
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 3666–3681

August 1–6, 2021. ©2021 Association for Computational Linguistics

3666

Value-Agnostic Conversational Semantic Parsing

Emmanouil Antonios Platanios, Adam Pauls, Subhro Roy, Yuchen Zhang, Alex Kyte,
Alan Guo, Sam Thomson, Jayant Krishnamurthy, Jason Wolfe, Jacob Andreas, Dan Klein

Microsoft Semantic Machines
sminfo@microsoft.com

Abstract
Conversational semantic parsers map user ut-
terances to executable programs given dia-
logue histories composed of previous utter-
ances, programs, and system responses. Ex-
isting parsers typically condition on rich repre-
sentations of history that include the complete
set of values and computations previously dis-
cussed. We propose a model that abstracts
over values to focus prediction on type- and
function-level context. This approach provides
a compact encoding of dialogue histories and
predicted programs, improving generalization
and computational efficiency. Our model in-
corporates several other components, includ-
ing an atomic span copy operation and struc-
tural enforcement of well-formedness con-
straints on predicted programs, that are par-
ticularly advantageous in the low-data regime.
Trained on the SMCALFLOW and TREEDST
datasets, our model outperforms prior work
by 7.3% and 10.6% respectively in terms of
absolute accuracy. Trained on only a thou-
sand examples from each dataset, it outper-
forms strong baselines by 12.4% and 6.4%.
These results indicate that simple representa-
tions are key to effective generalization in con-
versational semantic parsing.

1 Introduction

Conversational semantic parsers, which translate
natural language utterances into executable pro-
grams while incorporating conversational context,
play an increasingly central role in systems for
interactive data analysis (Yu et al., 2019), instruc-
tion following (Guu et al., 2017), and task-oriented
dialogue (Zettlemoyer and Collins, 2009). An ex-
ample of this task is shown in Figure 1. Typical
models are based on an autoregressive sequence
prediction approach, in which a detailed represen-
tation of the dialogue history is concatenated to the
input sequence, and predictors condition on this se-
quence and all previously generated components of

the output (Suhr et al., 2018). While this approach
can capture arbitrary dependencies between inputs
and outputs, it comes at the cost of sample- and
computational inefficiency.

We propose a new “value-agnostic” approach to
contextual semantic parsing driven by type-based
representations of the dialogue history and function-
based representations of the generated programs.
Types and functions have long served as a founda-
tion for formal reasoning about programs, but their
use in neural semantic parsing has been limited,
e.g., to constraining the hypothesis space (Krishna-
murthy et al., 2017), guiding data augmentation (Jia
and Liang, 2016), and coarsening in coarse-to-fine
models (Dong and Lapata, 2018). We show that
representing conversation histories and partial pro-
grams via the types and functions they contain en-
ables fast, accurate, and sample-efficient contextual
semantic parsing. We propose a neural encoder–
decoder contextual semantic parsing model which,
in contrast to prior work:

1. uses a compact yet informative representation
of discourse context in the encoder that con-
siders only the types of salient entities that
were predicted by the model in previous turns
or that appeared in the execution results of the
predicted programs, and

2. conditions the decoder state on the sequence
of function invocations so far, without con-
ditioning on any concrete values passed as
arguments to the functions.

Our model substantially improves upon the best
published results on the SMCALFLOW (Semantic
Machines et al., 2020) and TREEDST (Cheng et al.,
2020) conversational semantic parsing datasets, im-
proving model performance by 7.3% and 10.6%, re-
spectively, in terms of absolute accuracy. In further
experiments aimed at quantifying sample efficiency,

3667

ENTITY PROPOSERS

Number(2)Month.May

Propose entities from the current user utterance.

PREVIOUS PROGRAM EXTRACTED DIALOGUE HISTORY TYPES

[0] Constraint[Event]()
[1] Constraint[Any]()
[2] like(value = "shopping")
[3] Time(hour = 2, meridiem = PM)
[4] Constraint[Event](subject = [2], start = [3])
[5] revise(oldLoc = [0], rootLoc = [1], new = [4])

Function Argument

Invocation Copy

EntityConstant

Reference
(to the previous function invocation)

Value

PREDICTED PROGRAM

LINEARIZED REPRESENTATION

Can you delete my event
called holiday shopping ?

PREVIOUS USER UTTERANCE

I can’t find an event
with that name.

PREVIOUS AGENT UTTERANCE

CURRENT USER UTTERANCE

Oh, it’s just called shopping.
It may be at 2.

parsing

parsing

execution

delete(
find(

Constraint[Event](
subject = like("holiday shopping")

)
)

)

revise(
oldLoc = Constraint[Event](),
rootLoc = Constraint[Any](),
new = Constraint[Event](

subject = like("shopping"),
start = Time(

hour = 2, meridiem = PM
)

)
)

Unit

Constraint[String]
Constraint[Event]
Event

String

EventNotFoundError

Set of salient types extracted
from the dialogue history and
used by the parser as a
compact representation of
the history to condition on.

The last type comes from the
program execution results.

Representation predicted by the proposed model.

PARSER

Figure 1: Illustration of the conversational semantic parsing problem that we focus on and the representations that
we use. The previous turn user utterance and the previous program are shown in blue on the top. The dialogue
history representation extracted using our approach is shown on the top right. The current turn user utterance is
shown in red on the bottom left. The current utterance, the set of proposed entities, and the extracted dialogue
history representation form the input to our parser. Given this input, the parser predicts a program that is shown on
the bottom right (in red rectangles).

it improves accuracy by 12.4% and 6.4% respec-
tively when trained on only a thousand examples
from each dataset. Our model is also effective at
non-contextual semantic parsing, matching state-of-
the-art results on the JOBS, GEOQUERY, and ATIS

datasets (Dong and Lapata, 2016). This is achieved
while also reducing the test time computational
cost by a factor of 10 (from 80ms per utterance
down to 8ms when running on the same machine;
more details are provided in Appendix H), when
compared to our fastest baseline, which makes it
usable as part of a real-time conversational system.

One conclusion from these experiments is that
most semantic parses have structures that depend
only weakly on the values that appear in the dia-
logue history or in the programs themselves. Our
experiments find that hiding values alone results
in a 2.6% accuracy improvement in the low-data
regime. By treating types and functions, rather than
values, as the main ingredients in learned represen-
tations for semantic parsing, we improve model
accuracy and sample efficiency across a diverse set
of language understanding problems, while also
significantly reducing computational costs.

2 Proposed Model

Our goal is to map natural language utterances to
programs while incorporating context from dia-
logue histories (i.e., past utterances and their asso-

ciated programs and execution results). We model
a program as a sequenceo of function invocations,
each consisting of a function and zero or more
argument values, as illustrated at the lower right
of Figure 1. The argument values can be either
literal values or references to results of previous
function invocations. The ability to reference pre-
vious elements of the sequence, sometimes called
a target-side copy, allows us to construct programs
that involve re-entrancies. Owing to this referen-
tial structure, a program can be equivalently repre-
sented as a directed acyclic graph (see e.g., Jones
et al., 2012; Zhang et al., 2019).

We propose a Transformer-based (Vaswani
et al., 2017) encoder–decoder model that predicts
programs by generating function invocations se-
quentially, where each invocation can draw its argu-
ments from an inventory of values (§2.5)—possibly
copied from the utterance—and the results of pre-
vious function invocations in the current program.
The encoder (§2.2) transforms a natural language
utterance and a dialogue history to a continuous
representation. Subsequently, the decoder (§2.3)
uses this representation to define an autoregressive
distribution over function invocation sequences and
chooses a high-probability sequence by performing
beam search. As our experiments (§3) will show,
a naı̈ve encoding of the complete dialogue history
and program results in poor model accuracy.

3668

CURRENT PROGRAM with revision
revise(

oldLoc = Constraint[Event](),
rootLoc = RoleConstraint(start),
new = Time(hour = 3, meridiem = PM)

)

PREVIOUS PROGRAM
delete(find(

Constraint[Event](
subject = like("holiday shopping"),
start = Time(hour = 2, meridiem = PM),
end = Time(hour = 5, meridiem = PM)

)
))

CURRENT PROGRAM without revision
delete(find(

Constraint[Event](
subject = like("holiday shopping"),
start = Time(hour = 3, meridiem = PM),
end = Time(hour = 5, meridiem = PM)

)
))

"It actually starts at 3pm."

