds of im-
ages separately. For feature extraction, based on
such a 2D image-like representation, we perform
convolution on every 3 × (n + 2) window to dig
out the structural details of the entire tree:

%
(f)
win = Frelu(w

(f) ·Xwin + b(f)) (4)

Then we perform max-pooling in each nonoverlap-
ping 3 × 1 window for feature extraction, and the
resulting matrices are reshaped as % ∈ R1×D to
serve as the distributed representation of the tree.

In this work, we do not just need an excellent
discriminator expert in classification, we need the
adversarial nets to continuously give feedback to
our parsing model even when the generated trees
are correctly classified. On this basis, we lever-
age Least Squares Generative Adversarial Network
(LSGAN) (Mao et al., 2017) as our adversarial bot
which has proven to perform more stable and face
less problem of vanishing gradients than the orig-
inal GAN. Formally, our adversarial nets consist
of two parts: (i) a generative net G to capture the
data distribution pz over the training dataX and (ii)
a discriminative net D to estimate the probability
that a sample comes from X rather than pz . On
this basis, given the distributed representation of
the gold tree x and fake tree z, we formulate the
loss functions as follows:

min
D

V (D) =
1

2
Ex∼pdata(x)[(D(x)− b)2]

+
1

2
Ez∼pz(z)[(D(G(z))− a)2] (5)

min
G
V (G) =

1

2
Ez∼pz(z)[(D(G(z))− c)2] (6)

Similar to Mao et al. (2017), we set a = 0 and
b = c = 1 to make G generate samples as real as
possible. Technically, the generator G consists of
the parsing model and the feature extractor for fake
trees, and the discriminator is an MLP (In: feature
size (ε), Hidden: ε/2, Out: 1) without the sigmoid
activation function. Therefore, when learning G,
parameters of the parsing model and the feature ex-
tractor for fake trees are updated. Likewise, param-
eters of the discriminator and the feature extractor
for real trees are learned when tuning D.

At this time, we have a traditional loss term to
train the top-down parser at each splitting step and
two adversarial loss terms to estimate the entire
DRS tree for global optimization. It is worth men-
tioning that we first optimize theLDRS for 7 epochs
to warm up the model parameters, and then the ad-
versarial nets join the training process for global
optimization of DRS parsing.

5 Experimentation

5.1 Experimental Settings
Datasets. Following our previous work (Zhang
et al., 2020), we utilize both the English RST Dis-
course Treebank (RST-DT) (Carlson et al., 2001)
and the Chinese Connective-driven Discourse Tree-
Bank (CDTB) (Li et al., 2014b) as the benchmark
corpora for experimentation. Here, we give a brief
introduction to the two corpora:

• The RST-DT corpus contains 385 news articles
(347 for training and 38 for testing) from the Wall
Street Journal (WSJ). Following previous work,
we randomly select 34 documents from the train-
ing corpus as the development corpus for parame-
ter tuning. And we also binarize those non-binary
subtrees in RST-DT with right-branching (Sagae
and Lavie, 2005) for preprocessing.

• The Chinese CDTB corpus is motivated by tak-
ing advantages of both the English RST-DT cor-
pus and the PDTB corpus (Prasad et al., 2008).
The CDTB corpus annotates each paragraph as
a Connective-driven Discourse Tree (CDT). The
corpus consists of 500 newswire articles which
are further segmented into 2336 paragraphs and
10650 EDUs. The corpus is divided into three
parts with 425 articles (2002 CDT trees) for train-
ing, 25 articles (105 CDT trees) for validation,
and 50 articles (229 CDT trees) for testing.
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Metrics. Following previous studies, we mea-
sure the performance of bare tree structure (S), tree
structure labeled with nuclearity (N), and tree struc-
ture labeled with rhetorical relation (R). Recently,
the Full (F) indicator is used to estimate the tree
structure labeled with both nuclearity and relation
categories. However, since current performances
on S, N and R are imbalanced, the performance
on F is much limited by relation prediction. In
other words, the Full score may underestimate the
performance in span and nuclearity prediction. In
this work, we combine nuclearity and rhetorical
relation tags for joint N-R prediction aiming to re-
duce the uncertainty of the Full measure. Moreover,
since RST-Parseval (Marcu, 2000) overestimates
the DRS parsing performance to a certain extent,
(Morey et al., 2017; Mabona et al., 2019; Zhang
et al., 2020; Koto et al., 2021) adopt the original
Parseval to reveal the actual performance level of
DRS parsing. Following these studies, we also use
the original Parseval for evaluation and report the
micro-averaged F1 scores by default.

