CDRNN: Discovering Complex Dynamics in Human Language Processing

Cory Shain
The Ohio State University
shain.3@osu.edu

Abstract

The human mind is a dynamical system, yet
many analysis techniques used to study it are
limited in their ability to capture the complex
dynamics that may characterize mental pro-
cesses. This study proposes the continuous-
time deconvolutional regressive neural net-
work (CDRNN), a deep neural extension
of continuous-time deconvolutional regression
(CDR, Shain and Schuler, 2021) that jointly
captures time-varying, non-linear, and delayed
influences of predictors (e.g. word surprisal)
on the response (e.g. reading time). Despite
this flexibility, CDRNN is interpretable and
able to illuminate patterns in human cognition
that are otherwise difficult to study. Behavioral
and fMRI experiments reveal detailed and
plausible estimates of human language pro-
cessing dynamics that generalize better than
CDR and other baselines, supporting a poten-
tial role for CDRNN in studying human lan-
guage processing.

1 Introduction

Central questions in psycholinguistics concern the
mental processes involved in incremental human
language understanding: which representations are
computed when, by what mental algorithms (Fra-
zier and Fodor, 1978; Just and Carpenter, 1980;
Abney and Johnson, 1991; Tanenhaus et al., 1995;
Almor, 1999; Gibson, 2000; Coltheart et al., 2001;
Hale, 2001; Lewis and Vasishth, 2005; Levy, 2008,
inter alia)? Such questions are often studied by
caching out a theory of language processing in an
experimental stimulus, collecting human responses,
and fitting a regression model to test whether mea-
sures show the expected effects (e.g. Grodner and
Gibson, 2005). Regression techniques have grown
in sophistication, from ANOVA (e.g. Pickering and
Branigan, 1998) to newer linear mixed-effects ap-
proaches (LME, Bates et al., 2015) that enable

direct word-by-word analysis of effects in natu-
ralistic human language processing (e.g. Demberg
and Keller, 2008; Frank and Bod, 2011). However,
these methods struggle to account for delayed ef-
fects. Because the human mind operates in real
time and experiences computational bottlenecks of
various kinds (Bouma and De Voogd, 1974; Just
and Carpenter, 1980; Ehrlich and Rayner, 1981;
Mollica and Piantadosi, 2017), delayed effects may
be pervasive, and, if left uncontrolled, can yield
misleading results (Shain and Schuler, 2018).
Continuous-time deconvolutional regression
(CDR) is a recently proposed technique to address
delayed effects in measures of human cognition
(Shain and Schuler, 2018, 2021). CDR fits para-
metric continuous-time impulse response functions
(IRFs) that mediate between word features and re-
sponse measures. An IRF maps the time elapsed
between a stimulus and a response to a weight
describing the expected influence of the stimulus
on the response. CDR models the response as an
IRF-weighted sum of preceding stimuli, thus di-
rectly accounting for effect latencies. Empirically,
CDR reveals fine-grained processing dynamics and
generalizes better to human reading and fMRI re-
sponses than established alternatives. However,
CDR retains a number of simplifying assumptions
(e.g. that the IRF is fixed over time) that may not
hold of the human language processing system.
Deep neural networks (DNNs), widely used in
natural language processing (NLP), can relax these
strict assumptions. Indeed, psycholinguistic re-
gression analyses and NLP systems share a com-
mon structure: both fit a function from word fea-
tures to some quantity of interest. However, psy-
cholinguistic regression models face an additional
constraint: they must be interpretable enough to
allow researchers to study relationships between
variables in the model. This requirement may be
one reason why black box DNN are not generally
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used to analyze psycholinguistic data, despite the
tremendous gains DNNs have enabled in natural
language tasks (Peters et al., 2018; Devlin et al.,
2019; Radford et al., 2019; Brown et al., 2020, inter
alia), in part by better approximating the complex
dynamics of human cognition as encoded in natu-
ral language (Linzen et al., 2016; Gulordava et al.,
2018; Tenney et al., 2019; Hewitt and Manning,
2019; Wilcox et al., 2019; Schrimpf et al., 2020).

This study proposes an attempt to leverage the
flexibility of DNNs for psycholinguistic data anal-
ysis. The continuous-time deconvolutional regres-
sive neural network (CDRNN) is an extension
of CDR that reimplements the impulse response
function as a DNN describing the expected in-
fluence of preceding events (e.g. words) on fu-
ture responses (e.g. reading times) as a function
of their properties and timing. CDRNN retains
the deconvolutional design of CDR while relax-
ing many of its simplifying assumptions (linear-
ity, additivity, homosketasticity, stationarity, and
context-independence, see Section 2), resulting in
a highly flexible model. Nevertheless, CDRNN is
interpretable and can shed light on the underlying
data generating process. Results on reading and
fMRI measures show substantial generalization im-
provements from CDRNN over baselines, along
with detailed insights about the underlying dynam-
ics that cannot easily be obtained from existing
methods. !

2 Background

Psycholinguists have been aware for decades that
processing effects may lag behind the words that
trigger them (Morton, 1964; Bouma and De Voogd,
1974; Rayner, 1977; Erlich and Rayner, 1983;
Mitchell, 1984; Rayner, 1998; Vasishth and Lewis,
2006; Smith and Levy, 2013), possibly because
cognitive “buffers” may exist to allow higher-level
information processing to catch up with the input
(Bouma and De Voogd, 1974; Baddeley et al., 1975;
Just and Carpenter, 1980; Ehrlich and Rayner,
1981; Mollica and Piantadosi, 2017). They have
also recognized the potential for non-linear, inter-
active, and/or time-varying relationships between
word features and language processing (Smith
and Levy, 2013; Baayen et al., 2017, 2018). No
prior regression method can jointly address these

"Because of page constraints, additional replication details
and synthetic results are provided in an external supplement,
available here: https://osf.i0/z89%vn/.

concerns in non-uniform time series (e.g. words
with variable duration) like naturalistic psycholin-
guistic experiments. Discrete-time methods (e.g.
lagged/spillover regression, Sims, 1971; Erlich and
Rayner, 1983; Mitchell, 1984) ignore potentially
meaningful variation in event duration, even if
some (e.g. generalized additive models, or GAMs,
Hastie and Tibshirani, 1986; Wood, 2006) permit
non-linear and non-stationary (time-varying) fea-
ture interactions (Baayen et al., 2017). CDR (Shain
and Schuler, 2018, 2021) addresses this limitation
by fitting continuous-time IRFs, but assumes that
the IRF is stationary (time invariant), that features
scale linearly and combine additively, and that the
response variance is constant (homoskedastic). By
implementing the IRF as a time-varying neural net-
work, CDRNN relaxes all of these assumptions, in-
corporating the featural flexibility of GAMs while
retaining the temporal flexibility of CDR.

Previous studies have investigated latency and
non-linearity in human sentence processing. For
example, Smith and Levy (2013) attach theoretical
significance to the functional form of the relation-
ship between word surprisal and processing cost,
using GAMs to show that this relationship is linear
and arguing on this basis that language processing
is highly incremental. This claim is under active
debate (Brothers and Kuperberg, 2021), underlin-
ing the importance of methods that can investi-
gate questions of functional form. Smith and Levy
(2013) also investigate the timecourse of surprisal
effects using spillover and find a more delayed sur-
prisal response in self-paced reading (SPR) than
in eye-tracking. Shain and Schuler (2021) support
the latter finding using CDR, and in addition show
evidence of strong inertia effects in SPR, such that
participants who have been reading quickly in the
recent past also read more quickly now. However,
this outcome may be an artifact of the stationarity
assumption: CDR may be exploiting its estimates
of rate effects in order to capture broad non-linear
negative trends (e.g. task adaptation, Prasad and
Linzen, 2019) in a stationary model. Similarly, the
generally null word frequency estimates reported
in Shain and Schuler (2021) may be due in part to
the assumption of additive effects: word frequency
and surprisal are related, and they may coordinate
interactively to determine processing costs (Nor-
ris, 2006). Thus, in general, prior findings on the
timecourse and functional form of effects in human
sentence processing may be influenced by method-
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Figure 1: CDRNN model. Subscripts omitted to re-
duce clutter. The IRF g(7) at an event computes the ex-
pected contribution of each feature of the event vector
h(® to each element of the parameter vector s of the
predictive distribution for a particular response value.
The first layer of the IRF depends non-linearly on the
properties of the event via h™™ and (optionally) on con-
text via h®NN_ which requires the recurrent connections
in gray. Elements with random effects have dotted out-
lines. For variable definitions, see Appendix A.

ological limitations: the GAM models of Smith
and Levy (2013) ignore variable event duration, the
CDR models of Shain and Schuler (2021) ignore
non-linearity, and both approaches assume station-
arity, context-independence, constant variance, and
additive effects. By jointly relaxing these poten-
tially problematic assumptions, CDRNN stands to
support more reliable conclusions about human lan-
guage comprehension, while also possibly enabling
new insights into cognitive dynamics.