Contains information that
is not mentioned in the
current utterance

Only contains information
that is mentioned in the
current utterance

Figure 2: Illustration of the revise meta-computation
operator (§2.1) used in our program representations.
This operator can remove the need to copy program
fragments from the dialogue history.

2.1 Preliminaries
Our approach assumes that programs have type an-
notations on all values and function calls, similar to
the setting of Krishnamurthy et al. (2017).1 Further-
more, we assume that program prediction is local
in that it does not require program fragments to be
copied from the dialogue history (but may still de-
pend on history in other ways). Several formalisms,
including the typed references of Zettlemoyer and
Collins (2009) and the meta-computation opera-
tors of Semantic Machines et al. (2020), make it
possible to produce local program annotations even
for dialogues like the one depicted in Figure 2,
which reuse past computations. We transformed
the datasets in our experiments to use such meta-
computation operators (see Appendix C).

We also optionally make use of entity proposers,
similar to Krishnamurthy et al. (2017), which an-
notate spans from the current utterance with typed
values. For example, the span “one” in “Change
it to one” might be annotated with the value 1

of type Number. These values are scored by the
decoder along with other values that it considers
(§2.5) when predicting argument values for func-
tion invocations. Using entity proposers aims to

1This requirement can be trivially satisfied by assigning
all expressions the same type, but in practice defining a set of
type declarations for the datasets in our experiments was not
difficult (refer to Appendix C for details).

help the model generalize better to previously un-
seen values that can be recognized in the utterance
using hard-coded heuristics (e.g., regular expres-
sions), auxiliary training data, or other runtime in-
formation (e.g., a contact list). In our experiments
we make use of simple proposers that recognize
numbers, months, holidays, and days of the week,
but one could define proposers for arbitrary values
(e.g., song titles). As described in §2.5, certain
values can also be predicted directly without the
use of an entity proposer.

2.2 Encoder

The encoder, shown in Figure 3, maps a natural
language utterance to a continuous representation.
Like many neural sequence-to-sequence models,
we produce a contextualized token representation
of the utterance, Hutt ∈ RU×henc , where U is the
number of tokens and henc is the dimensionality of
their embeddings. We use a Transformer encoder
(Vaswani et al., 2017), optionally initialized using
the BERT pretraining scheme (Devlin et al., 2019).
Next, we need to encode the dialogue history and
combine its representation with Hutt to produce
history-contextualized utterance token embeddings.

Prior work has incorporated history information
by linearizing it and treating it as part of the input
utterance (Cheng et al., 2018; Semantic Machines
et al., 2020; Aghajanyan et al., 2020). While flexi-
ble and easy to implement, this approach presents
a number of challenges. In complex dialogues, his-
tory encodings can grow extremely long relative
to the user utterance, which: (i) increases the risk
of overfitting, (ii) increases computational costs
(because attentions have to be computed over long
sequences), and (iii) necessitates using small batch
sizes during training, making optimization difficult.

Thanks to the predictive locality of our repre-
sentations (§2.1), our decoder (§2.3) never needs
to retrieve values or program fragments from
the dialogue history. Instead, context enters into
programs primarily when programs use referring
expressions that point to past computations, or
revision expressions that modify them. Even
though this allows us to dramatically simplify
the dialogue history representation, effective
generation of referring expressions still requires
knowing something about the past. For example,
for the utterance “What’s next?” the model needs
to determine what “What” refers to. Perhaps
more interestingly, the presence of dates in recent

3669

DIALOGUE HISTORY TYPES

Unit

Constraint[String]
Constraint[Event]
Event

String

EventNotFoundError

embed

decoder

UTTERANCE ENCODER

DIALOGUE HISTORY ENCODER

USER UTTERANCE

"Oh, it's just called shopping.
It may be at 2."

attention
K V Q

Figure 3: Illustration of our encoder (§2.2), using the
example of Figure 1. The utterance is processed by a
Transformer-based (Vaswani et al., 2017) encoder and
combined with information extracted from the set of
dialogue history types using multi-head attention.

turns (or values that have dates, such as meetings)
should make the decoder more eager to generate
referring calls that retrieve dates from the dialogue
history; especially so if other words in the current
utterance hint that dates may be useful and yet
date values cannot be constructed directly from the
current utterance. Subsequent steps of the decoder
which are triggered by these other words can
produce functions that consume the referred dates.

We thus hypothesize that it suffices to strip the
dialogue history down to its constituent types, hid-
ing all other information.2 Specifically, we extract
a set T of types that appear in the dialogue history
up to m turns back, where m = 1 in our experi-
ments.3 Our encoder then transformsHutt into a se-
quence of history-contextualized embeddingsHenc
by allowing each token to attend over T . This is
motivated by the fact that, in many cases, dialogue
history is important for determining the meaning
of specific tokens in the utterance, rather than the
whole utterance. Specifically, we learn embeddings
T ∈ R|T |×htype for the extracted types, where htype
is the embedding size, and use the attention mecha-
nism of Vaswani et al. (2017) to contextualizeHutt:

Henc ,Hutt + MHA(Hutt︸︷︷︸
Queries

, T︸︷︷︸
Keys

, T︸︷︷︸
Values

), (1)

where “MHA” stands for multi-head attention, and
each head applies a separate linear transforma-
tion to the queries, keys, and values. Intuitively,

2For the previous example, if the type List[Event] ap-
peared in the history then we may infer that “What” probably
refers to an Event.

3We experimented with different values of m and found
that increasing it results in worse performance, presumably
due to overfitting.

[0] +(1, 2)
[1] +([0], 3)
[2] +([1], 4)
[3] +([2], 5)

[0] +(Number, Number)
[1] +(Number, Number)
[2] +(Number, Number)

Consider the following program representing
the expression 1 + 2 + 3 + 4 + 5:

While generating this invocation, the
decoder only gets to condition on the
following program prefix:

Argument values are masked out!

Figure 4: Illustration showing the way in which our de-
coder is value-agnostic. Specifically, it shows which
part of the generated program prefix, our decoder con-
ditions on while generating programs (§2.3).

each utterance-contextualized token is further con-
textualized in (1) by adding to it a mixture of
embeddings of elements in T , where the mix-
ture coefficients depends only on that utterance-
contextualized token. This encoder is illustrated
in Figure 3. As we show in §3.1, using this mech-
anism performs better than the naı̈ve approach of
appending a set-of-types vector toHutt.

2.3 Decoder: Programs
The decoder uses the history-contextualized repre-
sentationHenc of the current utterance to predict a
distribution over the program π that corresponds
to that utterance. Each successive “line” πi of π
invokes a function fi on an argument value tuple
(vi1, vi2, . . . , viAi), where Ai is the number of (for-
mal) arguments of fi. Applying fi to this ordered
tuple results in the invocation fi(ai1 = vi1, ai2 =
vi2, . . .), where (ai1, ai2, . . . , aiAi) name the for-
mal arguments of fi. Each predicted value vij can
be the result of a previous function invocation, a
constant value, a value copied from the current ut-
terance, or a proposed entity (§2.1), as illustrated in
the lower right corner of Figure 1. These different
argument sources are described in §2.5. Formally,
the decoder defines a distribution of programs π:

p(π |Henc) =
P∏
i=1

p(πi | f<i,Henc), (2)

where P is the number of function invocations in
the program, and f<i , {f1, . . . , fi−1}. Addition-
ally, we assume that argument values are condi-
tionally independent given fi and f<i, resulting in:

p(πi | f<i) = p(fi |f<i)︸ ︷︷ ︸
function
scoring

Ai∏
j=1

p(vij |f<i, fi)︸ ︷︷ ︸
argument value

scoring

, (3)

where we have elided the conditioning on Henc.
Here, functions depend only on previous functions

3670

FUNCTION EMBEDDER

from: City
NAME TYPE

argument
embedding

FUNCTION SIGNATURE

NAME TYPE TYPEARGUMENT ARGUMENT
Book[Flight](from: City, to: City): Booking[Flight]

POOLING

function embedding

ARGUMENT EMBEDDER

Figure 5: Illustration of our function encoder (§2.4),
using a simplified example function signature.

