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Abstract

Fine-tuning pre-trained cross-lingual language
models can transfer task-specific supervision
from one language to the others. In this work,
we propose to improve cross-lingual fine-
tuning with consistency regularization. Specif-
ically, we use example consistency regulariza-
tion to penalize the prediction sensitivity to
four types of data augmentations, i.e., sub-
word sampling, Gaussian noise, code-switch
substitution, and machine translation. In ad-
dition, we employ model consistency to regu-
larize the models trained with two augmented
versions of the same training set. Experimen-
tal results on the XTREME benchmark show
that our method1 significantly improves cross-
lingual fine-tuning across various tasks, includ-
ing text classification, question answering, and
sequence labeling.

1 Introduction

Pre-trained cross-lingual language models (Con-
neau and Lample, 2019; Conneau et al., 2020a;
Chi et al., 2020) have shown great transferability
across languages. By fine-tuning on labeled data
in a source language, the models can generalize to
other target languages, even without any additional
training. Such generalization ability reduces the
required annotation efforts, which is prohibitively
expensive for low-resource languages.

Recent work has demonstrated that data aug-
mentation is helpful for cross-lingual transfer, e.g.,
translating source language training data into target
languages (Singh et al., 2019), and generating code-
switch data by randomly replacing input words in
the source language with translated words in tar-
get languages (Qin et al., 2020). By populating
the dataset, their fine-tuning still treats training

∗Contribution during internship at Microsoft Research.
1The code is available at https://github.com/

bozheng-hit/xTune.

instances independently, without considering the
inherent correlations between the original input and
its augmented example. In contrast, we propose to
utilize consistency regularization to better leverage
data augmentation for cross-lingual fine-tuning. In-
tuitively, for a semantic-preserving augmentation
strategy, the predicted result of the original input
should be similar to its augmented one. For ex-
ample, the classification predictions of an English
sentence and its translation tend to remain consis-
tent.

In this work, we introduce a cross-lingual fine-
tuning method XTUNE that is enhanced by con-
sistency regularization and data augmentation.
First, example consistency regularization enforces
the model predictions to be more consistent for
semantic-preserving augmentations. The regular-
izer penalizes the model sensitivity to different sur-
face forms of the same example (e.g., texts written
in different languages), which implicitly encour-
ages cross-lingual transferability. Second, we in-
troduce model consistency to regularize the mod-
els trained with various augmentation strategies.
Specifically, given two augmented versions of the
same training set, we encourage the models trained
on these two datasets to make consistent predic-
tions for the same example. The method enforces
the corpus-level consistency between the distribu-
tions learned by two models.

Under the proposed fine-tuning framework, we
study four strategies of data augmentation, i.e., sub-
word sampling (Kudo, 2018), code-switch substi-
tution (Qin et al., 2020), Gaussian noise (Agha-
janyan et al., 2020), and machine translation. We
evaluate XTUNE on the XTREME benchmark (Hu
et al., 2020), including three different tasks on
seven datasets. Experimental results show that
our method outperforms conventional fine-tuning
with data augmentation. We also demonstrate
that XTUNE is flexible to be plugged in various

https://github.com/bozheng-hit/xTune
https://github.com/bozheng-hit/xTune
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tasks, such as classification, span extraction, and
sequence labeling.

We summarize our contributions as follows:

• We propose XTUNE, a cross-lingual fine-
tuning method to better utilize data augmenta-
tions based on consistency regularization.

• We study four types of data augmentations
that can be easily plugged into cross-lingual
fine-tuning.

• We give instructions on how to apply XTUNE

to various downstream tasks, such as classifi-
cation, span extraction, and sequence labeling.

• We conduct extensive experiments to show
that XTUNE consistently improves the perfor-
mance of cross-lingual fine-tuning.

2 Related Work

Cross-Lingual Transfer Besides learning cross-
lingual word embeddings (Mikolov et al., 2013;
Faruqui and Dyer, 2014; Guo et al., 2015; Xu
et al., 2018; Wang et al., 2019), most recent work
of cross-lingual transfer is based on pre-trained
cross-lingual language models (Conneau and Lam-
ple, 2019; Conneau et al., 2020a; Chi et al., 2020).
These models generate multilingual contextualized
word representations for different languages with a
shared encoder and show promising cross-lingual
transferability.

Cross-Lingual Data Augmentation Machine
translation has been successfully applied to the
cross-lingual scenario as data augmentation. A
common way to use machine translation is to fine-
tune models on both source language training data
and translated data in all target languages. Further-
more, Singh et al. (2019) proposed to replace a seg-
ment of source language input text with its transla-
tion in another language. However, it is usually im-
possible to map the labels in source language data
into target language translations for token-level
tasks. Zhang et al. (2019) used code-mixing to per-
form the syntactic transfer in cross-lingual depen-
dency parsing. Fei et al. (2020) constructed pseudo
translated target corpora from the gold-standard an-
notations of the source languages for cross-lingual
semantic role labeling. Fang et al. (2020) pro-
posed an additional Kullback-Leibler divergence
self-teaching loss for model training, based on auto-
generated soft pseudo-labels for translated text in

the target language. Besides, Qin et al. (2020) fine-
tuned models on multilingual code-switch data,
which achieves considerable improvements.

Consistency Regularization One strand of
work in consistency regularization focused on reg-
ularizing model predictions to be invariant to small
perturbations on image data. The small perturba-
tions can be random noise (Zheng et al., 2016),
adversarial noise (Miyato et al., 2019; Carmon
et al., 2019) and various data augmentation ap-
proaches (Hu et al., 2017; Ye et al., 2019; Xie et al.,
2020). Similar ideas are used in the natural lan-
guage processing area. Both adversarial noise (Zhu
et al., 2020; Jiang et al., 2020; Liu et al., 2020) and
sampled Gaussian noise (Aghajanyan et al., 2020)
are adopted to augment input word embeddings.
Another strand of work focused on consistency
under different model parameters (Tarvainen and
Valpola, 2017; Athiwaratkun et al., 2019), which is
complementary to the first strand. We focus on the
cross-lingual setting, where consistency regulariza-
tion has not been fully explored.