3 Model

3.1 Architecture

This section presents a high-level description of
the model design (for formal definition, see Ap-
pendix A). The CDRNN architecture is represented
schematically in Figure 1. The primary goal of esti-
mation is to identify the deep neural IRF g(7) (top)
that computes the influence of a preceding event
on the predictive distribution over a subsequent re-
sponse as a function of their distance in time 7. As
shown, the IRF is a feedforward projection of 7 into
a matrix that defines a weighted sum over the val-
ues of input vector x, which is concatenated with a
bias to capture general effects of stimulus timing
(rate). This matrix multiplication determines the
contribution of the stimulus event to the parameters
of the predictive distribution (e.g. the mean and
variance parameters of a Gaussian predictive distri-
bution). Defining the IRF as a function of 7 ensures

that the model has a continuous-time definition.

To capture non-linear effects of stimulus fea-
tures, the IRF projection is itself parameterized by
a projection of a hidden state h. The dependence
on h permits non-linear influences of the proper-
ties of the stimulus sequence on the IRF itself. To
generate h, the predictors x are concatenated with
their timestamps ¢ and submitted to the model as
input. Inputs are cast to a hidden state for each
preceding event as the sum of three quantities: a
feedforward projection hi™ of each input, a forward-
directional RNN projection hR™N of the events up
to and including each input, and random effects h?
containing offsets for the relevant random effects
level(s) (e.g. for each participant in an experiment).
In this study, the recurrent component is treated
as optional (gray arrows). Without the RNN, the
model is non-stationary (via input t) but cannot
capture contextual influences on the IRF.

The summation over IRF outputs at the top of
the figure ensures that the model is deconvolutional:
each preceding input contributes to the response in
some proportion, with that proportion determined
by the features, context, and relative timing of that
input. Because the IRF depends on a deep neural
projection of the current stimulus as well as (op-
tionally) the entire sequence of preceding stimuli, it
implicitly estimates all interactions between these
variables in governing the response. Predictors may
thus coordinate in a non-linear, non-additive, and
time-varying manner.

The CDRNN IRF describes the influence over
time of predictors on all parameters of the predic-
tive distribution (in these experiments, the mean
and variance parameters of a Gaussian predictive
distribution). Such a design (i.e. modeling depen-
dencies on the predictors of all parameters of the
predictive distribution) has previously been termed
distributional regression (Biirkner, 2018).

Despite their flexibility and task performance
(Section 5), CDRNN models used in this study have
few parameters (Table A1) by current deep learning
standards because they are relatively shallow and
small (Supplement S1).

3.2 Objective and Regularization

Given (1) an input configuration C containing pre-
dictors X, input timestamps t, and response times-
tamps t/, (2) CDRNN parameter vector w, (3) out-
put distribution p, (4) random effects vector z, and
(5) response vector y, the model uses gradient de-
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scent to minimize the following objective:

L(y|C;w,z) def _ logp(y | C;w,z)+ (1)
Ael|Z|[3 4 Lreg

In addition to random effects shrinkage governed
by A, and any arbitrary additional regularization
penalties Le; (see Supplement S1), models are
regularized using dropout (Srivastava et al., 2014)
with drop rate dy, at the outputs of all feedforward
hidden layers. Random effects are also dropped at
rate d,, which is intended to encourage the model
to find population-level estimates that accurately
reflect central tendency. Finally, the recurrent con-
tribution to the CDRNN hidden state (bR above)
is dropped at rate d,., which is intended to encour-
age accurate IRF estimation even when context is
unavailable.

3.3 Effect Estimation

Because it is a DNN, CDRNN lacks parameters
that selectively describe the size and shape of the
response to a specific predictor (unlike CDR), and
indeed individual parameters (e.g. individual biases
or connection weights) are not readily interpretable.
Thus, from a scientific perspective, the quantity of
general interest is not a distribution over parame-
ters, but rather over the effect of a predictor on the
response. The current study proposes to accom-
plish this using perturbation analysis (e.g. Ribeiro
et al., 2016; Petsiuk et al., 2018), manipulating the
input configuration and quantifying the influence
of this manipulation on the predicted response.?
For example, to obtain an estimate of rate effects
(i.e. the base response or “deconvolutional inter-
cept,” see Shain and Schuler, 2021), a reference
stimulus can be constructed, and the response to
it can be queried at each timepoint over some in-
terval of interest. To obtain CDR-like estimates
of predictor-wise IRFs, the reference stimulus can
be increased by 1 in the predictor dimension of
interest (e.g. word surprisal) and requeried, taking
the difference between the obtained response and
the reference response to reveal the influence of
an extra unit of the predictor.® This study uses the

ZPerturbation analyses is one of a growing suite of tools for
black box interpretation. It is used here because it straightfor-
wardly links properties of the input to changes in the estimated
response, providing a highly general method for querying as-
pects of the the non-linear, non-stationary, non-additive IRF
defined by the CDRNN equations.

3Note that 1 is used here to maintain comparability of
effect estimates to those generated by methods that assume

training set mean of x and ¢ as a reference, since
this represents the response of the system to an
average stimulus. The model also supports arbi-
trary additional kinds of queries, including of the
curvature of an effect in the IRF over time and of
the interaction between two effects at a point in
time. Indeed, the IRF can be queried with respect
to any combination of values for predictors, ¢, and
T, yielding an open-ended space of queries that can
be constructed as needed by the researcher.

Because the estimates of interest all derive from
the model’s predictive distribution, uncertainty
about them can be measured with Monte Carlo tech-
niques as long as training involves a stochastic com-
ponent, such as dropout (Srivastava et al., 2014)
or batch normalization (Ioffe and Szegedy, 2015).
This study estimates uncertainty using Monte Carlo
dropout (Gal and Ghahramani, 2016), which re-
casts training neural networks with dropout as vari-
ational Bayesian approximation of deep Gaussian
process models (Damianou and Lawrence, 2013).
At inference time, an empirical distribution over
responses to an input is constructed by resampling
the model (i.e. sampling different dropout masks).*
As argued by Shain and Schuler (2021) for CDR, in
addition to intervals-based tests, common hypothe-
sis tests (e.g. for the presence of an effect) can be
performed in a CDRNN framework via bootstrap
model comparison on held out data (e.g. of models
with and without the effect of interest).

4 Methods

Following Shain and Schuler (2021), CDRNN
is applied to naturalistic human language pro-
cessing data from three experimental modalities:
the Natural Stories self-paced reading corpus
(~1M instances, Futrell et al., 2020), the Dundee
eye-tracking corpus (~200K instances, Kennedy

linearity of effects (especially CDR), but that 1 has no special
meaning in the non-linear setting of CDRNN modeling, and
effects can be queried at any offset from any reference. Results
here show that deflections move relatively smoothly away
from the reference, even at smaller steps than 1, and that IRFs
queried at 1 are similar to those obtained from (linear) CDR,
indicating that this method of effect estimation is reliable.
Note finally that because predictors are underlyingly rescaled
by their training set standard deviations (though plotted at the
original scale for clarity), 1 here corresponds to 1 standard
unit, as was the case with the CDR estimates discussed in
Shain and Schuler (2021).