(not their argument values or results) and argument
values depend only on their calling function (not
on one another or any of the previous argument
values).4 This is illustrated in Figure 4. In addi-
tion to providing an important inductive bias, these
independence assumptions allow our inference pro-
cedure to efficiently score all possible function in-
vocations at step i, given the ones at previous steps,
at once (i.e., function and argument value assign-
ments together), resulting in an efficient search
algorithm (§2.6). Note that there is also a corre-
sponding disadvantage (as in many machine trans-
lation models) that a meaningful phrase in the utter-
ance could be independently selected for multiple
arguments, or not selected at all, but we did not
encounter this issue in our experiments; we rely on
the model training to evade this problem through
the dependence onHenc.

2.4 Decoder: Functions

In Equation 3, the sequence of functions
f1, f2, . . . in the current program is modeled by∏
i p(fi |f<i,Henc). We use a standard autoregres-

sive Transformer decoder that can also attend to
the utterance encoding Henc (§2.2), as done by
Vaswani et al. (2017). Our decoder generates se-
quences over the vocabulary of functions. This
means that each function fi needs an embedding
fi (used as both an input to the decoder and an
output), which we construct compositionally.

We assume that each unique function f has
a type signature that specifies a name n, a list
of type parameters {τ1, . . . , τT } (to support poly-
morphism),5 a list of argument names and types
((a1, t1), . . . , (aA, tA)), and a result type r. An

4We also tried defining a jointly normalized distribution
over entire function invocations (Appendix A), but found that
it results in a higher training cost for no accuracy benefits.

5The type parameters could themselves be parameterized,
but we ignore this here for simplicity of exposition.

example is shown in Figure 5. We encode the
function and argument names using the utter-
ance encoder of §2.2 and learn embeddings for
the types, to obtain (n, r), {τ1, . . . , τT }, and
{(a1, t1), . . . , (aA, tA)}. Then, we construct an
embedding for each function as follows:

a = Pool(a1 + t1, . . . ,aA + tA), (4)

f = n+ Pool(τ1, . . . , τT) + a+ r, (5)

where “Pool” is the max-pooling operation which
is invariant to the arguments’ order.

Our main motivation for this function em-
bedding mechanism is the ability to take cues
from the user utterance (e.g., due to a function
being named similarly to a word appearing in the
utterance). If the functions and their arguments
have names that are semantically similar to
corresponding utterance parts, then this approach
enables zero-shot generalization.6 However, there
is an additional potential benefit from parameter
sharing due to the compositional structure of the
embeddings (see e.g., Baroni, 2020).

2.5 Decoder: Argument Values
This section describes the implementation of the
argument predictor p(vij | f<i, fi). There are four
different kinds of sources that can be used to fill
each available argument slot: references to previ-
ous function invocations, constants from a static
vocabulary, copies that copy string values from the
utterance, and entities that come from entity pro-
posers (§2.1). Many sources might propose the
same value, including multiple sources of the same
kind. For example, there may be multiple spans
in the utterance that produce the same string value
in a program, or an entity may be proposed that is
also available as a constant. To address this, we
marginalize over the sources of each value:

p(vij | f<i, fi)=
∑

s∈S(vij)

p(vij , s |f<i, fi), (6)

where vij represents a possible value for the argu-
ment named aij , and s ∈ S(vij) ranges over the
possible sources for that value. For example, given
the utterance “Change that one to 1:30pm” and the
value 1, the set S(1) may contain entities that cor-
respond to both “one” and “1” from the utterance.

6The data may contain overloaded functions that have the
same name but different type signatures (e.g., due to optional
arguments). The overloads are given distinct identifiers f , but
they often share argument names, resulting in at least partially
shared embeddings.

3671

The argument scoring mechanism considers the
last-layer decoder state hidec that was used to pre-
dict fi via p(fi |f<i) ∝ exp(f>i h

i
dec). We special-

ize this decoder state to argument aij as follows:

h
i,aij
dec , ĥidec � tanh(fi + aij), (7)

where � represents elementwise multiplication, fi
is the embedding of the current function fi, aij is
the encoding of argument aij as defined in §2.4,
and ĥdec is a projection of hdec to the necessary
dimensionality. Intuitively, tanh(fi + aij) acts as
a gating function over the decoder state, deciding
what is relevant when scoring values for argument
aij . This argument-specific decoder state is then
combined with a value embedding to produce a
probability for each (sourced) value assignment:

p(v, s | f<i, fi) ∝

exp
{
ṽ>(hi,adec +w

kind(s)
a) + bkind(s)

a

}
, (8)

where a is the argument name aij , kind(s) ∈
{REFERENCE, CONSTANT, COPY, ENTITY}, ṽ is the
embedding of (v, s) which is described next, and
wk
a and bka are model parameters that are specific

to a and the kind of the source s.

References. References are pointers to the re-
turn values of previous function invocations. If
the source s for the proposed value v is the result
of the kth invocation (where k < i), we take its em-
bedding ṽ to be a projection of hkdec that was used
to predict that invocation’s function and arguments.

Constants. Constants are values that are always
proposed, so the decoder always has the option of
generating them. If the source s for the proposed
value v is a constant, we embed it by applying the
utterance encoder on a string rendering of the value.
The set of constants is automatically extracted from
the training data (see Appendix B).

Copies. Copies are string values that correspond
to substrings of the user utterance (e.g., person
names). String values can only enter the program
through copying, as they are not in the set of con-
stants (i.e., they cannot be “hallucinated” by the
model; see Pasupat and Liang, 2015; Nie et al.,
2019). One might try to construct an approach
based on a standard token-based copy mechanism
(e.g., Gu et al., 2016). However, this would al-
low copying non-contiguous spans and would also
require marginalizing over identical tokens as op-
posed to spans, resulting in more ambiguity. In-
stead, we propose a mechanism that enables the

decoder to copy contiguous spans directly from
the utterance. Its goal is to produce a score for
each of the U(U + 1)/2 possible utterance spans.
Naı̈vely, this would result in a computational cost
that is quadratic in the utterance length U , and
so we instead chose a simple scoring model that
avoids it. Similar to Stern et al. (2017) and Kurib-
ayashi et al. (2019), we assume that the score for a
span factorizes, and define the embedding of each
span value as the concatenation of the contextual
embeddings of the first and last tokens of the span,
ṽ = [hkstart

utt ;hkend
utt]. To compute the copy scores we

also concatenate hi,adec with itself in Equation 8.

Entities. Entities are treated the same way as
copies, except that instead of scoring all spans of
the input, we only score spans proposed by the
external entity proposers discussed in §2.1. Specif-
ically, the proposers provide the model with a list
of candidate entities that are each described by an
utterance span and an associated value. The can-
didates are scored using an identical mechanism
to the one used for scoring copies. This means
that, for example, the string “sept” could be linked
to the value Month.September even though the
string representations do not match perfectly.

Type Checking. When scoring argument values
for function fi, we know the argument types, as
they are specified in the function’s signature. This
enables us to use a type checking mechanism that
allows the decoder to directly exclude values with
mismatching types. For references, the value types
can be obtained by looking up the result types of the
corresponding function signatures. Additionally,
the types are always pre-specified for constants
and entities, and copies are only supported for a
subset of types (e.g., String, PersonName; see
Appendix B). The type checking mechanism sets
p(vij | f<i, fi) = 0 whenever vij has a different
type than the expected type for aij . Finally, because
copies can correspond to multiple types, we also
add a type matching term to the copy score. This
term is defined as the inner product of the argument
type embedding and a (learnable) linear projection
of hkstart

utt and hkend
utt concatenated, where kstart and

kend denote the span start and end indices.

2.6 Decoder: Search
Similar to other sequence-to-sequence models, we
employ beam search over the sequence of function
invocations when decoding. However, in contrast
to other models, our assumptions (§2.3) allow us to

3672

Dataset SMCALFLOW TREEDST
V1.1 V2.0

Best Reported Result 66.5 68.2 62.2
Our Model 73.8 75.3 72.8

Table 1: Test set exact match accuracy comparing our
model to the best reported results for SMCALFLOW
(Seq2Seq model from the public leaderboard; Semantic
Machines et al., 2020) and TREEDST (TED-PP model;
Cheng et al., 2020). The evaluation on each dataset
in prior work requires us to repeat some idiosyncrasies
that we describe in Appendix D.

efficiently implement beam search over complete
function invocations, by leveraging the fact that:

max
πi

p(πi)=max
fi

{
p(fi)

Ai∏
j=1

max
vij

p(vij |fi)
}
, (9)

where we have omitted the dependence on f<i.
This computation is parallelizable and it also allows
the decoder to avoid choosing a function if there are
no high scoring assignments for its arguments (i.e.,
we are performing a kind of lookahead). This also
means that the paths explored during the search are
shorter for our model than for models where each
step corresponds to a single decision, allowing for
smaller beams and more efficient decoding.