3 Methods

Conventional cross-lingual fine-tuning trains a pre-
trained language model on the source language and
directly evaluates it on other languages, which is
also known as the setting of zero-shot cross-lingual
fine-tuning. Specifically, given a training corpus D
in the source language (typically in English), and a
model f(·; θ) that predicts task-specific probability
distributions, we define the loss of cross-lingual
fine-tuning as:

Ltask(D, θ) =
∑
x∈D

`(f(x; θ), G(x)),

where G(x) denotes the ground-truth label of ex-
ample x, `(·, ·) is the loss function depending on
the downstream task.

Apart from vanilla cross-lingual fine-tuning on
the source language, recent work shows that data
augmentation is helpful to improve performance
on the target languages. For example, Conneau
and Lample (2019) add translated examples to the
training set for better cross-lingual transfer. Let
A(·) be a cross-lingual data augmentation strategy
(such as code-switch substitution), and DA = D ∪
{A(x) | x ∈ D} be the augmented training corpus,
the fine-tuning loss isLtask(DA, θ). Notice that it is
non-trivial to apply some augmentations for token-
level tasks directly. For instance, in part-of-speech
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Figure 1: Overview of our two-stage fine-tuning algorithm. The model parameters f(·; θ∗) in the second stage are
copied from the first stage.

tagging, the labels of source language examples can
not be mapped to the translated examples because
of the lack of explicit alignments.

3.1 XTUNE: Cross-Lingual Fine-Tuning with
Consistency Regularization

We propose to improve cross-lingual fine-tuning
with two consistency regularization methods, so
that we can effectively leverage cross-lingual data
augmentations.

3.1.1 Example Consistency Regularization
In order to encourage consistent predictions for an
example and its semantically equivalent augmenta-
tion, we introduce example consistency regulariza-
tion, which is defined as follows:

R1(D, θ,A) =
∑
x∈D

KLS(f(x; θ)‖f(A(x); θ)),

KLS(P,Q) = KL(stopgrad(P )‖Q)+

KL(stopgrad(Q)‖P )

where KLS(·) is the symmertrical Kullback-Leibler
divergence. The regularizer encourages the pre-
dicted distributions f(x; θ) and f(A(x); θ) to
agree with each other. The stopgrad(·) operation2

is used to stop back-propagating gradients, which
is also employed in (Jiang et al., 2020; Liu et al.,
2020). The ablation studies in Section 4.2 empiri-
cally show that the operation improves fine-tuning
performance.

2Implemented by .detach() in PyTorch.

3.1.2 Model Consistency Regularization
While the example consistency regularization is
conducted at the example level, we propose the
model consistency to further regularize the model
training at the corpus level. The regularization is
conducted at two stages. First, we obtain a fine-
tuned model θ∗ on the training corpus D:

θ∗ = argmin
θ1

Ltask(D, θ1).

In the second stage, we keep the parameters θ∗

fixed. The regularization term is defined as:

R2(DA, θ, θ∗) =
∑
x∈DA

KL(f(x; θ∗)‖f(x; θ))

where DA is the augmented training corpus, and
KL(·) is Kullback-Leibler divergence. For each ex-
ample x of the augmented training corpus DA, the
model consistency regularization encourages the
prediction f(x; θ) to be consistent with f(x; θ∗).
The regularizer enforces the corpus-level consis-
tency between the distributions learned by two
models.

An unobvious advantage of model consistency
regularization is the flexibility with respect to data
augmentation strategies. For the example of part-
of-speech tagging, even though the labels can not
be directly projected from an English sentence to
its translation, we are still able to employ the reg-
ularizer. Because the term R2 is put on the same
example x ∈ DA, we can always align the token-
level predictions of the models θ and θ∗.



3406

I love to 

eat apples.

Ich mag es, Äpfel zu essen

J'adore manger des pommes.

我喜欢吃苹果。

_I/_love/_to/_eat/_apple/s/.

_I/_love/_to/_e/a/t/_app/l/es/.

_/I/_lo/ve/_to/_e/at/_app/l/es/.

I 喜欢 to essen apples.

I liebe to eat 苹果.

Ich喜欢 to eat pommes.

Gaussian 

Noise

Machine

Translation

Code-

Switch

Subword

Sampling

Embedding Layer

I love to eat apples.

Figure 2: Cross-lingual data augmentation strategies.

3.1.3 Full XTUNE Fine-Tuning
As shown in Figure 1, we combine example con-
sistency regularizationR1 and model consistency
regularization R2 as a two-stage fine-tuning pro-
cess. Formally, we fine-tune a model with R1 in
the first stage:

θ∗ = argmin
θ1

Ltask(D, θ1) +R1(D, θ1,A∗)

where the parameters θ∗ are kept fixed for R2 in
the second stage. Then the final loss is computed
via:

LXTUNE = Ltask(DA, θ)
+ λ1R1(DA, θ,A′)
+ λ2R2(DA, θ, θ∗)

where λ1 and λ2 are the corresponding weights
of two regularization methods. Notice that the
data augmentation strategies A, A′, and A∗ can
be either different or the same, which are tuned as
hyper-parameters.

3.2 Data Augmentation
We consider four types of data augmentation strate-
gies in this work, which are shown in Figure 2. We
aim to study the impact of different data augmenta-
tion strategies on cross-lingual transferability.