*“Initial experiments also explored uncertainty quantifica-
tion by implemententing CDRNN as a variational Bayesian
DNN. Compared to the methods advocated here, the varia-
tional approach was more prone to instability, achieved worse
fit, and yielded implausibly narrow credible intervals.
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Natural Stories (SPR) Dundee
ms log-ms ms log-ms

Model Train Dev Test Train Dev Test Train Dev Test Train Dev Test
LME | 199807 204717 202307 | 0.0789"  0.0807"  0.0803"7 | 131127 141627 140247 | 0.1507"  0.1532"7  0.1526
GAM | 19873 20349 20109 | 0.0784  0.0802  0.0799 12882 13948 13771 0.1491 0.1518  0.1508
CDR | 18118 18373 18212 | 0.0646  0.0652  0.0654 13073 14106 13960 | 0.1505  0.1539  0.1520
CDRNN-FF | 18338 18677 18401 0.0644  0.0651 0.0650 | 12760 13863 13678 | 0.1479  0.1507  0.1498
CDRNN-RNN | 18217 18624 18430 | 0.0636  0.0647  0.0642 12791 13897 13717 | 01476  0.1507  0.1495

Table 1: Reading. Mean squared error by model. Baselines as reported in Shain and Schuler (2021). Daggers ()

indicate convergence failures.

et al., 2003), and the Natural Stories fMRI cor-
pus (~200K instances, Shain et al., 2020), using
the train/dev/test splits for these corpora defined
in Shain and Schuler (2021). Further details about
datasets and preprocessing are given in Supple-
ment S2.

For reading data, CDRNN is compared to
CDR as well as lagged LME and GAM baselines
equipped with four spillover positions for each pre-
dictor (values from the current word, plus three
preceding words), since LME and GAM are well
established analysis methods in psycholinguistics
(e.g. Baayen et al., 2007; Demberg and Keller,
2008; Frank and Bod, 2011; Smith and Levy, 2013;
Baayen et al., 2017; Goodkind and Bicknell, 2018,
inter alia). Because the distribution of reading
times is heavy-tailed (Frank et al., 2013), follow-
ing Shain and Schuler (2021) models are fitted to
both raw and log-transformed reading times. For
fMRI data, CDRNN is compared to CDR as well
as four existing techniques for analyzing naturalis-
tic fMRI data: pre-convolution with the canonical
hemodynamic response function (HRF, Brennan
et al., 2012; Willems et al., 2015; Henderson et al.,
2015, 2016; Lopopolo et al., 2017), linear interpo-
lation (Shain and Schuler, 2021), binning (Wehbe
et al., 2020), and Lanczos interpolation (Huth et al.,
2016). Statistical model comparisons use paired
permutation tests of test set error (Demsar, 2006).

Models use predictors established by prior psy-
cholinguistic research (e.g. Rayner, 1998; Demberg
and Keller, 2008; van Schijndel and Schuler, 2013;
Staub, 2015; Shain and Schuler, 2018, inter alia):
unigram and 5-gram surprisal, word length (read-
ing only), saccade length (eye-tracking only), and
previous was fixated (eye-tracking only). Predictor
definitions are given in Appendix C. The decon-
volutional intercept term rate (Shain and Schuler,
2018, 2021), an estimate of the general influence
of observing a stimulus at a point in time, inde-
pendently of its properties, is implicit in CDRNN
(unlike CDR) and is therefore reported in all results.
Reading models include random effects by subject,

while fMRI models include random effects by sub-
ject and by functional region of interest (fROI).
Unlike LME, where random effects capture lin-
ear differences in effect size between e.g. subjects,
random effects in CDRNN capture differences in
overall dynamics between subjects, including dif-
ferences in size, IRF shape, functional form (e.g.
linearity), contextual influences on the IRF, and
interactions with other effects.

Two CDRNN variants are considered in all ex-
periments: the full model (CDRNN-RNN) contain-
ing an RNN over the predictor sequence, and a feed-
forward only model (CDRNN-FF) with the RNN
ablated (gray arrows removed in Figure 1). This
manipulation is of interest because CDRNN-FF
is both more parsimonious (fewer parameters) and
faster to train, and may therefore be preferred in the
absence of prior expectation that the IRF is sensi-
tive to context. All plots show means and 95% cred-
ible intervals. Code and documentation are avail-
able at https://github.com/coryshain/cdr.

5 Results

Since CDRNN is designed for scientific modeling,
the principal output of interest is the IRF itself and
the light it might shed on questions of cognitive
dynamics, rather than on performance in some task
(predicting reading latencies or fMRI measures are
not widely targeted engineering goals). However,
predictive performance can help establish the trust-
worthiness of the IRF estimates. To this end, as
a sanity check, this section first evaluates predic-
tive performance on human data relative to existing
regression techniques. While results may resem-
ble “bake-off”” comparisons familiar from machine
learning (and indeed CDRNN does outperform all
baselines), their primary purpose is to establish
that the CDRNN estimates are trustworthy, since
they describe the phenomenon of interest in a way
that generalizes accurately to an unseen sample.
Baseline models, including CDR, are as reported
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Model Train Expl Test
Canonical HRF | 11.35487 11.82637 11.56617
Linearly interpolated | 11.4236"  11.9888"  11.6654"
Averaged | 11.3478"  11.9280"  11.6090°
Lanczos interpolated | 11.3536"  11.90597  11.5871°
CDR | 11.2774  11.6928  11.5369
CDRNN-FF | 10.5648 11.3602  11.3042
CDRNN-RNN | 10.8736  11.5631  11.3914

Table 2: fMRI. Mean squared error by model. Base-
lines as reported in Shain and Schuler (2021). Daggers
() indicate convergence failures.

in Shain and Schuler (2021).

5.1 Model Validation: Baseline Comparisons

Table 1 gives mean squared error by dataset of
CDRNN vs. baseline models on reading times from
both Natural Stories and Dundee. Both versions
of CDRNN outperform all baselines on the dev
partition of all datasets except for raw (ms) laten-
cies in Natural Stories (SPR), where CDRNN is
edged out by CDR® but still substantially outper-
forms the non-CDR baselines. Nonetheless, results
indicate that CDRNN estimates of Natural Stories
(ms) are similarly reliable to those of CDR, and,
as discussed in Section 5.2, CDRNN largely repli-
cates the CDR estimates on Natural Stories while
offering advantages for analysis.

Although CDR struggles against GAM baselines
on Dundee, CDRNN has closed the gap. This is
noteworthy in light of speculation in Shain and
Schuler (2021) that CDR’s poorer performance
on Dundee might be due in part to non-linear
effects, which GAM can estimate but CDR can-
not. CDRNN performance supports this conjecture:
once the model can account for non-linearities, it
overtakes GAMs.

Results from fMRI are shown in Table 2, where
both CDRNN variants yield substantial improve-
ments to training, dev, and test set error. These re-
sults indicate that the relaxed assumptions afforded
by CDRNN are beneficial for describing the fMRI
response, which is known to saturate over time
(Friston et al., 2000; Wager et al., 2005; Vazquez
et al., 2006; Lindquist et al., 2009).

Following Shain and Schuler (2021), model er-
ror is statistically compared using a paired permu-

>For all datasets, the CDR baseline used here is the variant
that was deployed on the test set in Shain and Schuler (2021).

SNote that a major advantage of CDRNN is its ability to
model dynamics in response variance, which are not reflected
in squared error. For example, although CDRNN-FF achieves
worse test set error than CDR on the Natural Stories (ms) task,
it affords a 31,040 point log likelihood improvement.

CDRNN
FF RNN

Baseline | Modality P p
LME | Reading | 0.0001%%* | 0.0001%**
GAM | Reading | 0.0001%%* | 0.0001%**
Canonical HRF fMRI 0.0001#%% | 0.0001%**
Interpolated fMRI 0.0001%#%% | 0.0001%**
Averaged fMRI 0.0001#*% | 0.0001%%*
Lanczos fMRI 0.0001%#%% | 0.0001%**
CDR Both 0.0001%%% | 0.0001%%*
CDRNN-FF Both — 0.0048+*

Table 3: Permutation test of overall test set perfor-
mance improvement from CDRNN variants over each
baseline.

tation test that pools across all datasets covered
by a given baseline (reading data for LME and
GAM, fMRI data for canonical HRF, linearly inter-
polated, averaged, and Lanczos interpolated, and
both for CDR).” Results are given in Table 3. As
shown, both variants of CDRNN significantly im-
prove over all baselines, and CDRNN-RNN signif-
icantly improves over CDRNN-FF. Notwithstand-
ing, CDRNN-FF may be preferred in applications:
simpler, faster to train, better at recovering syn-
thetic models (Supplement S3), more reliable in
noisy domains like fMRI, and close in performance
to CDRNN-RNN. Results overall support the relia-
bility of patterns revealed by CDRNN'’s estimated
IRF, which is now used to explore and visualize
sentence processing dynamics.