3 Experiments

We first report results on SMCALFLOW (Semantic
Machines et al., 2020) and TREEDST (Cheng et al.,
2020), two recently released large-scale conversa-
tional semantic parsing datasets. Our model makes
use of type information in the programs, so we
manually constructed a set of type declarations for
each dataset and then used a variant of the Hindley-
Milner type inference algorithm (Damas and Mil-
ner, 1982) to annotate programs with types. As
mentioned in §2.1, we also transformed TREEDST
to introduce meta-computation operators for ref-
erences and revisions (more details can be found
in Appendix C).7 We also report results on non-
conversational semantic parsing datasets in §3.2.
We use the same hyperparameters across all ex-
periments (see Appendix E), and we use BERT-
medium (Turc et al., 2019) to initialize our encoder.

3.1 Conversational Semantic Parsing
Test set results for SMCALFLOW and TREEDST
are shown in Table 1. Our model significantly out-
performs the best published numbers in each case.

7The transformed datasets are available at https:
//github.com/microsoft/task_oriented_dialogue_
as_dataflow_synthesis/tree/master/datasets.

Dataset SMCALFLOW TREEDST
Training Dialogues 1k 10k 33k 1k 10k 19k

Seq2Seq 36.8 69.8 74.5 28.2 47.9 50.3
Seq2Tree 43.6 69.3 77.7 23.6 46.9 48.8
Seq2Tree++ 48.0 71.9 78.2 74.8 75.4 86.9

w
/o

B
E

R
T

Our Model 53.8 73.2 78.5 78.6 87.6 88.5
Seq2Seq 44.6 64.1 67.8 28.6 40.2 47.2
Seq2Tree 50.8 74.6 78.6 30.9 50.6 51.6

w
/B

E
R

T

Our Model 63.2 77.2 80.4 81.2 87.1 88.3

(a) Baseline comparison.

Dataset SMCALFLOW TREEDST
Training Dialogues 1k 10k 33k 1k 10k 19k

Our Model 63.2 77.2 80.4 81.2 87.1 88.3
Value Dependence 60.6 76.4 79.4 79.3 86.2 86.5
No Name Embedder 62.8 76.7 80.3 81.1 87.0 88.1
No Types 62.4 76.5 79.9 80.6 87.1 88.3
No Span Copy 60.2 76.2 79.8 79.0 86.7 87.4
No Entity Proposers 59.6 76.4 79.8 80.5 86.9 88.2

Pa
rs

er

All of the Above 58.9 75.8 77.3 72.9 80.2 80.6
No History 59.0 70.0 73.8 68.3 75.0 76.5
Previous Turn 61.3 75.9 77.4 80.5 86.9 87.4

H
is

to
ry

Linear Encoder 63.0 76.5 80.2 81.2 87.1 88.3

(b) Ablation study.

Table 2: Validation set exact match accuracy across
varying amounts of training data (each subset is sam-
pled uniformly at random). The best results in each
case are shown in bold red and are underlined.

In order to further understand the performance char-
acteristics of our model and quantify the impact of
each modeling contribution, we also compare to a
variety of other models and ablated versions of our
model. We implemented the following baselines:

– Seq2Seq: The OpenNMT (Klein et al., 2017) im-
plementation of a pointer-generator network (See
et al., 2017) that predicts linearized plans repre-
sented as S-expressions and is able to copy to-
kens from the utterance while decoding. This
model is very similar to the model used by Se-
mantic Machines et al. (2020) and represents the
current state-of-the-art for SMCALFLOW.8

– Seq2Tree: The same as Seq2Seq, except that it
generates invocations in a top-down, pre-order
program traversal. Each invocation is embedded
as a unique item in the output vocabulary. Note
that SMCALFLOW contains re-entrant programs
represented with LISP-style let bindings. Both
the Seq2Tree and Seq2Seq are unaware of the
special meaning of let and predict calls to let

as any other function, and references to bound
8Semantic Machines et al. (2020) used linearized plans to

represent the dialogue history, but our implementation uses
previous user and agent utterances. We found no difference in
performance.

https://github.com/microsoft/task_oriented_dialogue_as_dataflow_synthesis/tree/master/datasets
https://github.com/microsoft/task_oriented_dialogue_as_dataflow_synthesis/tree/master/datasets
https://github.com/microsoft/task_oriented_dialogue_as_dataflow_synthesis/tree/master/datasets

3673

variables as any other literal.
– Seq2Tree++: An enhanced version of the model

by Krishnamurthy et al. (2017) that predicts
typed programs in a top-down fashion. Unlike
Seq2Seq and Seq2Tree, this model can only pro-
duce well-formed and well-typed programs. It
also makes use of the same entity proposers
(§2.1) similar to our model, and it can atomi-
cally copy spans of up to 15 tokens by treating
them as additional proposed entities. Further-
more, it uses the linear history encoder that is
described in the next paragraph. Like our model,
re-entrancies are represented as references to pre-
vious outputs in the predicted sequence.

We also implemented variants of Seq2Seq and
Seq2Tree that use BERT-base9 (Devlin et al., 2019)
as the encoder. Our results are shown in Ta-
ble 2a. Our model outperforms all baselines on
both datasets, showing particularly large gains in
the low data regime, even when using BERT. Fi-
nally, we implemented the following ablations,
with more details provided in Appendix G:

– Value Dependence: Introduces a unique function
for each value in the training data (except for
copies) and transforms the data so that values
are always produced by calls to these functions,
allowing the model to condition on them.

– No Name Embedder: Embeds functions and con-
stants atomically instead of using the approach
of §2.4 and the utterance encoder.

– No Types: Collapses all types to a single type,
which effectively disables type checking (§2.5).

– No Span Copy: Breaks up span-level copies into
token-level copies which are put together us-
ing a special concatenate function. Note that
our model is value-agnostic and so this ablated
model cannot condition on previously copied
tokens when copying a span token-by-token.

– No Entity Proposers: Removes the entity pro-
posers, meaning that previously entity-linked
values have to be generated as constants.

– No History: SetsHenc =Hutt (§2.2).
– Previous Turn: Replaces the type-based history

encoding with the previous turn user and system
utterances or linearized system actions.

– Linear Encoder: Replaces the history attention

9We found that BERT-base worked best for these baselines,
but was no better than the smaller BERT-medium when used
with our model. Also, unfortunately, incorporating BERT in
Seq2Tree++ turned out to be challenging due to the way that
model was originally implemented.

Method Dataset
JOBS GEO ATIS

Zettlemoyer and Collins (2007) — 86.1 84.6
Wang et al. (2014) 90.7 90.4 91.3
Zhao and Huang (2015) 85.0 88.9 84.2
Saparov et al. (2017) 81.4 83.9 —

Dong and Lapata (2016) 90.0 87.1 84.6
Rabinovich et al. (2017) 92.9 87.1 85.9
Yin and Neubig (2018) — 88.2 86.2
Dong and Lapata (2018) — 88.2 87.7
Aghajanyan et al. (2020) — 89.3 —
Our Model 91.4 91.4 90.2N

eu
ra

lM
et

ho
ds

xNo BERT 91.4 90.0 91.3

Table 3: Validation set exact match accuracy for single-
turn semantic parsing datasets. Note that Aghajanyan
et al. (2020) use BART (Lewis et al., 2020), a large pre-
trained encoder. The best results for each dataset are
shown in bold red and are underlined.

mechanism with a linear function over a multi-
hot embedding of the history types.

The results, shown in Table 2b, indicate that all
of our features play a role in improving accuracy.
Perhaps most importantly though, the “value de-
pendence” ablation shows that our function-based
program representations are indeed important, and
the “previous turn” ablation shows that our type-
based program representations are also important.
Furthermore, the impact of both these modeling
decisions grows larger in the low data regime, as
does the impact of the span copy mechanism.