3.2.1 Subword Sampling
Representing a sentence in different subword se-
quences can be viewed as a data augmentation strat-
egy (Kudo, 2018; Provilkov et al., 2020). We utilize
XLM-R (Conneau et al., 2020a) as our pre-trained

cross-lingual language model, while it applies sub-
word tokenization directly on raw text data using
SentencePiece (Kudo and Richardson, 2018) with
a unigram language model (Kudo, 2018). As one
of our data augmentation strategies, we apply the
on-the-fly subword sampling algorithm in the uni-
gram language model to generate multiple subword
sequences.

3.2.2 Gaussian Noise

Most data augmentation strategies in NLP change
input text discretely, while we directly add random
perturbation noise sampled from Gaussian distribu-
tion on the input embedding layer to conduct data
augmentation. When combining this data augmen-
tation with example consistencyR1, the method is
similar to the stability training (Zheng et al., 2016),
random perturbation training (Miyato et al., 2019)
and the R3F method (Aghajanyan et al., 2020). We
also explore Gaussian noise’s capability to gener-
ate new examples on continuous input space for
conventional fine-tuning.

3.2.3 Code-Switch Substitution

Anchor points have been shown useful to improve
cross-lingual transferability. Conneau et al. (2020b)
analyzed the impact of anchor points in pre-training
cross-lingual language models. Following Qin et al.
(2020), we generate code-switch data in multiple
languages as data augmentation. We randomly se-
lect words in the original text in the source lan-
guage and replace them with target language words
in the bilingual dictionaries to obtain code-switch
data. Intuitively, this type of data augmentation
explicitly helps pre-trained cross-lingual models
align the multilingual vector space by the replaced
anchor points.

3.2.4 Machine Translation

Machine translation has been proved to be an ef-
fective data augmentation strategy (Singh et al.,
2019) under the cross-lingual scenario. However,
the ground-truth labels of translated data can be
unavailable for token-level tasks (see Section 3),
which disables conventional fine-tuning on the aug-
mented data. Meanwhile, our proposed model con-
sistencyR2 can not only serve as consistency regu-
larization but also can be viewed as a self-training
objective to enable semi-supervised training on the
unlabeled target language translations.
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3.3 Task Adaptation

We give instructions on how to apply XTUNE to
various downstream tasks, i.e., classification, span
extraction, and sequence labeling. By default, we
use model consistency R2 in full XTUNE. We
describe the usage of example consistency R1 as
follows.

3.3.1 Classification

For classification task, the model is expected to
predict one distribution per example on nlabel types,
i.e., model f(·; θ) should predict a probability dis-
tribution pcls ∈ Rnlabel . Thus we can directly use
example consistency R1 to regularize the consis-
tency of the two distributions for all four types of
our data augmentation strategies.

3.3.2 Span Extraction

For span extraction task, the model is expected to
predict two distributions per example pstart, pend ∈
Rnsubword , indicating the probability distribution of
where the answer span starts and ends, nsubword de-
notes the length of the tokenized input text. For
Gaussian noise, the subword sequence remains un-
changed so that example consistency R1 can be
directly applied to the two distributions. Since sub-
word sampling and code-switch substitution will
change nsubword, we control the ratio of words to
be modified and utilize example consistency R1

on unchanged positions only. We do not use the
example consistency R1 for machine translation
because it is impossible to explicitly align the two
distributions.

3.3.3 Sequence Labeling

Recent pre-trained language models generate rep-
resentations at the subword-level. For sequence
labeling tasks, these models predict label distribu-
tions on each word’s first subword. Therefore, the
model is expected to predict nword probability dis-
tributions per example on nlabel types. Unlike span
extraction, subword sampling, code-switch substi-
tution, and Gaussian noise do not change nword.
Thus the three data augmentation strategies will
not affect the usage of example consistency R1.
Although word alignment is a possible solution
to map the predicted label distributions between
translation pairs, the word alignment process will
introduce more noise. Therefore, we do not employ
machine translation as data augmentation for the
example consistencyR1.

4 Experiments

4.1 Experiment Setup

Datasets For our experiments, we select three
types of cross-lingual understanding tasks from
XTREME benchmark (Hu et al., 2020), including
two classification datasets: XNLI (Conneau et al.,
2018), PAWS-X (Yang et al., 2019), three span ex-
traction datasets: XQuAD (Artetxe et al., 2020),
MLQA (Lewis et al., 2020), TyDiQA-GoldP (Clark
et al., 2020), and two sequence labeling datasets:
NER (Pan et al., 2017), POS (Nivre et al., 2018).
The statistics of the datasets are shown in the sup-
plementary document.

Fine-Tuning Settings We consider two typical
fine-tuning settings from Conneau et al. (2020a)
and Hu et al. (2020) in our experiments, which
are (1) cross-lingual transfer: the models are fine-
tuned on English training data without translation
available, and directly evaluated on different tar-
get languages; (2) translate-train-all: translation-
based augmentation is available, and the models are
fine-tuned on the concatenation of English training
data and its translated data on all target languages.
Since the official XTREME repository3 does not
provide translated target language data for POS and
NER, we use Google Translate to obtain transla-
tions for these two datasets.

Implementation Details We utilize XLM-
R (Conneau et al., 2020a) as our pre-trained
cross-lingual language model. The bilingual
dictionaries we used for code-switch substitution
are from MUSE (Lample et al., 2018).4 For
languages that cannot be found in MUSE, we
ignore these languages since other bilingual
dictionaries might be of poorer quality. For the
POS dataset, we use the average-pooling strategy
on subwords to obtain word representation since
part-of-speech is related to different parts of
words, depending on the language. We tune the
hyper-parameter and select the model with the best
average results over all the languages’ development
set. There are two datasets without development
set in multi-languages. For XQuAD, we tune
the hyper-parameters with the development set
of MLQA since they share the same training set
and have a higher degree of overlap in languages.
For TyDiQA-GoldP, we use the English test set

3github.com/google-research/xtreme
4github.com/facebookresearch/MUSE

github.com/google-research/xtreme
github.com/facebookresearch/MUSE
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Model Pair Sentence Structure Prediction Question Answering
XNLI PAWS-X POS NER XQuAD MLQA TyDiQA

Metrics Acc. Acc. F1 F1 F1/EM F1/EM F1/EM Avg.