5.2 Effect Latencies in CDRNN vs. CDR

CDR-like IRF estimates can be obtained by increas-
ing a predictor by 1 (standard deviation) relative
to the reference and observing the change in the
response over time. Visualizations using this ap-
proach are presented in Figure 2 alongside CDR es-
timates from Shain and Schuler (2021). In general,
CDRNN finds similar patterns to CDR. This sug-
gests both (1) that CDRNN is capable of recovering
estimates from a preceding state-of-the-art decon-
volutional model for these domains, and (2) that
CDR estimates in these domains are not driven by
artifacts introduced by its simplifying assumptions,
since a model that lacks those assumptions and has
a qualitatively different architecture largely recov-
ers them. Nonetheless there are differences. For ex-
ample, Dundee estimates decay more quickly over
time in CDRNN than in CDR, indicating an even
less pronounced influence of temporal diffusion in

"The comparison rescales each pair of error vectors by

their joint standard deviation in order to enable comparability
across datasets with different error variances.
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Figure 2: CDRNN-estimated IRFs across datasets, with CDR estimates from Shain and Schuler (2021) for refer-
ence. Sound power omitted from CDRNN fMRI models (see Appendix C for justification).

eye-tracking than CDR had previously suggested.
Estimates from CDRNN-FF and CDRNN-RNN
roughly agree, except that CDRNN-RNN estimates
for fMRI are more attenuated. CDR shows little
uncertainty in the fMRI domain despite its inher-
ent noise (Shain et al., 2020), while CDRNN more
plausibly shows more uncertainty in its estimates
for the noisier fMRI data.

As noted in Section 2, Shain and Schuler (2021)
report negative rate effects in reading — i.e., a
local decrease in subsequent reading time at each
word, especially in SPR. This was interpreted as
an inertia effect (faster recent reading engenders
faster current reading), but it might also be an ar-
tifact of non-linear decreases in latency over time
(due to task habituation, e.g. Baayen et al., 2017;
Harrington Stack et al., 2018; Prasad and Linzen,
2019) that CDR cannot model. CDRNN estimates
nonetheless thus support the prior interpretation of
rate effects as inertia, at least in SPR: a model that
can flexibly adapt to non-linear habituation trends
finds SPR rate estimates that are similar in shape
and magnitude to those estimated by CDR.

In addition, CDRNN finds a slower response
to word surprisal in self-paced reading than in
eye-tracking. This result converges with word-

discretized timecourses reported in Smith and Levy
(2013), who find more extensive spillover of sur-
prisal effects in SPR than in eye-tracking. Results
thus reveal important hidden dynamics in the read-
ing response (inertia effects), continuous-time de-
lays in processing effects, and influences of modal-
ity the continuous dynamics of sentence processing,
all of which are difficult to estimate using existing
regression techniques. Greater response latency
and more pronounced inertia effects in self-paced
reading may be due to the fact that a gross mo-
tor task (paging via button presses) is overlaid on
the sentence comprehension task. While the motor
task is not generally of interest to psycholinguistic
theories, controlling for its effects is crucial when
using self-paced reading to study sentence compre-
hension (Mitchell, 1984).

5.3 Linearity of Surprisal Effects

CDRNN also allows the analyst to explore other
aspects of the IRF, such as functional curvature
at a point in time. For example, in the context of
reading, Smith and Levy (2013) argue for a linear
increase in processing cost as a function of word
surprisal. The present study allows this claim to be
assessed across modalities by checking the curva-
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Figure 3: CDRNN-FF-estimated functional curvature
of the 5-gram surprisal response. In 3D plots, 95%
credible intervals shown as vertical gray bars.

ture of the 5-gram surprisal response (in raw ms) at
a timepoint of interest (Oms for reading and ~35s for
fMRI). As shown in the top row of Figure 3, read-
ing estimates are consistent with a linear response
(the credible interval contains a straight line), as
predicted, but are highly non-linear in fMRI, with
a rapid peak above the mean (zero-crossing) fol-
lowed by a sharp dip and plateau, and even an
estimated increased response at values below the
mean (though estimates at the extremes have high
uncertainty). This may be due in part to ceiling
effects: blood oxygen levels measured by fMRI are
bounded, but reading times are not. While this is
again a property of experimental modality rather
than sentence comprehension itself, understanding
such influences is important for drawing scientific
conclusions from experimental data. For example,
due to the possibility of saturation, fMRI may not
be an ideal modality for testing scientific claims
about the functional form of effects, and the lin-
earity assumptions of e.g. CDR and LME may be
particularly constraining.

The curvature of effects can also be queried over
time. If an effect is temporally diffuse but linear,
its curvature should be roughly linear at any de-
lay of interest. The second row of Figure 3 shows
visualizations to this effect. These plots in fact sub-
sume the kinds of univariate plots shown above:
univariate IRFs to 5-gram surprisal like those plot-
ted in Figure 2 are simply slices taken at a pre-
dictor value (1 sample standard deviation above
the mean), whereas curvature estimates in the first
row of Figure 3 are simply slices taken at a time
value (Os for reading and 5s for fMRI). Plots are
consistent with the linearity hypothesis for reading,
but again show strong non-linearities in the fMRI
domain that are consistent with saturation effects

% signal change

0 5 10 20 25 30

Delgqs)
Delay (s)

—e— rate sound power

—— 5-gram surprisal

—l— unigram surprisal
PCFG surprisal

Figure 4: Effect interactions in a CDRNN-FF repli-
cation of Shain et al. (2020). 95% credible intervals
shown as vertical gray bars.

as discussed above.

5.4 Effect Interactions

In addition to exploring multivariate relationships
of a predictor with time, relationships between pre-
dictors can also be studied. Such relationships con-
stitute “interactions” in a CDRNN model, though
they are not constrained (cf. interactions in linear
models) to be strictly multiplicative — indeed, a
major advantage of CDRNN is that interactions
come “for free”, along with estimates of their
functional form. To explore effect interactions, a
CDRNN-FF version of the full model in Shain et al.
(2020) is fitted to the fMRI dataset. The model
contains more predictors to explore than models
considered above, including surprisal computed
from a probabilistic context-free grammar (PCFG
surprisal, see Appendix C for details). Univariate
IRFs are shown in the top left panel of Figure 4,
and pairwise interaction surfaces at a delay of 5s
(near the peak response) are shown in the remaining
panels. Plots show that the response at any value
of the other predictors is roughly flat as a function
of sound power (i.e. signal power of the auditory
stimulus, middle row). This accords with prior ar-
guments that the cortical language system, whose
activity is measured here, does not strongly regis-
ter low-level perceptual effects (Fedorenko et al.,
2010; Braze et al., 2011).
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Figure 5: CDRNN-FF-estimated IRFs of the variance
of the response by dataset.

The estimate for unigram surprisal (middle left)
shows an unexpected non-linearity: although ac-
tivity increases with higher surprisal (lower fre-
quency words), it also increases at lower surprisal
(higher frequency words), suggesting the existence
of high frequency items that nonetheless engender a
large response. The interaction between PCFG sur-
prisal and unigram surprisal possibly sheds light
on this outcome, since it shows a sharper increase
in the PCFG surprisal response in higher frequency
(lower unigram surprisal) regions. This may be be-
cause the most frequent words in English tend to
be function words that play an outsized role in syn-
tactic structure building (e.g. prepositional phrase
attachment decisions).

In addition, 5-gram surprisal interacts with
PCFG surprisal, showing a non-linear increase in
response for words that are high on both measures.
This is consistent with a unitary predictive mech-
anism that experiences strong error signals when
both string-level (5-gram) and structural (PCFQG)
cues are poor. All these interactions should be inter-
preted with caution, since the uncertainty interval
covers much weaker degrees of interaction.

5.5 IRFs of the Response Variance

As discussed in Section 3, CDRNN implements
distributional regression and thus also contains an
IRF describing the influence of predictors on the
variance of the predictive distribution as a function
of time. IRFs of the variance can be visualized
identically to IRFs of the mean.