3.2 Non-Conversational Semantic Parsing

Our main focus is on conversational semantic
parsing, but we also ran experiments on non-
conversational semantic parsing benchmarks to
show that our model is a strong parser irrespec-
tive of context. Specifically, we manually anno-
tated the JOBS, GEOQUERY, and ATIS datasets
with typed declarations (Appendix C) and ran ex-
periments comparing with multiple baseline and
state-of-the-art methods. The results, shown in Ta-
ble 3, indicate that our model meets or exceeds
state-of-the-art performance in each case.

4 Related Work

Our approach builds on top of a significant amount
of prior work in neural semantic parsing and also
context-dependent semantic parsing.

Neural Semantic Parsing. While there was a
brief period of interest in using unstructured se-
quence models for semantic parsing (e.g., Andreas

3674

et al., 2013; Dong and Lapata, 2016), most research
on semantic parsing has used tree- or graph-shaped
decoders that exploit program structure. Most such
approaches use this structure as a constraint while
decoding, filling in function arguments one-at-a-
time, in either a top-down fashion (e.g., Dong and
Lapata, 2016; Krishnamurthy et al., 2017) or a
bottom-up fashion (e.g., Misra and Artzi, 2016;
Cheng et al., 2018). Both directions can suffer
from exposure bias and search errors during decod-
ing: in top-down when there’s no way to realize
an argument of a given type in the current context,
and in bottom-up when there are no functions in the
programming language that combine the predicted
arguments. To this end, there has been some work
on global search with guarantees for neural seman-
tic parsers (e.g., Lee et al., 2016) but it is expensive
and makes certain strong assumptions. In contrast
to this prior work, we use program structure not
just as a decoder constraint but as a source of in-
dependence assumptions: the decoder explicitly
decouples some decisions from others, resulting in
good inductive biases and fast decoding algorithms.

Perhaps closest to our work is that of Dong and
Lapata (2018), which is also about decoupling de-
cisions, but uses a dataset-specific notion of an
abstracted program sketch along with different in-
dependence assumptions, and underperforms our
model in comparable settings (§3.2). Also close
are the models of Cheng et al. (2020) and Zhang
et al. (2019). Our method differs in that our beam
search uses larger steps that predict functions to-
gether with their arguments, rather than predicting
the argument values serially in separate dependent
steps. Similar to Zhang et al. (2019), we use a
target-side copy mechanism for generating refer-
ences to function invocation results. However, we
extend this mechanism to also predict constants,
copy spans from the user utterance, and link ex-
ternally proposed entities. While our span copy
mechanism is novel, it is inspired by prior attempts
to copy spans instead of tokens (e.g., Singh et al.,
2020). Finally, bottom-up models with similarities
to ours include SMBOP (Rubin and Berant, 2020)
and BUSTLE (Odena et al., 2020).

Context-Dependent Semantic Parsing. Prior
work on conversational semantic parsing mainly
focuses on the decoder, with few efforts on incor-
porating the dialogue history information in the en-
coder. Recent work on context-dependent semantic
parsing (e.g., Suhr et al., 2018; Yu et al., 2019)

conditions on explicit representations of user utter-
ances and programs with a neural encoder. While
this results in highly expressive models, it also in-
creases the risk of overfitting. Contrary to this,
Zettlemoyer and Collins (2009), Lee et al. (2014)
and Semantic Machines et al. (2020) do not use
context to resolve references at all. They instead
predict context-independent logical forms that are
resolved in a separate step. Our approach occu-
pies a middle ground: when combined with local
program representations, types, even without any
value information, provide enough information to
resolve context-dependent meanings that cannot be
derived from isolated sentences. The specific mech-
anism we use to do this “infuses” contextual type
information into input sentence representations, in
a manner reminiscent of attention flow models from
the QA literature (e.g., Seo et al., 2016).

5 Conclusion

We showed that abstracting away values while
encoding the dialogue history and decoding pro-
grams significantly improves conversational seman-
tic parsing accuracy. In summary, our goal in this
work is to think about types in a new way. Similar
to previous neural and non-neural methods, types
are an important source of constraints on the behav-
ior of the decoder. Here, for the first time, they are
also the primary ingredient in the representation of
both the parser actions and the dialogue history.

Our approach, which is based on type-centric
encodings of dialogue states and function-centric
encodings of programs (§2), outperforms prior
work by 7.3% and 10.6%, on SMCALFLOW and
TREEDST, respectively (§3), while also being
more computationally efficient than competing
methods. Perhaps more importantly, it results in
even more significant gains in the low-data regime.
This indicates that choosing our representations
carefully and making appropriate independence
assumptions can result in increased accuracy and
computational efficiency.

6 Acknowledgements

We thank the anonymous reviewers for their helpful
comments, Jason Eisner for his detailed feedback
and suggestions on an early draft of the paper, Abul-
hair Saparov for helpful conversations and pointers
about semantic parsing baselines and prior work,
and Theo Lanman for his help in scaling up some
of our experiments.

3675

References
Armen Aghajanyan, Jean Maillard, Akshat Shrivas-

tava, Keith Diedrick, Michael Haeger, Haoran Li,
Yashar Mehdad, Veselin Stoyanov, Anuj Kumar,
Mike Lewis, and Sonal Gupta. 2020. Conversa-
tional Semantic Parsing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 5026–5035. As-
sociation for Computational Linguistics.

Jacob Andreas, Andreas Vlachos, and Stephen Clark.
2013. Semantic Parsing as Machine Translation. In
Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 47–52, Sofia, Bulgaria. Associ-
ation for Computational Linguistics.

Marco Baroni. 2020. Linguistic Generalization and
Compositionality in Modern Artificial Neural Net-
works. Philosophical Transactions of the Royal So-
ciety B, 375(1791):20190307.

Jianpeng Cheng, Devang Agrawal, Héctor
Martı́nez Alonso, Shruti Bhargava, Joris Driesen,
Federico Flego, Dain Kaplan, Dimitri Kartsaklis,
Lin Li, Dhivya Piraviperumal, Jason D. Williams,
Hong Yu, Diarmuid Ó Séaghdha, and Anders
Johannsen. 2020. Conversational Semantic Parsing
for Dialog State Tracking. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 8107–8117.
Association for Computational Linguistics.

Jianpeng Cheng, Siva Reddy, Vijay Saraswat, and
Mirella Lapata. 2018. Learning an Executable Neu-
ral Semantic Parser. Computational Linguistics,
45(1):59–94. Publisher: MIT Press.

Luis Damas and Robin Milner. 1982. Principal Type-
Schemes for Functional Programs. In Proceedings
of the 9th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’82,
page 207–212, New York, NY, USA. Association for
Computing Machinery.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Li Dong and Mirella Lapata. 2016. Language to
Logical Form with Neural Attention. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 33–43, Berlin, Germany. Association
for Computational Linguistics.

Li Dong and Mirella Lapata. 2018. Coarse-to-Fine De-
coding for Neural Semantic Parsing. In Proceedings

of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 731–742, Melbourne, Australia. Association
for Computational Linguistics.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating Copying Mechanism in
Sequence-to-Sequence Learning. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1631–1640, Berlin, Germany. Association for
Computational Linguistics.

Kelvin Guu, Panupong Pasupat, E. Liu, and Percy
Liang. 2017. From language to programs: Bridg-
ing reinforcement learning and maximum marginal
likelihood. ArXiv, abs/1704.07926.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12–22, Berlin, Germany. Association for Computa-
tional Linguistics.

Bevan Jones, Jacob Andreas, Daniel Bauer,
Karl Moritz Hermann, and Kevin Knight. 2012.
Semantics-Based Machine Translation with Hyper-
edge Replacement Grammars. In Proceedings of
COLING 2012, pages 1359–1376, Mumbai, India.
The COLING 2012 Organizing Committee.

Diederik P. Kingma and Jimmy Ba. 2017.
Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 [cs.LG]. ArXiv: 1412.6980.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander Rush. 2017. OpenNMT: Open-
source toolkit for neural machine translation. In
Proceedings of ACL 2017, System Demonstrations,
pages 67–72, Vancouver, Canada. Association for
Computational Linguistics.

Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gard-
ner. 2017. Neural Semantic Parsing with Type Con-
straints for Semi-Structured Tables. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 1516–1526,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Tatsuki Kuribayashi, Hiroki Ouchi, Naoya Inoue, Paul
Reisert, Toshinori Miyoshi, Jun Suzuki, and Ken-
taro Inui. 2019. An Empirical Study of Span Rep-
resentations in Argumentation Structure Parsing. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4691–
4698, Florence, Italy. Association for Computational
Linguistics.

Kenton Lee, Yoav Artzi, Jesse Dodge, and Luke Zettle-
moyer. 2014. Context-dependent Semantic Parsing
for Time Expressions. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages

https://doi.org/10.18653/v1/2020.emnlp-main.408
https://doi.org/10.18653/v1/2020.emnlp-main.408
https://www.aclweb.org/anthology/P13-2009
https://doi.org/10.18653/v1/2020.emnlp-main.651
https://doi.org/10.18653/v1/2020.emnlp-main.651
https://doi.org/10.1162/coli_a_00342
https://doi.org/10.1162/coli_a_00342
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/582153.582176
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/P18-1068
https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/P16-1002
https://www.aclweb.org/anthology/C12-1083
https://www.aclweb.org/anthology/C12-1083
http://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/P17-4012
https://www.aclweb.org/anthology/P17-4012
https://doi.org/10.18653/v1/D17-1160
https://doi.org/10.18653/v1/D17-1160
https://doi.org/10.18653/v1/P19-1464
https://doi.org/10.18653/v1/P19-1464
https://doi.org/10.3115/v1/P14-1135
https://doi.org/10.3115/v1/P14-1135

3676

1437–1447, Baltimore, Maryland. Association for
Computational Linguistics.

Kenton Lee, Mike Lewis, and Luke Zettlemoyer. 2016.
Global Neural CCG Parsing with Optimality Guar-
antees. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2366–2376, Austin, Texas. Association
for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising Sequence-to-Sequence Pre-
training for Natural Language Generation, Transla-
tion, and Comprehension. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 7871–7880. Association
for Computational Linguistics.

Dipendra Kumar Misra and Yoav Artzi. 2016. Neural
Shift-Reduce CCG Semantic Parsing. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 1775–1786,
Austin, Texas. Association for Computational Lin-
guistics.

Feng Nie, Jin-Ge Yao, Jinpeng Wang, Rong Pan, and
Chin-Yew Lin. 2019. A Simple Recipe towards Re-
ducing Hallucination in Neural Surface Realisation.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2673–2679, Florence, Italy. Association for Compu-
tational Linguistics.

Augustus Odena, Kensen Shi, David Bieber, Rishabh
Singh, and Charles Sutton. 2020. BUSTLE: Bottom-
up Program Synthesis Through Learning-guided Ex-
ploration. arXiv:2007.14381 [cs, stat]. ArXiv:
2007.14381.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional Semantic Parsing on Semi-Structured Tables.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1470–1480, Beijing, China. Association for Compu-
tational Linguistics.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract Syntax Networks for Code Gener-
ation and Semantic Parsing. In Proceedings of the
55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1139–1149, Vancouver, Canada. Association
for Computational Linguistics.

Ohad Rubin and Jonathan Berant. 2020. SmBoP:
Semi-autoregressive Bottom-up Semantic Parsing.
arXiv:2010.12412 [cs]. ArXiv: 2010.12412.

Abulhair Saparov, Vijay Saraswat, and Tom Mitchell.
2017. Probabilistic Generative Grammar for Se-
mantic Parsing. In Proceedings of the 21st Confer-
ence on Computational Natural Language Learning

(CoNLL 2017), pages 248–259, Vancouver, Canada.
Association for Computational Linguistics.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Semantic Machines, Jacob Andreas, John Bufe, David
Burkett, Charles Chen, Josh Clausman, Jean Craw-
ford, Kate Crim, Jordan DeLoach, Leah Dorner, Ja-
son Eisner, Hao Fang, Alan Guo, David Hall, Kristin
Hayes, Kellie Hill, Diana Ho, Wendy Iwaszuk, Sm-
riti Jha, Dan Klein, Jayant Krishnamurthy, Theo
Lanman, Percy Liang, Christopher H. Lin, Ilya
Lintsbakh, Andy McGovern, Aleksandr Nisnevich,
Adam Pauls, Dmitrij Petters, Brent Read, Dan Roth,
Subhro Roy, Jesse Rusak, Beth Short, Div Slomin,
Ben Snyder, Stephon Striplin, Yu Su, Zachary
Tellman, Sam Thomson, Andrei Vorobev, Izabela
Witoszko, Jason Wolfe, Abby Wray, Yuchen Zhang,
and Alexander Zotov. 2020. Task-Oriented Dia-
logue as Dataflow Synthesis. Transactions of the As-
sociation for Computational Linguistics, 8:556–571.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi,
and Hannaneh Hajishirzi. 2016. Bidirectional
Attention Flow for Machine Comprehension.
arXiv:1611.01603 [cs.CL]. ArXiv: 1611.01603.

Abhinav Singh, Patrick Xia, Guanghui Qin, Mahsa
Yarmohammadi, and Benjamin Van Durme. 2020.
CopyNext: Explicit Span Copying and Alignment
in Sequence to Sequence Models. In Proceedings
of the Fourth Workshop on Structured Prediction for
NLP, pages 11–16. Association for Computational
Linguistics.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017.
A Minimal Span-Based Neural Constituency Parser.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 818–827, Vancouver, Canada.
Association for Computational Linguistics.

Alane Suhr, Srinivasan Iyer, and Yoav Artzi. 2018.
Learning to Map Context-Dependent Sentences to
Executable Formal Queries. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 2238–2249, New Orleans, Louisiana.
Association for Computational Linguistics.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-Read Students Learn Better:
On the Importance of Pre-training Compact Models.
arXiv:1908.08962 [cs.CL]. ArXiv: 1908.08962.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All

https://doi.org/10.18653/v1/D16-1262
https://doi.org/10.18653/v1/D16-1262
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/D16-1183
https://doi.org/10.18653/v1/D16-1183
https://doi.org/10.18653/v1/P19-1256
https://doi.org/10.18653/v1/P19-1256
http://arxiv.org/abs/2007.14381
http://arxiv.org/abs/2007.14381
http://arxiv.org/abs/2007.14381
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.18653/v1/P17-1105
https://doi.org/10.18653/v1/P17-1105
http://arxiv.org/abs/2010.12412
http://arxiv.org/abs/2010.12412
https://doi.org/10.18653/v1/K17-1026
https://doi.org/10.18653/v1/K17-1026
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.1162/tacl_a_00333
https://doi.org/10.1162/tacl_a_00333
http://arxiv.org/abs/1611.01603
http://arxiv.org/abs/1611.01603
https://doi.org/10.18653/v1/2020.spnlp-1.2
https://doi.org/10.18653/v1/2020.spnlp-1.2
https://doi.org/10.18653/v1/P17-1076
https://doi.org/10.18653/v1/N18-1203
https://doi.org/10.18653/v1/N18-1203
https://arxiv.org/abs/1908.08962
https://arxiv.org/abs/1908.08962
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

3677

you Need. In Advances in Neural Information Pro-
cessing Systems, volume 30, pages 5998–6008. Cur-
ran Associates, Inc.

Adrienne Wang, Tom Kwiatkowski, and Luke Zettle-
moyer. 2014. Morpho-syntactic Lexical Generaliza-
tion for CCG Semantic Parsing. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1284–
1295, Doha, Qatar. Association for Computational
Linguistics.

Pengcheng Yin and Graham Neubig. 2018. TRANX: A
Transition-based Neural Abstract Syntax Parser for
Semantic Parsing and Code Generation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing: System Demon-
strations, pages 7–12, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern
Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene
Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit,
David Proctor, Sungrok Shim, Jonathan Kraft, Vin-
cent Zhang, Caiming Xiong, Richard Socher, and
Dragomir Radev. 2019. SParC: Cross-Domain Se-
mantic Parsing in Context. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4511–4523, Florence,
Italy. Association for Computational Linguistics.