Cross-lingual-transfer (models are fine-tuned on English training data without translation available)

mBERT 65.4 81.9 70.3 62.2 64.5/49.4 61.4/44.2 59.7/43.9 63.1
XLM 69.1 80.9 70.1 61.2 59.8/44.3 48.5/32.6 43.6/29.1 58.6
X-STILTs (Phang et al., 2020) 80.4 87.7 74.4 63.4 77.2/61.3 72.3/53.5 76.0/59.5 72.3
VECO (Luo et al., 2020) 79.9 88.7 75.1 65.7 77.3/61.8 71.7/53.2 67.6/49.1 71.4
XLM-Rlarge 79.2 86.4 72.6 65.4 76.6/60.8 71.6/53.2 65.1/45.0 70.0
XTUNE 82.6 89.8 78.5 69.3 79.4/64.4 74.4/56.2 74.8/59.4 74.9

Translate-train-all (translation-based augmentation is available for English training data)

VECO (Luo et al., 2020) 83.0 91.1 75.1 65.7 79.9/66.3 73.1/54.9 75.0/58.9 74.1
FILTER (Fang et al., 2020) 83.9 91.4 76.2 67.7 82.4/68.0 76.2/57.7 68.3/50.9 74.4
XLM-Rlarge 82.6 90.4 - - 80.2/65.9 72.8/54.3 66.5/47.7 -
XTUNE 84.8 91.6 79.3 69.9 82.5/69.0 75.0/57.1 75.4/60.8 76.5

Table 1: Evaluation results on the XTREME benchmark. Results of mBERT (Devlin et al., 2019), XLM (Conneau
and Lample, 2019) and XLM-Rlarge (Conneau et al., 2020a) are taken from (Hu et al., 2020). Results of XLM-Rlarge
under the translate-train-all setting are from FILTER (Fang et al., 2020). The results of XTUNE are from the best
models selected with the performance on the corresponding development set.

Model Pair Sentence Structure Prediction Question Answering
XNLI PAWS-X POS NER XQuAD MLQA TyDiQA

Metrics Acc. Acc. F1 F1 F1/EM F1/EM F1/EM

Cross-lingual-transfer (models are fine-tuned on English training data without translation available)

XLM-Rbase 74.9 84.9 75.6 61.8 71.9/56.4 65.0/47.1 55.4/38.3
XTUNE 77.7 87.5 76.5 63.0 73.9/59.0 68.1/50.2 61.2/45.2
with only example consistency R1 77.6 87.2 76.3 62.4 73.6/58.6 67.6/49.7 60.7/44.4
with only model consistency R2 76.6 86.3 76.3 63.0 73.2/58.1 66.7/49.0 59.2/42.3

Translate-train-all (translation-based augmentation is available for English training data)

XLM-Rbase 78.8 88.4 - - 75.2/61.4 67.8/50.1 63.7/47.7
XTUNE 80.6 89.4 77.8 63.7 78.1/64.4 69.7/52.1 65.9/51.1
with only example consistency R1 80.5 89.3 - - 76.1/62.5 69.1/51.6 65.1/50.3
with only model consistency R2 78.9 88.5 76.6 63.5 77.4/63.4 68.7/51.1 64.5/48.7
remove stopgrad in R1 80.2 89.1 76.8 63.4 77.3/63.4 69.9/52.1 65.1/50.5

Table 2: Ablation studies on the XTREME benchmark. All numbers are averaged over five random seeds.

as the development set. In order to make a fair
comparison, the ratio of data augmentation in DA
is all set to 1.0. The detailed hyper-parameters are
shown in the supplementary document.

4.2 Results

Table 1 shows our results on XTREME. For the
cross-lingual transfer setting, we outperform pre-
vious works on all seven cross-lingual language
understanding datasets.5 Compared to XLM-Rlarge
baseline, we achieve an absolute 4.9-point improve-
ment (70.0 vs. 74.9) on average over seven datasets.
For the translate-train-all setting, we achieved state-
of-the-art results on six of the seven datasets. Com-

5X-STILTs (Phang et al., 2020) uses additional SQuAD
v1.1 English training data for the TyDiQA-GoldP dataset,
while we prefer a cleaner setting here.

pared to FILTER,6 we achieve an absolute 2.1-
point improvement (74.4 vs. 76.5), and we do
not need English translations during inference.

Table 2 shows how the two regularization meth-
ods affect the model performance separately. For
the cross-lingual transfer setting, XTUNE achieves
an absolute 2.8-point improvement compared to
our implemented XLM-Rbase baseline. Meanwhile,
fine-tuning with only example consistencyR1 and
model consistency R2 degrades the averaged re-
sults by 0.4 and 1.0 points, respectively.