For example, Figure 5 shows the estimated
change in the standard deviation of the predic-
tive distribution over time from observing a stimu-
lus.® Estimates show stimulus-dependent changes

8Because standard deviation is a bounded variable and
the IRF applies before the constraint function (softplus), the
relationship between the standard deviation and the y axis of
the plots is not straightforward. Estimates nonetheless clearly
indicate the shape and relative contribution to the response

in variance across datasets whose shapes are not
straightforwardly related to that of the IRFs of
the mean (Figure 2). For example, both read-
ing datasets (left and center) generally show mean
and standard deviation traveling together, with in-
creases in the mean corresponding to increases in
standard deviation. In Dundee, the shapes of these
changes resemble each other strongly, whereas in
Natural Stories the IRFs of the standard deviation
(especially rate) differ substantially from the IRFs
of the mean. By contrast, in fMRI (right), the IRFs
of the standard deviation look roughly like inverted
HREFs (especially for rate and 5-gram surprisal),
indicating that BOLD variance tends to decrease
with larger values of the predictors. While detailed
interpretation of these patterns is left to future work,
these results demonstrate the utility of CDRNN for
analyzing a range of links between predictors and
response that are otherwise difficult to study.

6 Conclusion

This study proposed and evaluated CDRNN, a deep
neural extension of continuous-time deconvolu-
tional regression that relaxes implausible simpli-
fying assumptions made by widely used regres-
sion techniques in psycholinguistics. In so doing,
CDRNN provides detailed estimates of human lan-
guage processing dynamics that are difficult to ob-
tain using other measures. Results showed plau-
sible estimates from human data that generalize
better than alternatives and can illuminate hith-
erto understudied properties of the human sentence
processing response. This outcome suggests that
CDRNN may play a valuable role in analyzing
human experimental data.

References

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Ge-
offrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Mar-
tin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
giang Zheng. 2015. TensorFlow: Large-Scale Ma-
chine Learning on Heterogeneous Distributed Sys-
tems.

variance of the stimulus features.

3726


http://download.tensorflow.org/paper/whitepaper2015.pdf
http://download.tensorflow.org/paper/whitepaper2015.pdf
http://download.tensorflow.org/paper/whitepaper2015.pdf

Steven P Abney and Mark Johnson. 1991. Memory Re-
quirements and Local Ambiguities of Parsing Strate-
gies. J.\ Psycholinguistic Research, 20(3):233-250.

Amit Almor. 1999. Noun-Phrase Anaphora and Focus:
The Informational Load Hypothesis. Psychological
Review, 106(4):748-765.

Harald Baayen, Shravan Vasishth, Reinhold Kliegl, and
Douglas Bates. 2017. The cave of shadows: Ad-
dressing the human factor with generalized additive

mixed models. Journal of Memory and Language,
94(Supplement C):206-234.

R Harald Baayen, Doug J Davidson, and Douglas M
Bates. 2007. Mixed effects modelling with crossed
random effects for subjects and items. manuscript.

R Harald Baayen, Jacolien van Rij, Cecile de Cat, and
Simon Wood. 2018. Autocorrelated errors in exper-
imental data in the language sciences: Some solu-
tions offered by Generalized Additive Mixed Mod-
els. In Dirk Speelman, Kris Heylen, and Dirk Geer-
aerts, editors, Mixed Effects Regression Models in
Linguistics. Springer, Berlin.

Alan D Baddeley, Neil Thomson, and Mary Buchanan.
1975. Word length and the structure of short term
memory. Journal of Verbal Learning and Verbal Be-
havior, 15(6):575-589.

Douglas Bates, Martin Méchler, Ben Bolker, and Steve
Walker. 2015. Fitting linear mixed-effects models
using lme4. Journal of Statistical Software, 67(1):1—
48.

H Bouma and A H De Voogd. 1974. On the con-
trol of eye saccades in reading. Vision Research,
14(4):273-284.

David Braze, W Einar Mencl, Whitney Tabor, Ken-
neth R Pugh, R Todd Constable, Robert K Fulbright,
James S Magnuson, Julie A Van Dyke, and Don-
ald P Shankweiler. 2011. Unification of sentence
processing via ear and eye: An fMRI study. cortex,
47(4):416-431.

Jonathan Brennan, Yuval Nir, Uri Hasson, Rafael
Malach, David J Heeger, and Liina Pylkkinen. 2012.
Syntactic structure building in the anterior temporal
lobe during natural story listening. Brain and Lan-
guage, 120(2):163-173.

Trevor Brothers and Gina R Kuperberg. 2021. Word
predictability effects are linear, not logarithmic: Im-
plications for probabilistic models of sentence com-

prehension.  Journal of Memory and Language,
116:104174.

Tom B Brown, Benjamin Mann, Nick Ryder,
Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric

Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, and Dario Amodei.
2020. Language models are few-shot learners. In
Proceedings of Advances in Neural Information Pro-
cessing Systems 33.

Paul-Christian Biirkner. 2018. Advanced Bayesian
Multilevel Modeling with the R Package brms. R
Journal, 10(1).

Max Coltheart, Kathleen Rastle, Conrad Perry, Robyn
Langdon, and Johannes Ziegler. 2001. DRC: a dual
route cascaded model of visual word recognition and
reading aloud. Psychological review, 108(1):204.

Andreas Damianou and Neil D Lawrence. 2013. Deep
gaussian processes. In Artificial intelligence and
statistics, pages 207-215. PMLR.

Vera Demberg and Frank Keller. 2008. Data from eye-
tracking corpora as evidence for theories of syntactic
processing complexity. Cognition, 109(2):193-210.

Janez Demsar. 2006. Statistical comparisons of clas-
sifiers over multiple data sets. Journal of Machine
Learning Research, 7(Jan):1-30.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. NAACLI9.

Susan F Ehrlich and Keith Rayner. 1981. Contextual
effects on word perception and eye movements dur-
ing reading. Journal of verbal learning and verbal

behavior, 20(6):641-655.

Kate Erlich and Keith Rayner. 1983. Pronoun assign-
ment and semantic integration during reading: Eye
movements and immediacy of processing. Journal
of Verbal Learning & Verbal Behavior, 22:75-87.

Evelina Fedorenko, Po-Jang Hsieh, Alfonso Nieto-
Castafién, Susan Whitfield-Gabrieli, and Nancy
Kanwisher. 2010. New method for fMRI investi-
gations of language: defining ROIs functionally in
individual subjects. Journal of Neurophysiology,
104(2):1177-1194.

Victoria Fossum and Roger Levy. 2012. Sequential
vs. Hierarchical Syntactic Models of Human Incre-
mental Sentence Processing. In Proceedings of
{{CMCL}} 2012. Association for Computational
Linguistics.

Stefan Frank and Rens Bod. 2011. Insensitivity of the
human sentence-processing system to hierarchical
structure. Psychological Science.

Stefan L Frank, Irene Fernandez Monsalve, Robin L
Thompson, and Gabriella Vigliocco. 2013. Read-
ing time data for evaluating broad-coverage models
of English sentence processing. Behavior Research
Methods, 45(4):1182-1190.

3727


https://doi.org/https://doi.org/10.1016/j.jml.2016.11.006
https://doi.org/https://doi.org/10.1016/j.jml.2016.11.006
https://doi.org/https://doi.org/10.1016/j.jml.2016.11.006
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1016/j.bandl.2010.04.002
https://doi.org/10.1016/j.bandl.2010.04.002

Lyn Frazier and Jerry D Fodor. 1978. The sausage ma-
chine: a new two-stage parsing model. Cognition,
6:291-325.

Karl J Friston, Andrea Mechelli, Robert Turner, and
Cathy J Price. 2000. Nonlinear responses in fMRI:
The Balloon model, Volterra kernels, and other
hemodynamics. Neurolmage, 12(4):466—477.

Richard Futrell, Edward Gibson, Harry J Tily, Idan
Blank, Anastasia Vishnevetsky, Steven T Piantadosi,
and Evelina Fedorenko. 2020. The Natural Stories
corpus: a reading-time corpus of English texts con-
taining rare syntactic constructions. Language Re-
sources and Evaluation, pages 1-15.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a
Bayesian approximation: Representing model uncer-
tainty in deep learning. In international conference
on machine learning, pages 1050-1059. PMLR.

Edward Gibson. 2000. The Dependency Locality The-
ory: A distance-based theory of linguistic complex-
ity. In Alec Marantz, Yasushi Miyashita, and Wayne
O’Neil, editors, Image, language, brain, pages 95—
106. MIT Press, Cambridge.

Adam Goodkind and Klinton Bicknell. 2018. Predic-
tive power of word surprisal for reading times is a
linear function of language model quality. In Pro-
ceedings of the 8th Workshop on Cognitive Modeling
and Computational Linguistics (CMCL 2018), pages
10-18.

David Graff, Junbo Kong, Ke Chen, and Kazuaki
Maeda. 2007. English Gigaword Third Edition
LDC2007T07.