Hyper-Parameter Setting. For word representa-
tion, we employed the 300D vectors of GloVe (Pen-
nington et al., 2014) and the 1024D vectors of
ELMo (Peters et al., 2018) for RST-DT and the
300D vectors of Qiu et al. (2018) (Qiu-W2V) for
CDTB, and we did not update these vectors dur-
ing training. The English POS tags were obtained
through the Stanford CoreNLP toolkit (Manning
et al., 2014), the Chinese tags were borrowed from
Chinese PTB, and all the POS embeddings were
optimized during training. For model learning,
we used the development set to fine-tune the pa-
rameters in Table 1, and the number of parame-
ter search trials was around 20. All the experi-
ments based on the above-mentioned settings were
conducted on GeForce RTX 2080Ti GPU, and the
codes will be published at https://github.com/
NLP-Discourse-SoochowU/GAN_DP.

5.2 Experimental Results

Comparison between different system settings.
As stated before, we explore to make possible im-
provements to the top-down architecture of Zhang
et al. (2020). Here, we study the effects of these
simplification methods based on our simplified ar-
chitecture. For clarity, we remove the adversarial
learning process in each system, and the results
are presented in Table 2. For the RST-DT corpus,
the first two rows show that the top-down parser

Parameter EN CN
POS embedding 30 30
Uni-directional GRU 512 512
BiGRU 256 256
Biaffine-MLP-Split 128 64
Biaffine-MLP-NR 128 128
Boundary feature size 30 -
Dropout rate 0.2 0.33
Warm up epochs 7 7
Training epochs 20 20
Batch size (DTs) 5 64
Learning rate of D 1e-4 5e-4
Learning rate of other nets 1e-3 1e-3
α1 0.3 0.3
α2 1.0 1.0

Table 1: Fine-tuned hyper-parameters.

Systems S N R F

EN
T2D 70.7 58.3 46.5 45.2
+ DS 69.2 57.7 46.1 44.9
+ TC 70.6 57.9 46.1 44.4

CN
T2D 82.5 57.3 51.7 48.2
+ DS 83.2 57.8 52.7 49.0
+ DS&TC 85.2 57.3 53.3 45.7

Table 2: Results under different model settings. “T2D”
denotes our simplified architecture, which excludes the
dummy split points and only uses two classifiers for
DRS parsing; “DS” means the dummy split points are
used; “TC” means three classifiers are used.

performs worse when dummy split points are used,
and the decline is obvious in tree structure parsing.
Then, we further apply three classifiers to the sim-
plified architecture, and the results (lines 1 and 3)
show that the Full score drops by 1.8% for lack of
correlation between the three learning goals. For
the CDTB corpus, due to the differences in lan-
guages and annotation strategies, the situation is
quite different. Specifically, lines 4 and 5 show that
the top-down parser performs better on all the four
indicators when using dummy split points (Zhang
et al., 2020). Based on the better-performing parser
using “DS”, we further report its performance with
three independent classifiers used, and the results
(line 6) show that the Full score still drops a lot
(6.7%), which suggests the necessity of joint N-R
prediction. Considering the above results, in the
following, we separately use two sets of model set-
tings for different languages. For English, we build
our final model based on the simplified architecture
without dummy split points. For Chinese, we build
our final model based on the architecture of Zhang
et al. (2020). For both systems, we only use two
classifiers for DRS parsing.

https://github.com/NLP-Discourse-SoochowU/GAN_DP
https://github.com/NLP-Discourse-SoochowU/GAN_DP
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Systems S N R F

EN Final 71.8 59.5 47.0 45.9
- Advers. bot 70.7 58.3 46.5 45.2

CN Final 84.9 58.4 54.5 50.3
- Advers. bot 83.2 57.8 52.7 49.0

Table 3: Comparison on the adversarial bot.