Luke Zettlemoyer and Michael Collins. 2007. Online
Learning of Relaxed CCG Grammars for Parsing to
Logical Form. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL), pages 678–687,
Prague, Czech Republic. Association for Computa-
tional Linguistics.

Luke Zettlemoyer and Michael Collins. 2009. Learn-
ing Context-Dependent Mappings from Sentences to
Logical Form. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural
Language Processing of the AFNLP, pages 976–984,
Suntec, Singapore. Association for Computational
Linguistics.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019. AMR Parsing as Sequence-to-
Graph Transduction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 80–94, Florence, Italy. Associa-
tion for Computational Linguistics.

Kai Zhao and Liang Huang. 2015. Type-Driven Incre-
mental Semantic Parsing with Polymorphism. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1416–1421, Denver, Colorado. Association
for Computational Linguistics.

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.3115/v1/D14-1135
https://doi.org/10.3115/v1/D14-1135
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/P19-1443
https://www.aclweb.org/anthology/D07-1071
https://www.aclweb.org/anthology/D07-1071
https://www.aclweb.org/anthology/D07-1071
https://www.aclweb.org/anthology/P09-1110
https://www.aclweb.org/anthology/P09-1110
https://www.aclweb.org/anthology/P09-1110
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.3115/v1/N15-1162
https://doi.org/10.3115/v1/N15-1162

3678

A Invocation Joint Normalization

Instead of the distribution in Equation 3, we can de-
fine a distribution over fi and {vij}Ai

j=1 that factor-
izes in the same way but is also jointly normalized:

p(πi | f<i) ∝ h(fi)
Ai∏
j=1

g(fi, vij), (10)

where h and g are defined as presented in §2.4
and §2.5, respectively, before normalization. This
model has the same cost as the locally normalized
model at test time but is significantly more expen-
sive at training time as we need to score all possible
function invocations, as opposed to always condi-
tioning on the gold functions. It can in principle
avoid some of the exposure bias problems of the
locally normalized model, but we observed no ac-
curacy improvements in our experiments.

B Value Sources

In our model, the type of a value determines what
sources it can be generated from. We enforce that
values of certain types can only be copied or entity-
linked. Any values that do not fall under these
constraints are added to a static vocabulary of con-
stants, and the model is always permitted to gener-
ate them, as long as they pass type checking. Val-
ues that fall under these constraints are not added
to this vocabulary so that they cannot be “halluci-
nated” by the model. The specific constraints that
we use are described in the following paragraphs.

Types that must be copied: Types for which the
model is only allowed to construct values directly
from string literals copied from the utterance. In
§2.5 we noted that strings can be copied from
the utterance to become string literals in the gen-
erated program. For certain types t, arguments
of type t may also be willing to accept copied
strings; in this case we generate a constructor
call that constructs a t object from the string lit-
eral. For SMCALFLOW, these copyable types
are String, PersonName, RespondComment, and
LocationKeyphrase. For the other datasets it is
just String. We declare training examples where
a value of a copyable type appears in the pro-
gram, but is not a substring of the corresponding
utterance, as likely annotation errors and ignore
them during training (but not during evaluation).
Even though such examples are very rare for SM-
CALFLOW (∼0.5% of the examples), they turned

out to be relatively frequent in TREEDST (∼6% of
the examples), as we discuss in Appendix C.

Types that must be entity-linked: Types for
which argument values can only be picked from
the set of proposed entities (§2.1) and cannot be
otherwise hallucinated from the model, or directly
copied from the utterance. The Number type is
treated in a special way for all datasets, where
numbers 0, 1, and 2 are allowed to be halluci-
nated, but all other numbers must be entity-linked.
Furthermore, for SMCALFLOW the set of types
that must be entity-linked also contains the Month,
DayOfWeek, and Holiday types. Based on this,
we can detect probable annotation errors.

C Dataset Preparation

We now describe how we processed the datasets
to satisfy the requirements mentioned in §2.1. We
have made the processed datasets available at https:
//github.com/microsoft/task_oriented_dialogue_

as_dataflow_synthesis/tree/master/datasets.

C.1 Type Declarations

We manually specified the necessary type declara-
tions by inspection of all functions in the training
data. In some cases, we found it helpful to trans-
form the data into an equivalent set of function
calls that simplified the resulting programs, while
maintaining a one-to-one mapping with the origi-
nal representations. For example, SMCALFLOW

contains a function called get that takes in an ob-
ject of some type and a Path, which specifies a
field of that object, and acts as an accessor. For
example, the object could be an Event and the
specified path may be "subject". We transform
such invocations into invocations of functions that
are instantiated separately for each unique combi-
nation of the object type and the provided path. For
the aforementioned example, the corresponding
new function would be defined as:

def Event.subject(obj: Event): String

All such transformations are invertible, so we can
convert back to the original format after prediction.

C.2 Meta-Computation Operators

The meta-computation operators are only required
for the conversational semantic parsing datasets,
and SMCALFLOW already makes use of them.
Therefore, we only had to convert TREEDST. To
this end, we introduced two new operators:

https://github.com/microsoft/task_oriented_dialogue_as_dataflow_synthesis/tree/master/datasets
https://github.com/microsoft/task_oriented_dialogue_as_dataflow_synthesis/tree/master/datasets
https://github.com/microsoft/task_oriented_dialogue_as_dataflow_synthesis/tree/master/datasets

3679

def refer[T](): T

def revise[T, R](
root: Root[T],
path: Path[R],
revision: R => R,

): T

refer goes through the programs and system ac-
tions in the dialogue history, starting at the most
recent turn, finds the first sub-program that evalu-
ates to type T, and replaces its invocation with that
sub-program. Similarly, revise finds the first pro-
gram whose root matches the specified root, walks
down the tree along the specified path, and applies
the provided revision on the sub-program rooted
at the end of that path. It then replaces its invoca-
tion with this revised program. We performed an
automated heuristic transformation of TREEDST
so that it makes use of these meta-operators. We
only applied the extracted transformations when
executing them on the transformed programs using
the gold dialogue history resulted in the original
program (i.e., before applying any of our transfor-
mations). Therefore, when using the gold dialogue
history, this transformation is also guaranteed to
be invertible. We emphasize that we execute these
meta-computation operators before computing ac-
curacy so that our final evaluation results are com-
parable to prior work.

C.3 Annotation Errors
While preparing the datasets for our experiments
using our automated transformations, we noticed
that they contain some inconsistencies. For exam-
ple, in TREEDST, the tree fragment:
...restaurant.book.restaurant.book...

seemed to be interchangeable with:
...restaurant.object.equals...

The annotation and checking mechanisms we em-
ploy impose certain regularity requirements on the
data that are violated by such examples. There-
fore, we had three choices for such examples: (i)
we could add additional type declarations, (ii) we
could discard them, or (iii) we could collapse the
two annotations together, resulting in a lossy con-
version. We used our best judgment when choosing
among these options, preferring option (iii) where
it was possible to do so automatically. We believe
that all such cases are annotation errors, but we
cannot know for certain without more information
about how the TREEDST dataset was constructed.
Overall, about 122 dialogues (0.4%) did not pass

our checks for SMCALFLOW, and 585 dialogues
(3.0%) for TREEDST. When converting back to the
original format, we tally an error for each discarded
example, and select the most frequent version of
any lossily collapsed annotation.

Our approach also provides two simple yet ef-
fective consistency checks for the training data:
(i) running type inference using the provided type
declarations to detect ill-typed examples, and (ii)
using the constraints described Appendix B to de-
tect other forms of annotation errors. We found
that these two checks together caught 68 poten-
tial annotation errors (<0.5%) in SMCALFLOW

and ∼1,000 potential errors (∼6%) in TREEDST.
TREEDST was particularly interesting as we found
a whole class of examples where user utterances
were replaced with system utterances.

Note that our model does not technically require
any of these checks. It is possible to generate type
signatures that permit arbitrary function/argument
pairs based on observed data and to configure our
model so that any observed value may be generated
as a constant (i.e., not imposing the constraints
described in Appendix B). In practice we found
that constraining the space of programs provides
useful sanity checks in addition to accuracy gains.

C.4 Non-Conversational Semantic Parsing

We obtained the JOBS, GEOQUERY, and ATIS

datasets from the repository of Dong and Lapata
(2016). For each dataset, we defined a library that
specifies function and type declarations.