Daniel J Grodner and Edward Gibson. 2005. Conse-
quences of the serial nature of linguistic input. Cog-
nitive Science, 29:261-291.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Colorless
Green Recurrent Networks Dream Hierarchically.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1195-1205.

John Hale. 2001. A Probabilistic Earley Parser as a
Psycholinguistic Model. In Proceedings of the sec-
ond meeting of the North American chapter of the As-
sociation for Computational Linguistics, pages 159—
166, Pittsburgh, PA.

Caoimhe M Harrington Stack, Ariel N James, and Du-
ane G Watson. 2018. A failure to replicate rapid
syntactic adaptation in comprehension. Memory &
cognition, 46(6):864-877.

Trevor Hastie and Robert Tibshirani. 1986. General-
ized additive models. Statist. Sci., 1(3):297-310.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 770—
778.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H Clark,
and Philipp Koehn. 2013. Scalable modified Kneser-
Ney language model estimation. In Proceedings of
the 51st Annual Meeting of the Association for Com-
putational Linguistics, pages 690-696, Sofia, Bul-
garia.

John M Henderson, Wonil Choi, Matthew W Lowder,
and Fernanda Ferreira. 2016. Language structure in
the brain: A fixation-related fMRI study of syntactic
surprisal in reading. Neuroimage, 132:293-300.

John M Henderson, Wonil Choi, Steven G Luke, and
Rutvik H Desai. 2015. Neural correlates of fixation
duration in natural reading: evidence from fixation-
related fMRI. Neurolmage, 119:390-397.

Dan Hendrycks and Kevin Gimpel. 2016. Gaus-
sian error linear units (GELUSs). arXiv preprint
arXiv:1606.08415.

John Hewitt and Christopher D Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129-4138.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
Short-Term Memory. Neural Comput., 9(8):1735-
1780.

Alexander G Huth, Wendy A de Heer, Thomas L Grif-
fiths, Frédéric E Theunissen, and Jack L Gallant.
2016. Natural speech reveals the semantic maps that
tile human cerebral cortex. Nature, 532(7600):453.

Sergey loffe and Christian Szegedy. 2015. Batch Nor-
malization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. In International
Conference on Machine Learning, pages 448—456.

Marcel Adam Just and Patricia A Carpenter. 1980. A
theory of reading: From eye fixations to comprehen-
sion. Psychological Review, 87(4):329-354.

Alan Kennedy, James Pynte, and Robin Hill. 2003.
The Dundee corpus. In Proceedings of the 12th Eu-
ropean conference on eye movement.

Adam:
CoRR,

Diederik P Kingma and Jimmy Ba. 2014.
A Method for Stochastic Optimization.
abs/1412.6.

Roger Levy. 2008. Expectation-based syntactic com-
prehension. Cognition, 106(3):1126-1177.

3728


https://catalog.ldc.upenn.edu/LDC2007T07
https://catalog.ldc.upenn.edu/LDC2007T07
https://doi.org/10.1214/ss/1177013604
https://doi.org/10.1214/ss/1177013604
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

Richard L Lewis and Shravan Vasishth. 2005. An
activation-based model of sentence processing as
skilled memory retrieval. Cognitive Science,
29(3):375-419.

Martin A Lindquist, Ji Meng Loh, Lauren Y Atlas, and
Tor D Wager. 2009. Modeling the hemodynamic re-
sponse function in fMRI: Efficiency, bias and mis-
modeling. Neurolmage, 45(1, Supplement 1):S187
—S198.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics, 4:521—
53s.

Alessandro Lopopolo, Stefan L Frank, Antal den
Bosch, and Roel M Willems. 2017. Using stochas-
tic language models (SLM) to map lexical, syntac-
tic, and phonological information processing in the
brain. PloS one, 12(5):e0177794.

Mitchell P Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: the Penn Treebank. Computa-
tional Linguistics, 19(2):313-330.

Don C Mitchell. 1984. An evaluation of subject-paced
reading tasks and other methods for investigating im-
mediate processes in reading. New methods in read-
ing comprehension research, pages 69—89.

Francis Mollica and Steve Piantadosi. 2017. An in-
cremental information-theoretic buffer supports sen-
tence processing. In Proceedings of the 39th Annual
Cognitive Science Society Meeting.

John Morton. 1964. The effects of context upon
speed of reading, eye movements and eye-voice

span. Quarterly Journal of Experimental Psychol-
0gy, 16(4):340-354.

Luan Nguyen, Marten van Schijndel, and William
Schuler. 2012. Accurate Unbounded Dependency
Recovery using Generalized Categorial Grammars.
In Proceedings of COLING 2012.

Dennis Norris. 2006. The Bayesian Reader: Explain-
ing word recognition as an optimal Bayesian deci-
sion process. Psychological review, 113(2):327.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Vitali Petsiuk, Abir Das, and Kate Saenko. 2018.
RISE: Randomized Input Sampling for Explanation
of Black-box Models. In Proceedings of the British
Machine Vision Conference (BMVC).

Martin J Pickering and Holly P Branigan. 1998. The
representation of verbs: Evidence from syntactic
priming in language production. Journal of Memory
and language, 39(4):633-651.

Boris T Polyak and Anatoli B Juditsky. 1992. Ac-
celeration of stochastic approximation by averag-
ing. SIAM Journal on Control and Optimization,
30(4):838-855.

Grusha Prasad and Tal Linzen. 2019. Rapid syntactic
adaptation in self-paced reading: detectable, but re-
quires many participants.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
Blog, 1(8):9.

Keith Rayner. 1977. Visual attention in reading: Eye
movements reflect cognitive processes. Memory \ &
Cognition, 5(4):443-448.

Keith Rayner. 1998. Eye Movements in Reading and
Information Processing: 20 Years of Research. Psy-
chological Bulletin, 124(3):372-422.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. “Why should I trust you?” Explain-
ing the predictions of any classifier. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on knowledge discovery and data mining,
pages 1135-1144.

Marten van Schijndel, Andy Exley, and William
Schuler. 2013. A model of language processing as
hierarchic sequential prediction. Topics in Cognitive
Science, 5(3):522-540.

Marten van Schijndel and William Schuler. 2013. An
Analysis of Frequency- and Memory-Based Process-
ing Costs. In Proceedings of NAACL-HLT 2013. As-
sociation for Computational Linguistics.

Marten van Schijndel and William Schuler. 2015. Hier-
archic syntax improves reading time prediction. In
Proceedings of NAACL-HLT 2015. Association for
Computational Linguistics.

Martin Schrimpf, Idan A Blank, Greta Tuckute, Ca-
rina Kauf, Eghbal A Hosseini, Nancy G Kanwisher,
Joshua B Tenenbaum, and Evelina Fedorenko. 2020.
Artificial Neural Networks Accurately Predict Lan-
guage Processing in the Brain. BioRxiv.

Cory Shain, Idan Blank, Marten van Schijndel, William
Schuler, and Evelina Fedorenko. 2020. fMRI re-
veals language-specific predictive coding during nat-
uralistic sentence comprehension. Neuropsycholo-
gia, 138.

Cory Shain and William Schuler. 2018. Deconvolu-
tional time series regression: A technique for model-
ing temporally diffuse effects. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing.

Cory Shain and William Schuler. 2021. Continuous-
Time Deconvolutional Regression for Psycholinguis-
tic Modeling. Cognition.

3729


https://doi.org/https://doi.org/10.1016/j.neuroimage.2008.10.065
https://doi.org/https://doi.org/10.1016/j.neuroimage.2008.10.065
https://doi.org/https://doi.org/10.1016/j.neuroimage.2008.10.065
https://doi.org/10.1111/tops.12034
https://doi.org/10.1111/tops.12034

Christopher A Sims. 1971. Discrete approximations
to continuous time distributed lags in econometrics.
Econometrica: Journal of the Econometric Society,
pages 545-563.

Nathaniel J Smith and Roger Levy. 2013. The effect of
word predictability on reading time is logarithmic.
Cognition, 128:302-319.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929-1958.

Adrian Staub. 2015. The effect of lexical predictability
on eye movements in reading: Critical review and
theoretical interpretation. Language and Linguistics
Compass, 9(8):311-327.

Michael K Tanenhaus, Michael J Spivey-Knowlton,
Kathleen M Eberhard, and Julie C E Sedivy.
1995. Integration of visual and linguistic informa-
tion in spoken language comprehension. Science,
268:1632-1634.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline.
ACLI9.