Comparison on the adversarial bot. Here, we
perform experiments to explore the effects of the
adversarial learning approach, and the experimen-
tal results are presented in Table 3. For the RST-DT
corpus, the results show that our adversarial model
setting can improve the performance on all the four
indicators, especially in structure and nuclearity
prediction. Similarly, the results on the CDTB cor-
pus show that our adversarial method still works
much better than the unreinforced parser in struc-
ture, relation, and full detection. The overall results
indicate that the global optimization method we use
is definitely effective, although the effectiveness
has not yet reached the level of qualitative change.
In fact, as a preliminary attempt for global opti-
mization of DRS parsing, this research still has
much room for improvement which deserves fur-
ther exploration.

Comparison with previous studies. In this part,
we compare with seven previous state-of-the-art
(SOTA) parsers on text-level DRS parsing. Here,
we briefly review these studies as follows:

• Ji and Eisenstein (2014), a shift-reduce parser
with an SVM that is trained by their extracted
latent features. In this paper, we compare with
the updated version of their parser (designated as
“JE2017-updated”) (Morey et al., 2017).

• Feng and Hirst (2014), a two-stage greedy parser
with linear-chain CRF models and some hand-
engineered features.

• Li et al. (2016), an attention-based hierarchical
neural model with hand-crafted features used.

• Braud et al. (2016), a hierarchical BiLSTM
model that leverages information from various
sequence prediction tasks.

• Braud et al. (2017), a transition-based neural
model with both cross-lingual information and
hand-crafted features used.

• Mabona et al. (2019), a generative model with a
beam search algorithm used for DRS parsing.

Systems S N R F

EN

JE2017-updated 64.1 54.2 46.8 46.3
Feng and Hirst (2014) 68.6 55.9 45.8 44.6
Li et al. (2016) 64.5 54.0 38.1 36.6
Braud et al. (2016) 59.5 47.2 34.7 34.3
Braud et al. (2017) 62.7 54.5 45.5 45.1
Mabona et al. (2019) 67.1 57.4 45.5 45.0
Zhang et al. (2020) 67.2 55.5 45.3 44.3
Ours (GloVe) 69.9 57.3 46.3 45.0
Ours (ELMo) 71.8 59.5 47.0 45.9

CN
Zhang et al. (2020) 85.2 57.3 53.3 45.7
Zhang et al. (2020)* 84.0 59.0 54.2 47.8
Ours (Qiu-W2V) 84.9 58.4 54.5 50.3

Table 4: Performance comparison with previous work.
Results of the first five lines are directly borrowed from
(Morey et al., 2017). “*” denotes the updated results
based on the strict evaluation metric we use.

• Zhang et al. (2020), a top-down neural architec-
ture tailored for text-level DRS parsing. Different
from many previous studies, this parser is a pure
neural parser without using any additional hand-
crafted features.

For the RST-DT corpus, the results are presented
in the upper part of Table 4. From the results, al-
though our previous top-down parser (Zhang et al.,
2020) can achieve good results without using hand-
crafted features, the performance is still far from
perfect. Comparing our GloVe-based top-down
parser with previous state-of-the-art parsers, our
parser performs better than most previous ones due
to its ability in leveraging global context and the
adversarial learning strategy. Furthermore, compar-
ing the final parser (line 9) with previous work, our
ELMo-based parser can further improve the perfor-
mance on all the four indicators, and the improve-
ments on structure (4.7%) and nuclearity (3.7%)
are significant. Obviously, the contextualized word
representation can greatly improve the parsing per-
formance, especially in such a task with small-scale
data corpora.