For the translate-train-all setting, our proposed
model consistencyR2 enables training on POS and
NER even if labels of target language translations

6FILTER directly selects the best model on the test set
of XQuAD and TyDiQA-GoldP. Under this setting, we can
obtain 83.1/69.7 for XQuAD, 75.5/61.1 for TyDiQA-GoldP.
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Cross-lingual-transfer (models are fine-tuned on English training data without translation available)

R3F (Aghajanyan et al., 2020) 89.4 80.6 84.6 83.7 83.6 85.1 84.2 77.3 82.3 72.6 79.4 80.7 74.2 81.1 80.1 81.2
R4F (Aghajanyan et al., 2020) 89.6 80.5 84.6 84.2 83.6 85.2 84.7 78.2 82.5 72.7 79.2 80.3 73.9 80.9 80.6 81.4
XLM-Rlarge 88.7 77.2 83.0 82.5 80.8 83.7 82.2 75.6 79.1 71.2 77.4 78.0 71.7 79.3 78.2 79.2
XTUNE 89.6 81.6 85.9 84.8 84.3 86.5 85.4 80.5 82.8 73.3 80.3 82.1 77.1 83.0 82.3 82.6

Translate-train-all (translation-based augmentation is available for English training data)

FILTER (Fang et al., 2020) 89.5 83.6 86.4 85.6 85.4 86.6 85.7 81.1 83.7 78.7 81.7 83.2 79.1 83.9 83.8 83.9
XLM-Rlarge 88.6 82.2 85.2 84.5 84.5 85.7 84.2 80.8 81.8 77.0 80.2 82.1 77.7 82.6 82.7 82.6
XTUNE 89.9 84.0 87.0 86.5 86.2 87.4 86.6 83.2 85.2 80.0 82.7 84.1 79.6 84.8 84.3 84.8

Table 3: XNLI accuracy scores for each language. XLM-Rlarge under the cross-lingual transfer setting are from (Hu
et al., 2020). Results of XLM-Rlarge under the translate-train-all setting are from (Fang et al., 2020).

Method Model XNLI POS MLQA

Baseline XLM-Rbase 74.9 75.6 65.0/47.1

Subword
Sampling

Data Aug. 75.3 75.8 64.7/46.7
XTUNER1 76.5 76.3 67.4/49.5
XTUNER2 75.8 76.3 66.7/49.0

Gaussian
Noise

Data Aug. 74.7 75.6 64.2/46.1
XTUNER1 76.3 75.7 66.7/48.9
XTUNER2 75.5 76.2 66.3/48.5

Code-
Switch

Data Aug. 76.5 75.1 63.8/45.9
XTUNER1 77.6 75.8 67.6/49.7
XTUNER2 76.8 76.1 66.3/48.6

Machine
Translation

Data Aug. 78.8 - 67.8/50.1
XTUNER1 79.7 - -
XTUNER2 78.9 76.6 68.7/51.1

Table 4: Comparison between different data augmen-
tation strategies. “Data Aug.” uses data augmentation
for conventional fine-tuning. “XTUNER1

” denotes fine-
tuning with only example consistencyR1. “XTUNER2

”
denotes fine-tuning with only model consistencyR2.

are unavailable in these two datasets. To make a
fair comparison in the translate-train-all setting, we
augment the English training corpus with target lan-
guage translations when fine-tuning with only ex-
ample consistencyR1. Otherwise, we only use the
English training corpus in the first stage, as shown
in Figure 1(a). Compared to XTUNE, the perfor-
mance drop on two classification datasets under this
setting is relatively small sinceR1 can be directly
applied between translation-pairs in any languages.
However, the performance is significantly degraded
in three question answering datasets, where we
can not align the predicted distributions between
translation-pairs inR1. We use subword sampling
as the data augmentation strategy in R1 for this
situation. Fine-tuning with only model consistency
R2 degrades the overall performance by 1.1 points.
These results demonstrate that the two consistency
regularization methods complement each other. Be-

Model Tatoeba BUCC

XLM-Rbase (cross-lingual transfer) 74.2 78.2
XLM-Rbase (translate-train-all) 79.7 79.7
XTUNE (translate-train-all) 82.3 82.2
with only example consistency R1 82.0 82.1
with only model consistency R2 79.5 79.0

Table 5: Results of cross-lingual retrieval with the mod-
els fine-tuned on XNLI.

sides, we observe that removing stopgrad degrades
the overall performance by 0.5 points.

Table 3 provides results of each language on the
XNLI dataset. For the cross-lingual transfer setting,
we utilize code-switch substitution as data augmen-
tation for both example consistencyR1 and model
consistencyR2. We utilize all the bilingual dictio-
naries, except for English to Swahili and English
to Urdu, which MUSE does not provide. Results
show that our method outperforms all baselines on
each language, even on Swahili (+2.2 points) and
Urdu (+5.4 points), indicating our method can be
generalized to low-resource languages even with-
out corresponding machine translation systems or
bilingual dictionaries. For translate-train-all setting,
we utilize machine translation as data augmenta-
tion for both example consistency R1 and model
consistencyR2. We improve the XLM-Rlarge base-
line by +2.2 points on average, while we still have
+0.9 points on average compared to FILTER. It is
worth mentioning that we do not need correspond-
ing English translations during inference. Com-
plete results on other datasets are provided in the
supplementary document.

4.3 Analysis

It is better to employ data augmentation for
consistency regularization than for conven-
tional fine-tuning. As shown in Table 4, com-
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(a) cross-lingual transfer (b) translate-train-all (c) xTune

Label

neutral

contradiction

entailment

Language

de

en

fr

zh

Figure 3: t-SNE visualization of 100 examples in four languages from the XNLI development set (best viewed in
color). We fine-tune the XLM-Rbase model on XNLI and use the hidden states of [CLS] symbol in the last layer.
Examples with different labels are represented with different colors. Examples in different languages are repre-
sented with different markers. The red lines connect English examples and their translations in target languages.

pared to employing data augmentation for conven-
tional fine-tuning (Data Aug.), our regularization
methods (XTUNER1 , XTUNER2) consistently im-
prove the model performance under all four data
augmentation strategies. Since there is no labeled
data on translations in POS and the issue of distri-
bution alignment in example consistencyR1, when
machine translation is utilized as data augmenta-
tion, the results for Data Aug. and XTUNER1 in
POS, as well as XTUNER1 in MLQA, are unavail-
able. We observe that Data Aug. can enhance
the overall performance for coarse-grained tasks
like XNLI, while our methods can further improve
the results. However, Data Aug. even causes the
performance to degrade for fine-grained tasks like
MLQA and POS. In contrast, our proposed two
consistency regularization methods improve the
performance by a large margin (e.g., for MLQA
under code-switch data augmentation, Data Aug.
decreases baseline by 1.2 points, while XTUNER1

increases baseline by 2.6 points). We give detailed
instructions on how to choose data augmentation
strategies for XTUNE in the supplementary docu-
ment.