Shravan Vasishth and Richard L Lewis. 2006.
Argument-head distance and processing complex-
ity: Explaining both locality and antilocality effects.
Language, 82(4):767-794.

Alberto L Vazquez, Eric R Cohen, Vikas Gulani, Luis
Hernandez-Garcia, Ying Zheng, Gregory R Lee,
Seong-Gi Kim, James B Grotberg, and Douglas C
Noll. 2006. Vascular dynamics and BOLD fMRI:
CBEF level effects and analysis considerations. Neu-
roimage, 32(4):1642-1655.

Tor D Wager, Alberto Vazquez, Luis Hernandez, and
Douglas C Noll. 2005. Accounting for nonlinear
BOLD effects in fMRI: parameter estimates and a
model for prediction in rapid event-related studies.
Neurolmage, 25(1):206-218.

Leila Wehbe, Idan A Blank, Cory Shain, Richard
Futrell, Roger Levy, Titus von der Malsburg,
Nathaniel Smith, Edward Gibson, and Evelina Fe-
dorenko. 2020. Incremental language comprehen-
sion difficulty predicts activity in the language net-
work but not the multiple demand network. bioRxiv.

Ethan Wilcox, Roger Levy, and Richard Futrell. 2019.
Hierarchical Representation in Neural Language
Models: Suppression and Recovery of Expectations.
In Proceedings of the 2019 ACL Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 181-190.

Roel M Willems, Stefan L Frank, Annabel D Nijhof,
Peter Hagoort, and Antal den Bosch. 2015. Predic-
tion during natural language comprehension. Cere-
bral Cortex, 26(6):2506-2516.

Dataset‘ CDR  CDRNN-FF CDRNN-RNN

Synth 662 7,330 17,058

NatStor (SPR) | 21,845 22,546 40,408
Dundee 2,080 6,870 14,838
NatStor (fMRI) 331 13,834 26,058

Table Al: Number of trainable parameters by model
and dataset.

Simon N Wood. 2006. Generalized Additive Models:
An Introduction with R. Chapman and Hall/CRC,
Boca Raton.

A Mathematical Definition

This appendix formally defines the CDRNN model.
CDRNN assumes the following quantities as in-
put:’

* X € N: Number of predictor observations
(e.g. word exposures)

* Y € N: Number of response observations
(e.g. fTMRI scans)

* Z € N: Number of random grouping factor
levels (e.g. distinct participants)

* K € N: Number of predictors

+ X € R¥*K: Design matrix of X predictor
observations of KX dimensions each.

» y € RY: Vector of Y response observations

» Z € {0,1}Y*Z: Boolean matrix indicating
random grouping factor levels associated with
each response observation

« t € R¥X: Vector of timestamps associated
with each observation in X

« t' € RY: Vectors of timestamps associated
with each observation in y

¢ S € N: Number of parameters in predictive
distribution (e.g. 2 for a normal distribution:
mean and variance)

For simplicity of exposition, X and y are assumed
to contain data from a single time series (e.g. a
single participant performing a single experiment).

9Throughout these definitions, vectors and matrices are
notated in bold lowercase and uppercase, respectively (e.g.
u, U). Objects with indexed names are designated using
subscripts (e.g. v,-). Vector and matrix indexing operations are
notated using subscript square brackets, and slice operations
are notated using * (e.g. X|, x) denotes the k™ column of
matrix X). Hadamard (pointwise) products are notated using
®. The notations 0 and 1 designate conformable column
vectors of 0’s and 1’s, respectively. Superscripts are used for
indexation and do not denote exponentiation.

3730



The definition below can be applied without loss of
generality to data containing multiple time series
by concatenating the output of the model as applied
to multiple X, y pairs. X,y and their associated
satellite data Z, t, t' must be temporally sorted.

Given these inputs, CDRNN estimates a latent
impulse response function that relates timestamped
predictors to all parameters of the assumed predic-
tive distribution. For example, assuming a univari-
ate normally distributed response, CDRNN learns
an IRF with two output dimensions, one for the
predictive mean, and one for the predictive vari-
ance. Regressing all parameters of the predictive
distribution in this way has previously been called
distributional regression (Biirkner, 2018).

CDRNN contains a recurrent neural network
(RNN), neural projections that map inputs and
RNN states to a hidden state for each preceding
event, and neural projections that map the hidden
states to predictions about (1) the influence of each
event on the response (IRF) and (2) the parame-
ter(s) of the error distribution (e.g. the variance
of a Gaussian error). The definition assumes the
following quantities:

* Lin, LrnN, Lirr € N: Number of layers in the
input projection, RNN, and IRF, respectively

° Din(é)a DRNN(€)> Dy, D]Rp(g) € N: Number
of output dimensions in the /! layer of the
input projection, RNN, hidden state, and IRF,
respectively

The following values are deterministically as-
signed:

* DRp(Lige) = S(K + 1) (the IRF generates a
convolution weight for every predictor dimen-
sion, plus the timestamp, for each parameter
of the predictive distribution)

* Djy0) = K + 1 (input is predictors + time)
* Dinr,) = Dn

In these definitions, integers x, y respectively
refer to row indices of X, y. Let z, be the vector
(Z[y’*} ) T of random effects associated with the re-
sponse at y. Let Wh% ¢ RPn<Z WIRF().Z ¢
R2Pwre1) %2 and W% € R5%Z be an embed-
ding matrix for z,. Random effects offsets at re-
sponse step y for the hidden state (hg), the weights

and biases of the first layer of the IRF (WLRF(I)’Z,

nyRF(l)’Z), and the parameters of the predictive dis-
tribution (eg, i.e. random intercepts and variance

parameters) are generated as follows:

h & Whg, )
wRF(D.Z]
e
[bﬁ%}:(l),z] N WIRF(I)Zzy 3)
Yy
s7 < Wy, (4)

Following prior work in mixed effects models
(Bates et al., 2015), to ensure that population-level
estimates reliably encode central tendency, each
output dimension of whZ WIRF(I)’Z, and W2
is constrained to have mean O across the levels of
each random grouping factor (e.g. across partici-
pants in the study).

The neural IRF is applied to a temporal offset
T representing the delay at which to query the re-
sponse to an input (e.g. 7 = 1 queries the response
to an input 1s after the input occurred). The output
of the neural IRF gi?y(T) € RP®e@) applied to 7 at
layer ¢ is defined as:

def
gy(rlg);(T) = SIRF(1) (WE;(UT*'bE;(D) (5)

def _
9)(7)  simrqey (WO (7) + IO

(6)
f>1

def
wIRF(1) def IRE(1)

IRF(1
IRF i W;RF(l),Z + WhE ( )ha:,y

)

def IRF(1
bg?;(l) lef | IRF(1) _i_bLRF(l),Z +BY ( )hx,y

®)

IRF(¢) | IRF(()
z,y ’ z,Y

/™ IRF layer’s weight matrix at predictor timestep
x and response timestep y, bias vector at time
x,y, and squashing function, and gé?;(’i‘) = T.
wiRF(1)  BIRF(1) ape respectively globally applied
initial weight and bias vectors for the first layer
of the IRF, which transforms scalar 7, each of
which is shifted by its corresponding random ef-
fects. WTF(I), BI§F(1) are respectively weight
matrices used to compute additive modifications
to WRF(1) from CDRNN hidden state h; ,, simi-
lar in spirit to a residual network (He et al., 2016).
Non-initial IRF layers are treated as stationary (i.e.
their parameters are independent of x, y). The final
output of the IRF is given by:

, and sirp(e) are respectively the

Gzy(T) def reshape <g§72}“) (1), (S, K + 1)) 9)
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The hidden state h;, is computed as the
squashed sum of several quantities: a global bias
hP random effects h?, a neural projection hf,,?y
of the inputs at x, y, and a neural projection hiy
of the hidden state of an RNN over the sequence of
predictors up to and including timestep x:

o (1 0 4, ¢

def RNN
hmvy - h:E )

(10)
The IRF g, , is therefore feature-dependent via
the neural projection h;}, of the input at z, y and
context-dependent via the neural projection hREN
of an RNN over the input up to z for the response
at y. This design relaxes stationarity assumptions
while also sharing structure across timepoints. The
definitions of h}! | and h¥YN are given below.