D Evaluation Details

To compare with prior work for SMCALFLOW

(Semantic Machines et al., 2020) and TREEDST
(Cheng et al., 2020), we replicated their setups. For
SMCALFLOW, we predict plans always condition-
ing on the gold dialogue history for each utterance,
but we consider any predicted plan wrong if the
refer are correct flag is set to false. This
flag is meant to summarize the accuracy of a hypo-
thetical model for resolving calls to refer, but is
not relevant to the problem of program prediction.
We also canonicalize plans by sorting keyword ar-
guments and normalizing numbers (so that 30.0
and 30 are considered equivalent, for example).
For TREEDST, our model predicts programs that
use the refer and revise operators, and we exe-
cute them against the dialogue history that consists
of predicted programs and gold (oracle) system

3680

actions (following Cheng et al. (2020)) when con-
verting back to the original tree representation. We
canonicalize the resulting trees by lexicographi-
cally sorting the children of each node.

For our baseline comparisons and ablations
(shown in Tables 2a and 2b), we decided to ignore
the refer are correct flag for SMCALFLOW

because it assumes that refer is handled by some
other model and for these experiments we are only
interested in evaluating program prediction. Also,
for TREEDST we use the gold plans for the di-
alogue history in order to focus on the semantic
parsing problem, as opposed to the dialogue state
tracking problem. For the non-conversational se-
mantic parsing datasets we replicated the evalua-
tion approach of Dong and Lapata (2016), and so
we also canonicalize the predicted programs.

E Model Hyperparameters

We use the same hyperparameters for all of our
conversational semantic parsing experiments. For
the encoder, we use either BERT-medium (Turc
et al., 2019) or a non-pretrained 2-layer Trans-
former (Vaswani et al., 2017) with a hidden size
of 128, 4 heads, and a fully connected layer size
of 512, for the non-BERT experiments. For the de-
coder we use a 2-layer Transformer with a hidden
size of 128, 4 heads, and a fully connected layer
size of 512, and set htype to 128, and harg to 512.
For the non-conversational semantic parsing exper-
iments we use a hidden size of 32 throughout the
model as the corresponding datasets are very small.
We also use a dropout of 0.2 for all experiments.

For training, we use the Adam optimizer
(Kingma and Ba, 2017), performing global gradi-
ent norm clipping with the maximum allowed norm
set to 10. For batching, we bucket the training ex-
amples by utterance length and adapt the batch size
so that the total number of tokens in each batch
is 10,240. Finally, we average the log-likelihood
function over each batch, instead of summing it.

Experiments with BERT. We use a pre-training
phase for 2,000 training steps, where we freeze
the parameters of the utterance encoder and only
train the dialogue history encoder and the decoder.
Then, we train the whole model for another 8,000
steps. This because our model is not simply adding
a linear layer on top of BERT, and so, unless ini-
tialized properly, we may end up losing some of
the information contained in the pre-trained BERT
model. During the pre-training phase, we linearly

warm up the learning rate to 2× 10−3 during the
first 1,000 steps. We then decay it exponentially
by a factor of 0.999 every 10 steps. During the full
training phase, we linearly warm up the learning
rate to 1 × 10−4 during the first 1,000 steps, and
then decay it exponentially in the same fashion.

Experiments without BERT. We use a single
training phase for 30,000 steps, where we linearly
warm up the learning rate to 5× 10−3 during the
first 1,000 steps, and then we decay it exponen-
tially by a factor of 0.999 every 10 steps. We need
a larger number of training steps in this case be-
cause none of the model components have been
pre-trained. Also, the encoder is now much smaller,
meaning that we can afford a higher learning rate.

Even though these hyperparameters may seem very
specific, we emphasize that our model is robust to
the choice of hyperparameters and this setup was
chosen once and shared across all experiments.

F Baseline Models

Seq2Seq. This model predicts linearized, tok-
enized S-expressions using the OpenNMT imple-
mentation of a Transformer-based (Vaswani et al.,
2017) pointer-generator network (See et al., 2017).
For example, the following program:

+(length("some string"), 1)

would correspond to the space-separated sequence:

(+ (length " some string ") 1)

In contrast to the model proposed in this paper, in
this case tokens that belong to functions and values
(i.e., that are outside of quotes) can also be copied
directly from the utterance. Furthermore, there
is no guarantee that this baseline will produce a
well-formed program.

Seq2Tree. This model uses the same underly-
ing implementation as our Seq2Seq baseline—also
with no guarantee that it will produce a well-formed
program—but it predicts a different sequence. For
example, the following program:

+(+(1, 2), 3)

would be predicted as the sequence:

+(<NT>, 3)
+(1, 2)

Each item in the sequence receives a unique em-
bedding in the output vocabulary and so, "+(1,2)"
and "+(<NT>, 3)" share no parameters. <NT> is

3681

a special placeholder symbol that represents a sub-
stitution point when converting the linearized se-
quence back to a tree. Furthermore, copies are not
inlined into invocations, but broken out into token
sequences. For example, the following program:
+(length("some string"), 1)

would be predicted as the sequence:
+(<NT>, 1)
length(<NT>)
"
some
string
"

Seq2Tree++. This is a re-implementation of Kr-
ishnamurthy et al. (2017) with some differences:
(i) our implementation’s entity linking embeddings
are computed over spans, including type informa-
tion (as in the original paper) and a span embed-
ding computed based on the LSTM hidden state
at the start and end of each entity span, (ii) copies
are treated as entities by proposing all spans up
to length 15, and (iii) we use the linear dialogue
history encoder described in §3.1.

G Ablations

The “value dependence” and the “no span copy”
ablations are perhaps the most important in our
experiments, and so we provide some more details
about them in the following paragraphs.

Value Dependence. The goal of this ablation is
to quantify the impact of the dependency structure
we propose in Equation 3. To this end, we first
convert all functions to a curried form, where each
argument is provided as part of a separate function
invocation. For example, the following invocation:
[0] event(subject = s0, start = t0, end = t1)

is transformed to the following program fragment:
[0] value(s0)
[1] event_0(subject = [0])
[2] value(t0)
[3] event_1(curried = [1], start = [2])
[4] value(t1)
[5] event_2(curried = [3], end = [4])

When choosing a function, our decoder does not
condition on the argument values of the previous
invocations. In order to enable such condition-
ing without modifying the model implementation,
we also transform the value function invocations
whose underlying values are not copies, such that
there exists a unique function for each unique value.
This results in the following program:

[0] value_s0(s0)
[1] event_0(subject = [0])
[2] value_t0(t0)
[3] event_1(curried = [1], start = [2])
[4] value_t1(t1)
[5] event_2(curried = [3], end = [4])

Note that we keep the value s0, value t0, and
value t1 function arguments because they allow
the model to marginalize over multiple possible
value sources (§2.5). The reason we do not trans-
form the value functions that correspond to copies
is because we attempted doing that on top of the
span copy ablation, but it performed poorly and we
decided that it may be a misrepresentation. Overall,
this ablation offers us a way to obtain a bottom-up
parser that maintains most properties of the pro-
posed model, except for its dependency structure.

No Span Copy. In order to ablate the proposed
span copy mechanism we implemented a data trans-
formation that replaces all copied values with refer-
ences to the result of a copy function (for spans of
length 1) or the result of a concatenate function
called on the results of 2 or more calls to copy. For
example, the function invocation:
[0] event(subject = "water the plant")

is converted to:
[0] copy("water")
[1] copy("the")
[2] concatenate([0], [1])
[3] copy("plant")
[4] concatenate([2], [3])
[5] event(subject = [4])

When applied on its own and not combined with
other ablation, the single token copies are further
inlined to produce the following program:
[0] concatenate("water", "the")
[1] concatenate([0], "plant")
[2] event(subject = [1])

H Computational Efficiency

For comparing model performance we computed
the average utterance processing time across all of
the SMCALFLOW validation set, using a single
Nvidia V100 GPU. The fastest baseline required
about 80ms per utterance, while our model only
required about 8ms per utterance. This can be
attributed to multiple reasons, such as the facts
that: (i) our independence assumptions allow us to
predict the argument value distributions in parallel,
(ii) we avoid enumerating all possible utterance
spans when computing the normalizing constant for
the argument values, and (iii) we use ragged tensors
to avoid unnecessary padding and computation.