XTUNE improves cross-lingual retrieval. We
fine-tune the models on XNLI with different set-
tings and compare their performance on two cross-
lingual retrieval datasets. Following Chi et al.
(2020) and Hu et al. (2020), we utilize represen-
tations averaged with hidden-states on the layer
8 of XLM-Rbase. As shown in Table 5, we ob-
serve significant improvement from the translate-
train-all baseline to fine-tuning with only example
consistencyR1, this suggests regularizing the task-
specific output of translation-pairs to be consistent
also encourages the model to generate language-

invariant representations. XTUNE only slightly im-
proves upon this setting, indicating R1 between
translation-pairs is the most important factor to im-
prove cross-lingual retrieval task.

XTUNE improves decision boundaries as well
as the ability to generate language-invariant
representations. As shown in Figure 3, we
present t-SNE visualization of examples from the
XNLI development set under three different set-
tings. We observe the model fine-tuned with
XTUNE significantly improves the decision bound-
aries of different labels. Besides, for an English
example and its translations in other languages, the
model fine-tuned with XTUNE generates more sim-
ilar representations compared to the two baseline
models. This observation is also consistent with
the cross-lingual retrieval results in Table 5.

5 Conclusion

In this work, we present a cross-lingual fine-tuning
framework XTUNE to make better use of data aug-
mentation. We propose two consistency regular-
ization methods that encourage the model to make
consistent predictions for an example and its se-
mantically equivalent data augmentation. We ex-
plore four types of cross-lingual data augmentation
strategies. We show that both example and model
consistency regularization considerably boost the
performance compared to directly fine-tuning on
data augmentations. Meanwhile, model consis-
tency regularization enables semi-supervised train-
ing on the unlabeled target language translations.
XTUNE combines the two regularization methods,
and the experiments show that it can improve the
performance by a large margin on the XTREME
benchmark.
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Appendix

A Statistics of XTREME Datasets

Task Dataset |Train| |Lang|

Classification
XNLI 392K 15
PAWS-X 49.4K 7

Structured POS 21K 33
Prediction NER 20K 40

Question
Answering

XQuAD 87K 11
MLQA 87K 7
TyDiQA 3.7K 9

Table 6: Statistics for the datasets in the XTREME
benchmark. we report the number of training examples
(|Train|), and the number of languages (|Lang|).

B Hyper-Parameters

For XNLI, PAWS-X, POS and NER, we fine-tune
10 epochs. For XQuAD and MLQA, we fine-tune
4 epochs. For TyDiQA-GoldP, we fine-tune 20
epochs and 10 epochs for base and large model,
respectively. We select λ1 in [1.0, 2.0, 5.0], λ2
in [0.3, 0.5, 1.0, 2.0, 5.0]. For learning rate, we
select in [5e-6, 7e-6, 1e-5, 1.5e-5] for large models,
[7e-6, 1e-5, 2e-5, 3e-5] for base models. We use
batch size 32 for all datasets and 10% of total train-
ing steps for warmup with a linear learning rate
schedule. Our experiments are conducted with a
single 32GB Nvidia V100 GPU, and we use gradi-
ent accumulation for large-size models. The other
hyper-parameters for the two-stage XTUNE train-
ing are shown in Table 7 and Table 8.

C Results for Each Dataset and
Language

We provide detailed results for each dataset and
language below. We compare our method against
XLM-Rlarge for cross-lingual transfer setting, FIL-
TER (Fang et al., 2020) for translate-train-all set-
ting.

D How to Select Data Augmentation
Strategies in XTUNE

We give instructions on selecting a proper data aug-
mentation strategy depending on the corresponding
task.
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Variable XNLI PAWS-X POS NER XQuAD MLQA TyDiQA

Stage 1 A∗ CS CS SS SS CS CS SS

Stage 2
A CS CS SS SS SS SS SS
A′ CS CS SS SS SS SS SS

Hyper-parameters
λ1 5.0 5.0 5.0 5.0 5.0 5.0 5.0
λ2 5.0 2.0 0.3 5.0 5.0 5.0 5.0

Table 7: The best hyper-parameters used for XTUNE under the cross-lingual transfer setting. “SS”, “CS”, “MT”
denote the data augmentation methods: subword sampling, code-switch substitution, and machine translation,
respectively.

Variable XNLI PAWS-X POS NER XQuAD MLQA TyDiQA

Stage 1 A∗ MT MT SS SS CS CS SS

Stage 2
A MT MT MT MT MT MT MT
A′ MT MT SS SS SS SS SS

Hyper-parameters
λ1 5.0 5.0 5.0 5.0 5.0 5.0 5.0
λ2 1.0 1.0 0.3 1.0 0.1 0.5 0.3

Table 8: The best hyper-parameters used for XTUNE under the translate-train-all setting. “SS”, “CS”, “MT” denote
the data augmentation methods subword sampling, code-switch substitution, and machine translation, respectively.

Method Model XNLI POS MLQA Avg.