Let ¢, be the element bz and x,, be the 2z pre-

dictor vector (X[%*})T. The inputs hg?z, to the
CDRNN model are defined as the vertical concate-
nation of the predictors x, and the event timestamp
te:

(In

The output of the input projection at layer [ and
time x, y is defined as:

in(¢) def in(4)y,in(£—
hin(0) << 5in(€)<W () pyin(

in(¢ in( 4 bm(Z)) (12)
where hglg) def h( 3)/ At the final layer, sjy(r,,) 18
identity and pin(Zin) = 0, since h, , already has
a bias. The final output of the input projection is
given by:
hir < pin(le) (13)
Note that hg"y is already non-stationary by virtue
of its dependence on the event timestamp t,),
which allows the IRF to differ between timepoints
(see e.g. Baayen et al., 2017, for development of
a similar idea using generalized additive models).
While this model of non-stationarity can be com-
plex and non-linear, it is still limited by context-
independence. That is, the change in the IRF over
time depends only on the amount of time elapsed
since the start of the time series, independently of
which events preceded. However, it is possible that
the contents of the events in a time series may in-
fluence the IRF, above any deterministic change in
response over time (for example, if several difficult
preceding words have already taxed the process-
ing buffer, additional processing costs may become
larger). To account for this possibility, an RNN

is built into the CDRNN design.!® Any variant
of RNN can be used (this study uses a long short-
term memory network, or LSTM, Hochreiter and
Schmidhuber, 1997). The ¢ RNN hidden state
at x,y is designated by hRNN( ). To account for

the possibility of random variation in sensitivity to

context, the initial hidden and cell states hRNN(K),
CISEN( ) depend on the random effects:
hlg};N( ) def hRNN( ) n WRNNh( )zy (14)
C&I\ym(z) def RNN( ) n WRNNL( )zy (15)
where hRNN(Z), CORNN(K) are global biases and

WENNh (E) s WENN“(E) are constrained to have mean
0 within each random grouping factor.

Non-initial RNN states are computed via a stan-
dard LSTM update:

hRNN(O)

cRNN(£ )} dﬁfLSTM (hRNN(Z) (16)

? x?y x_]'?y ?
RNN(¢) 3 RNN(¢—1)
Co1y h Y

The hidden state of the final RNN layer is linearly
projected to the dimensionality of the CDRNN hid-
den state:

HRNN def W RNNproj hggN(LRNN) (17)

To apply the CDRNN model to data, a mask
F < {0,1}Y*X admits only those observations in
X that precede each y|,;:

(18)

det J1 g <ty
lv.] 0 otherwise

Letting 7. ,, denote the temporal offset between the

. . def
predictors at x and the response at y, i.e. 7y =
t'[y] — t[2). A total of S(K + 1) sparse convolution
matrices G i, € RY*X are defined to contain the

predicted response to each preceding event for the

k'™ dimension of h;(v% and the s™ parameter of the

predictive distribution, masked by F':

91,1(T1,1) [, k] 9x.1(Tx,1)[s,k]

def

Gs,k = oOF

91,y (T1,y ) (s8] 9x,v (TX,Y ) [s,k]

19)

19The experiments in this study also consider a variant with-
out the RNN component, which is mathematically equivalent
to setting hg{\g\l =0.
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The convolved design matrix X'(8) ¢ RY *(K+1)
for the s parameter of the predictive distribution
is then computed as:

def

X/(s) Gk X, t][*Jf]

Vector s € R¥ contains global, population-level
estimates of the parameters of the predictive dis-
tribution. Under the univariate normal predictive
distribution assumed in this study, s contains the
predictive mean (u, i.e. the intercept) and variance

(0?):
def | W
s = 21
Matrix S% contains random predictive distribution
parameter estimates for the 3™ response si:
T
st
f
sz | (22)
T
sy

The vector of values for each response y for the s
predictive distribution parameter is given by sum-
ming the population value, random effects values,
and convolved response values:

def s
S[*,S] = fconstraint(s) (X/( )1 + S[Z*js] + S[s])

(23)
where feonstraini(s) €nforces any required constraints
on the s™ parameter of the predictive distribution.
In the Gaussian predictive distribution assumed
here, feonstraini(1) (the constraint function for the
mean) is identity and feonsiraini(2) (the constraint
function for the variance) is the softplus bijection:

softplus(z) o In(e® + 1) (24)

Given an assumed distributional family F (here
assumed to be univariate normal), the response in
the CDRNN model is distributed as:

Y ~F (Spe]s- -+ Sp9)) (25)
B Asynchronously Measured Predictor
Dimensions

As discussed in Shain and Schuler (2018, 2021),
CDR applies straightforwardly to time series with
asynchronous predictor vectors and response val-
ues (i.e. measured at different times, such as word
onsets that do not align with fMRI scan times).
The CDR implementation of Shain and Schuler

(2021) also supports asynchronously measured di-
mensions of the predictor matrix, simply by provid-
ing each predictor dimension with its own vector of
timestamps. This allows e.g. Shain et al. (2020) to
regress linguistic features (which are word-aligned)
and sound power (which in their definition is mea-
sured at regular 100ms intervals) in the same model.
Supporting asynchronously measured predictor di-
mensions is more challenging in CDRNN, espe-
cially if the RNN component is used. The solution
used in CDR is not available because input dimen-
sions that do not align in time are (1) arbitrarily
grouped together and (2) erroneously treated as
steps in the RNN input sequence. A more princi-
pled solution is to interleave the predictors in time
order and pad irrelevant dimensions with zeros. For
example, in a model with predictor A and predictor
B that are sampled at different times, the values
of A and B are temporally sorted together into a
single time series, with the B value of A events set
to zero and the A value of B events set to zero. This
approach carries a computational cost: unlike CDR,
the number of inputs to the convolution scales lin-
early on the number of asynchronously measured
sets of predictors in the model.

C Predictors

The following predictors are common to all models
presented here:

* Rate (CDR/NN only): The deconvolutional
intercept, i.e. the base response to a stimulus,
independent of its features. In CDR, rate is es-
timated explicitly by fitting an IRF to intercept
vector (Shain and Schuler, 2021) (i.e., implic-
itly, the response when all predictors are 0).
In CDRNN, rate is a reference response, com-
puted by taking the response to an average
stimulus (since the zero vector may unlikely
for a given input distribution, using it as a
reference may not reliably reflect the model’s
domain knowledge). In this study, all other
IRF queries subtract out rate in order to show
deviation from the reference.

* Unigram surprisal: The negative log of the
smoothed context-independent probability of
a word according to a unigram KenLLM model
(Heafield et al., 2013) trained on Gigaword 3
(Graff et al., 2007). While this quantity is typi-
cally treated on a frequency or log probability
scale in psycholinguistics, it is treated here on
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a surprisal (negative log prob) scale simply
for easy of comparison with 5-gram surprisal
(below), even though it is not a good estimate
of the quantity typically targeted by surprisal
(contextual predictability), since context is ig-
nored.

* S-gram surprisal: The negative log of the
smoothed probability of a word given the
four preceding words according to a 5-gram
KenLM model (Heafield et al., 2013) trained
on Gigaword 3 (Graff et al., 2007).

The following predictor is used in all reading mod-
els:

* Word length: The length of the word in char-
acters.

The following predictors are used in eye-tracking
models:

* Saccade length: The length in words of the
incoming saccade (eye movement), including
the current word.

¢ Previous was fixated: Indicator for whether
the most recent fixation was to the immedi-
ately preceding word.

Replications of Shain et al. (2020) use the follow-
ing additional predictors:

* PCFG surprisal: Lexicalized probabilistic
context-free grammar surprisal computed us-
ing the incremental left-corner parser of van
Schijndel et al. (2013) trained on a general-
ized categorial grammar (Nguyen et al., 2012)
reannotation of Wall Street Journal sections
2 through 21 of the Penn Treebank (Marcus
et al., 1993).

* Sound power: Stimulus sound power (root
mean squared energy), averaged over 250ms
intervals. This implementation differs slightly
from that of Shain et al. (2020), who sam-
pled the measure every 100ms. The longer
interval is designed to provide coverage over
the extent of the HRF in this study, which
uses a shorter history window for computa-
tional reasons (128 timesteps instead of 256).
Both for computational reasons, especially un-
der CDRNN-RNN (Appendix B) and because
prior sound power estimates in this dataset
have been weak (Shain et al., 2020), sound
power is omitted from models used in the
main comparison.
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