For the CDTB corpus, we explore to employ
a more strict metric4 for performance evaluation
and the overall results are presented in the lower
part of Table 4. In comparison with previous work,
our parser achieves comparable performance in nu-
clearity and relation prediction and much better
results on the other two indicators, which proves
the usefulness of the adversarial nets we use. In

4We borrow the strict evaluation method from https:
//github.com/NLP-Discourse-SoochowU/t2d_
discourseparser for evaluation in this study, and report
the macro-averaged F1-scores for performance.

https://github.com/NLP-Discourse-SoochowU/t2d_discourseparser
https://github.com/NLP-Discourse-SoochowU/t2d_discourseparser
https://github.com/NLP-Discourse-SoochowU/t2d_discourseparser
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Systems S N R F

EN

Koto et al. (2021) 73.1 62.3 51.5 50.3
Ours (XLNet) 76.3 65.5 55.6 53.8

- Advers. bot 76.1 64.4 54.3 52.9

CN
Ours (Qiu-W2V) 84.9 58.4 54.5 50.3
Ours (XLNet) 86.6 65.0 62.1 55.4

- Advers. bot 85.8 64.5 60.5 53.7

Table 5: Performance comparison with LMs used.

particular, compared with previous parsers, our
parser performs significantly better on “F” due to
the joint prediction of nuclearity and relation cat-
egories. This suggests the robustness of our sim-
plified parser with only two classifiers. Moreover,
since the two top-down DRS parsers in the table
show similar results on “R”, we speculate that the
Chinese rhetorical relation prediction has encoun-
tered a bottleneck to some extent, which requires
more effort to be invested.

Performances based on the SOTA language mod-
els. Recently, more and more researchers (Shi
et al., 2020; Koto et al., 2021) propose to improve
DRS parsing performance through powerful lan-
guage models (LMs) like Bert (Devlin et al., 2019)
and XLNet (Yang et al., 2019). Following these
studies, in this work, we perform additional exper-
iments on the XLNet-base models in (Yang et al.,
2019) and (Cui et al., 2020) for the RST-DT and
CDTB corpus, respectively. For better model inte-
gration, we slightly adjust the previously described
model architecture5, more specifically, the EDU
encoder. We first use a pre-trained LM to encode
each entire discourse where each EDU is attached
with the [SEP] and [CLS] tokens and then take
the LM outputs corresponding to [CLS] as our
EDU representation. Moreover, we segment each
document according to the maximum length of 768
tokens and encode these text segments one by one
to avoid the problem of memory overflow.

For the RST-DT corpus, we report the results
of the recent Bert-based top-down parser (Koto
et al., 2021) for comparison. For the CDTB cor-
pus, we compare with our previously described
system based on traditional word vectors, and the
overall results are shown in Table 5. From the
results we find that our parsers achieve superior
results when using the contextualized XLNet for
experimentation, which suggests the great effec-
tiveness of pre-trained LMs in such a task with

5Adjusted model parameters are shown in Appendix.

Systems UAS LAS
Wang et al. (2017)* 61.5 47.8
Yu et al. (2018)* 61.9 48.4
Kobayashi et al. (2020)* 64.9 48.5
Ours (Final) 72.3 57.6

- Advers. bot 71.4 56.5

Table 6: Evaluation on dependency trees. “*” denotes
the results are borrowed from (Kobayashi et al., 2020).

limited corpus size. Moreover, the ablation study
on the adversarial learning strategy further demon-
strates the usefulness of our proposed method. It
should be noted that we report the performance us-
ing LMs in this paper never mean to advocate using
pre-trained LMs or blindly pursuing performance
improvements in DRS parsing. Sometimes, the re-
wards generated by the large-scale LMs could be
quite different from and much more effective than
that generated by language phenomena, which may
hinder the study on the relatively shallow (com-
pared with powerful LMs) yet valuable discourse
features. With this in mind, it is reasonable to per-
form ablation study using simple word representa-
tion to explore useful discourse features and report
the performance on powerful LMs for reference.