- XLM-Rbase 10.6 20.8 20.3 17.2

Subword
Sampling

Data Aug. 10.5 20.5 20.2 17.1
XTUNER1 10.2 20.2 19.6 16.7
XTUNER2 10.6 20.1 19.8 16.8

Gaussian
Noise

Data Aug. 10.8 20.6 19.8 17.1
XTUNER1 10.5 20.7 19.8 17.0
XTUNER2 10.8 20.2 19.7 16.9

Code-
Switch

Data Aug. 9.2 21.1 20.5 16.9
XTUNER1 9.1 20.7 19.4 16.4
XTUNER2 8.8 20.2 20.0 16.3

Machine
Translation

Data Aug. 7.2 - 17.9 -
XTUNER1 6.9 - - -
XTUNER2 7.2 19.6 17.1 14.6

Table 9: Cross-lingual transfer gap, i.e., averaged per-
formance drop between English and other languages
in zero-shot transfer. A smaller gap indicates better
transferability. For MLQA, we report the average of
F1-scores and exact match scores.

D.1 Classification

The two distribution in example consistency R1

can always be aligned. Therefore, we recommend
using machine translation as data augmentation if
the machine translation systems are available. Oth-
erwise, the priority of our data augmentation strate-
gies is code-switch substitution, subword sampling
and Gaussian noise.

D.2 Span Extraction
The two distribution in example consistency R1

can not be aligned in translation-pairs. Therefore, it
is impossible to use machine translation as data aug-
mentation in example consistency R1. We prefer
to use code-switch when applying example consis-
tencyR1 individually. However, when the training
corpus is augmented with translations, since the
bilingual dictionaries between arbitrary language
pairs may not be available, we recommend using
subword sampling in example consistencyR1.

D.3 Sequence Labeling
Similar to span extraction, the two distribution
in example consistency R1 can not be aligned in
translation-pairs. Therefore, we do not use machine
translation in example consistencyR1. Unlike clas-
sification and span extraction, sequence labeling
requires finer-grained information and is more sen-
sitive to noise. We found code-switch is worse than
subword sampling as data augmentation in both ex-
ample consistencyR1 and model consistencyR2,
it will even degrade performance for certain hyper-
parameters. Thus we recommend using subword
sampling in example consistencyR1, and use ma-
chine translation to augment the English training
corpus if machine translation systems are available,
otherwise subword sampling.
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E Cross-Lingual Transfer Gap

As shown in Table 9, the cross-lingual transfer
gap can be reduced under all four data augmen-
tation strategies. Meanwhile, we observe machine
translation and code-switch substitution achieve a
smaller cross-lingual transfer gap than the other
two data augmentation methods. This suggests
the data augmentation methods with cross-lingual
knowledge have a greater improvement in cross-
lingual transferability. Although code-switch sig-
nificantly reduces the transfer gap on XNLI, the
improvement is relatively small on POS and MLQA
under the cross-lingual transfer setting, indicating
the noisy code-switch substitution will harm the
cross-lingual transferability on finer-grained tasks.
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Model en de es fr ja ko zh Avg.

Cross-lingual-transfer (models are fine-tuned on English training data without translation available)

XLM-Rlarge 94.7 89.7 90.1 90.4 78.7 79.0 82.3 86.4
XTUNE 96.0 92.5 92.2 92.7 84.9 84.2 86.6 89.8

Translate-train-all (translation-based augmentation is available for English training data)

FILTER (Fang et al., 2020) 95.9 92.8 93.0 93.7 87.4 87.6 89.6 91.5
XTUNE 96.1 92.6 93.1 93.9 87.8 89.0 88.8 91.6

Table 10: PAWSX results (accuracy scores) for each language.

Model en ar de el es hi ru th tr vi zh Avg.

Cross-lingual-transfer (models are fine-tuned on English training data without translation available)

XLM-Rlarge 86.5/75.7 68.6/49.0 80.4/63.4 79.8/61.7 82.0/63.9 76.7/59.7 80.1/64.3 74.2/62.8 75.9/59.3 79.1/59.0 59.3/50.0 76.6/60.8
XTUNE 88.9/78.6 77.1/60.0 83.1/67.2 82.6/66.0 83.0/65.1 77.8/61.8 80.8/64.8 73.5/62.1 77.6/62.0 81.8/62.5 67.7/58.4 79.4/64.4

Translate-train-all (translation-based augmentation is available for English training data)

FILTER (Fang et al., 2020) 86.4/74.6 79.5/60.7 83.2/67.0 83.0/64.6 85.0/67.9 83.1/66.6 82.8/67.4 79.6/73.2 80.4/64.4 83.8/64.7 79.9/77.0 82.4/68.0
XTUNE 88.8/78.1 79.7/63.9 83.7/68.2 83.0/65.7 84.7/68.3 80.7/64.9 82.2/66.6 81.9/76.1 79.3/65.0 82.7/64.5 81.3/78.0 82.5/69.0

Table 11: XQuAD results (F1/EM scores) for each language.

Model en ar de es hi vi zh Avg.

Cross-lingual-transfer (models are fine-tuned on English training data without translation available)

XLM-Rlarge 83.5/70.6 66.6/47.1 70.1/54.9 74.1/56.6 70.6/53.1 74.0/52.9 62.1/37.0 71.6/53.2
XTUNE 85.2/72.6 67.9/47.7 72.2/56.8 75.5/57.9 73.2/55.1 75.9/54.7 71.1/48.6 74.4/56.2

Translate-train-all (translation-based augmentation is available for English training data)

FILTER (Fang et al., 2020) 84.0/70.8 72.1/51.1 74.8/60.0 78.1/60.1 76.0/57.6 78.1/57.5 70.5/47.0 76.2/57.7
XTUNE 85.3/72.9 69.7/50.1 72.3/57.3 76.3/58.8 74.0/56.0 76.5/55.9 70.8/48.3 75.0/57.1

Table 12: MLQA results (F1/EM scores) for each language.

Model en ar bn fi id ko ru sw te Avg.

Cross-lingual-transfer (models are fine-tuned on English training data without translation available)

XLM-Rlarge 71.5/56.8 67.6/40.4 64.0/47.8 70.5/53.2 77.4/61.9 31.9/10.9 67.0/42.1 66.1/48.1 70.1/43.6 65.1/45.0
XTUNE 75.3/63.6 77.4/60.3 72.4/58.4 75.5/60.2 81.5/68.5 68.6/58.3 71.1/48.8 73.3/56.7 78.4/60.1 74.8/59.4

Translate-train-all (translation-based augmentation is available for English training data)

FILTER (Fang et al., 2020) 72.4/59.1 72.8/50.8 70.5/56.6 73.3/57.2 76.8/59.8 33.1/12.3 68.9/46.6 77.4/65.7 69.9/50.4 68.3/50.9
XTUNE 73.8/61.6 77.8/60.2 73.5/61.1 77.0/62.2 80.8/68.1 66.9/56.5 72.1/51.9 77.9/65.3 77.6/60.7 75.3/60.8

Table 13: TyDiQA-GolP results (F1/EM scores) for each language.
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Model af ar bg de el en es et eu fa fi fr he hi hu id it

Cross-lingual-transfer (models are fine-tuned on English training data without translation available)

XLM-Rlarge 89.8 67.5 88.1 88.5 86.3 96.1 88.3 86.5 72.5 70.6 85.8 87.2 68.3 76.4 82.6 72.4 89.4
XTUNE 90.4 72.8 89.0 89.4 87.0 96.1 88.8 88.1 73.1 74.7 87.2 89.5 83.5 77.7 83.6 73.2 90.5

Translate-train-all (translation-based augmentation is available for English training data)

FILTER (Fang et al., 2020) 88.7 66.1 88.5 89.2 88.3 96.0 89.1 86.3 78.0 70.8 86.1 88.9 64.9 76.7 82.6 72.6 89.8
XTUNE 90.7 74.2 89.9 90.2 87.4 96.1 90.5 88.4 75.9 74.2 87.9 90.2 85.9 79.3 83.2 73.3 91.0

Model ja kk ko mr nl pt ru ta te th tl tr ur vi yo zh Avg.

Cross-lingual-transfer (models are fine-tuned on English training data without translation available)

XLM-Rlarge 15.9 78.1 53.9 80.8 89.5 87.6 89.5 65.2 86.6 47.2 92.2 76.3 70.3 56.8 24.6 25.7 73.8
XTUNE 62.7 78.3 55.7 82.4 90.2 88.5 90.5 63.6 88.3 61.8 94.5 76.9 72.0 57.8 24.4 69.4 78.5

Fine-tune multilingual model on all target language target language training sets (translate-train-all)

FILTER (Fang et al., 2020) 40.4 80.4 53.3 86.4 89.4 88.3 90.5 65.3 87.3 57.2 94.1 77.0 70.9 58.0 43.1 53.1 76.9
XTUNE 65.3 79.8 56.0 85.5 89.7 89.3 90.8 65.7 85.5 61.4 93.8 78.3 74.0 57.5 27.9 68.8 79.3

Table 14: POS results (accuracy) for each language.

Model en af ar bg bn de el es et eu fa fi fr he hi hu id it ja jv

Cross-lingual-transfer (models are fine-tuned on English training data without translation available)

XLM-Rlarge 84.7 78.9 53.0 81.4 78.8 78.8 79.5 79.6 79.1 60.9 61.9 79.2 80.5 56.8 73.0 79.8 53.0 81.3 23.2 62.5
XTUNE 85.0 80.4 59.1 84.8 79.1 80.5 82.0 78.1 81.5 64.5 65.9 82.2 81.9 62.0 75.0 82.8 55.8 83.1 30.5 65.9

Translate-train-all (translation-based augmentation is available for English training data)

FILTER (Fang et al., 2020) 83.5 80.4 60.7 83.5 78.4 80.4 80.7 74.0 81.0 66.9 71.3 80.2 79.9 57.4 74.3 82.2 54.0 81.9 24.3 63.5
XTUNE 84.4 81.7 59.7 85.3 80.8 80.9 82.0 74.1 83.4 69.9 63.6 82.5 80.6 64.0 76.3 83.8 57.9 83.3 26.5 69.8

Model ka kk ko ml mr ms my nl pt ru sw ta te th tl tr ur vi yo zh

Cross-lingual-transfer (models are fine-tuned on English training data without translation available)

XLM-Rlarge 71.6 56.2 60.0 67.8 68.1 57.1 54.3 84.0 81.9 69.1 70.5 59.5 55.8 1.3 73.2 76.1 56.4 79.4 33.6 33.1
XTUNE 76.7 57.5 65.9 68.1 73.3 67.2 63.7 85.3 84.0 73.6 70.1 66.1 60.1 1.8 76.9 83.6 76.0 80.3 44.4 38.7

Translate-train-all (translation-based augmentation is available for English training data)

FILTER (Fang et al., 2020) 71.0 51.1 63.8 70.2 69.8 69.3 59.0 84.6 82.1 71.1 70.6 64.3 58.7 2.4 74.4 83.0 73.4 75.8 42.9 35.4
XTUNE 76.3 56.9 67.1 72.6 71.5 72.5 66.7 85.8 82.1 75.2 72.4 66.0 61.8 1.1 77.5 83.7 75.6 80.8 44.9 36.5

Table 15: NER results (F1 scores) for each language.