5.3 Analysis and Discussion

Performance Evaluation of Dependency Trees.
Recently, discourse-level dependency structure has
attracted more and more attention. Here, we ex-
plore whether the proposed global optimization
method can improve the RST dependency analy-
sis to some extent. To achieve this, we first con-
vert the predicted DRS trees into dependency trees
as Kobayashi et al. (2020) did and then perform
evaluation on the converted dependencies labeled
(LAS) and unlabeled (UAS) with rhetorical rela-
tions, and the results are shown in Table 6. Firstly,
lines 1 to 4 show that our parser can greatly out-
perform previous systems in terms of both UAS
and LAS indicators. Secondly, the last two rows
show that the global optimization of constituency
trees can simultaneously improve the dependency
performance, which further proves the usefulness
of our proposed adversarial method.

Remarkable Progress in DRS Parsing. Com-
pared with Chinese DRS parsing where each para-
graph is annotated as a DT, the English parsing with
313 DTs for training is much more challenging.
Nevertheless, results in Table 4 and Table 5 show
that our parser can largely outperform previous



3954

Systems NN/23% NS/61% SN/16%
Ours (GloVe) 43.3 62.9 55.7
Ours (ELMo) 47.8 64.1 58.5
Ours (XLNet) 56.7 67.4 69.6

- Advers. bot 58.8 66.4 66.7

Table 7: Performance on nuclearity detection.

5

5

loss loss

lossloss

step

step step

step

Figure 5: Convergence of our parsing model over differ-
ent learning rates (LRs).

state-of-the-art parsers on “Full”. (i) For nuclearity
prediction, we display the results of our parsers
on each nuclearity category to explore where the
improvement comes from, as shown in Table 7.
From the results, it’s obvious that the LM we use
plays a big role in nuclearity prediction, and the
proposed adversarial method can further improve
the performance to a certain extent. (ii) For rela-
tion prediction, the classification problem with 18
coarse-grained relation tags (RST-DT) is really a
challenge. From the results in Table 4 we can find
that the progress in relation prediction is much lim-
ited in recent decade for the lack of data. And most
of previous state-of-the-art parsers employee a va-
riety of hand-engineered features for good perfor-
mance. Hopefully, the experimental results in Ta-
ble 5 show that powerful LMs can free data-driven
models from corpus size limitation and thus our
XLNet-based parser strongly outperforms JE2017-
updated (Morey et al., 2017) by 18.8% on “R”. The
results of our parsers on each rhetorical relation
category are shown in Appendix.

Discussion on Adversarial Learning. Similar
to previous GAN work, improving the quality of
the generated tree images is really a challenge, and
the instability of the adversarial learning process
is another intractable issue. In order for our model

to continuously modify the generated images even
when they are correctly classified, we leverage a
least squares loss in our system for model learning.
To avoid the over-learning of the discriminator, we
tune it with a moderate learning rate and parameter
scale. Intuitively, the convergence of our model
over different learning rates is presented in Fig-
ure 5. From the results, as the learning rate of the
discriminator increases, the fluctuation of the loss
value becomes larger, and it is hard to reduce the
generator loss. In these four cases, the first group
seems to be more stable and in line with our ex-
pectations. Therefore, we set the learning rate to
1e-4 in our systems for experimentation. Notably,
we also tried the sigmoid cross entropy loss in this
research which performs much worse than the LS-
GAN we use. For reference, we also present the
model convergence over different loss functions in
Appendix for reference.

6 Conclusion

In this research, we explored a global optimization
method based on recent top-down frameworks. Par-
ticularly, we proposed a novel strategy to transform
both gold standard and predicted DRS trees into
tree diagrams with two color channels. On this ba-
sis, we produced an LSGAN-based adversarial bot
between gold and fake trees for global optimiza-
tion. Experimental results on two popular corpora
showed that our proposed adversarial approach is
effective in DRS parsing and has established new
state-of-the-art results for both corpora.
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applied, as shown in Figure 6. Comparing the first
two legends, since the sigmoid cross entropy loss
suffers from gradient vanishing, it’s hard for our
model to update the generator net, and the generator
loss keeps growing up. To avoid the over-learning
of the discriminator net, we simplify the original
discriminator network from a 3-layer MLP to a
linear function, and the results are presented in
Figure 6 (c). From the results, it’s really hard to
train both generator and discriminator nets, and the
adversarial learning in Figure 6 (c) seems to be
meaningless for DRS parsing.
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(a)

(b)

(c)

Figure 6: Figure (a) refers to our final model based on
LSGAN; figure (b) refers to our model with the sigmoid
cross entropy loss function used; based on figure (b),
we use a simplified discriminator in figure (c).

B. Results on Different Relation Categories

Table 8 and Table 9 present the performances (F1-
scores) of our systems on each relation category in
the RST-DT and CDTB corpora, respectively.

C. Configurations of the LM-based Systems

For better model integration, we slightly tuned the
model hyper-parameters to adapt to the LM-based
systems. For RST-DT, we set the LRs of all the
nets to 1e-4, the hidden size of BiGRU to 384, the
hidden size of uni-directional GRU to 768, and
the batch size to 1 to suit the NVIDIA Tesla P40

Type-ratio% GloVe ELMo XLNet
Elaborate-30.4 47.9 48.8 60.4
Joint-15.1 36.3 39.2 49.4
Attribution-11.7 77.9 83.0 86.7
Same-unit-10.9 70.3 71.9 75.9
Contrast-5.8 34.5 27.0 42.6
Explanation-3.8 11.3 16.1 21.7
Background-3.4 23.0 20.8 27.8
Temporal-3.0 15.4 15.5 34.6
Cause-2.9 3.7 7.7 18.5
Evaluation-2.2 4.1 0.0 10.5
Enablement-2.2 54.7 42.0 66.7
Comparison-1.7 12.5 12.9 36.7
Topic-change-1.6 7.7 11.1 40.0
Textual-org-1.3 20.0 28.6 53.3
Condition-1.2 42.1 29.0 62.5
Topic-comment-1.0 0.0 0.0 8.3
Manner-means-0.8 33.3 32.1 44.0
Summary-0.8 47.8 44.0 50.0

Table 8: Results on the RST-DT corpus. “ratio” means
the proportion of each category label in the corpus.

Type-ratio% Qiu-W2V XLNet
并列 / Same-unit-47.8 80.2 88.0
解说 / Explanation-12.6 50.0 60.7
因果 / Cause-9.4 32.5 55.9
顺承 / Consequent-7.1 4.1 58.1
目的 / Purpose-4.6 48.5 58.5
例证 / Example-3.4 10.5 34.5
总分 / Overall-branch-3.2 75.0 73.9
评价 / Evaluation-3.1 26.7 56.3
转折 / Contrast-2.7 69.0 75.0
背景 / Background-1.8 0.0 36.4
条件 / Condition-1.0 0.0 16.7
假设 / Suppose-1.0 0.0 66.7
递进 / Progressive-0.9 0.0 0.0
对比 / Comparison-0.8 0.0 40.0
推断 / Deduce-0.5 0.0 0.0
让步 / Concession-0.2 0.0 0.0

Table 9: Results on the CDTB corpus.

GPU memory. For CDTB, we set the LRs of the
discriminator, LM, and other nets to 5e-4, 1e-4,
and 2e-5, respectively. We trained the LM-based
systems for around 30 rounds and the other system
settings remained the same as the aforementioned
non-LM-based systems.


