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Abstract

This paper introduces the task of factual er-
ror correction: performing edits to a claim so
that the generated rewrite is better supported
by evidence. This extends the well-studied
task of fact verification by providing a mech-
anism to correct written texts that are refuted
or only partially supported by evidence. We
demonstrate that it is feasible to train fac-
tual error correction systems from existing fact
checking datasets which only contain labeled
claims accompanied by evidence, but not the
correction. We achieve this by employing a
two-stage distant supervision approach that in-
corporates evidence into masked claims when
generating corrections. Our approach, based
on the TS transformer and using retrieved ev-
idence, achieved better results than existing
work which used a pointer copy network and
gold evidence, producing accurate factual er-
ror corrections for 5x more instances in human
evaluation and a .125 increase in SARI score.
The evaluation is conducted on a dataset of
65,000 instances based on a recent fact veri-
fication shared task and we release it to enable
further work on the task.'

1 Introduction

Fact verification is the task of predicting whether
claims are true or false using evidence. With the
availability of a number of resources (Wang, 2017;
Karadzhov et al., 2017; Thorne et al., 2018; Au-
genstein et al., 2019; Wadden et al., 2020), the task
has attracted significant attention and spawned the
development of new models, architectures and ap-
proaches. With potentially sensitive applications,
recent works have focused on building explain-
able variants of fact checking (Atanasova et al.,
2020; Stammbach and Ash, 2020; Kotonya and
Toni, 2020). Exposing the evidence source and
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Input Claim

Brown recluse spiders do not bite

Information Retrieval

Wikipedia [

System Outputs

Retrieved Evidence

Similar to other recluse spider
bites, their bite sometimes
requires medical attention.

Fact Verification Error Correction

The brown recluse spider's
bite sometimes requires
medical attention.

REFUTED

Figure 1: Factual Error Correction uses evidence to
make corrections to claims, in contrast to fact verifica-
tion, which instead classifies the veracity of the claim.

decision making process may help the reader un-
cover subtle issues that cause automated systems
to fail. Additionally, using such evidence to contin-
uously update news articles as facts change forms
part of the vision outlined by Cohen et al. (2011)
for automated newsrooms.

In this paper, we propose Factual Error Correc-
tion, as an explainable alternative for fact verifica-
tion. Rather than merely assigning a truth label,
possibly accompanied by evidence, our goal is to
rewrite claims so that they are better supported by
the retrieved evidence. For example, in Figure 1,
a claim that would be REFUTED by the evidence
using a fact verification system is rewritten so that
it becomes supported by evidence retrieved from
Wikipedia. This work extends fact guided sentence
modification (Shah et al., 2020), which uses short
factoid claims to introduce changes to Wikipedia
passages. However, they assume that the claim and
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Wikipedia text are always incongruous and require
a meaning-altering change, our proposal makes no
assumptions over the veracity, and is applicable
to claims both supported and refuted by evidence.
Additionally, we incorporate a retrieval component
to select evidence for a given claim from a corpus
(in our case, Wikipedia) rather than requiring gold
standard evidence to be explicitly provided.

A challenge for factual error correction is the
lack of datasets consisting of claims paired with
their corrections. However, with recent develop-
ments in fact checking, there is an abundance of
new datasets consisting of claims paired with ev-
idence. To address this data scarcity, we make
use of distant supervision to incorporate retrieved
evidence into generating the corrections.

We release a dataset of 65,000 claims, containing
the intermediate annotations from FEVER (Thorne
etal., 2018). These consist of factoid sentences that
were used to construct the supported and refuted
claims in the dataset, and use these as reference tar-
gets for automated evaluation. We further verify the
findings through a final round of annotation using
human raters. Our evaluation finds high correla-
tion between manual scores and the SARI metric
(Xu et al., 2016) and our best performing distantly-
supervised system generated corrected claims for
24% of instances when using retrieved evidence,
with a SARI Final score of .419. A fully-supervised
system with gold evidence generated corrections
for 69% of instances, indicating plenty of opportu-
nities for future work to extend our contributions.

2 Related Work

A number of related works offer methods to make
corrections to sentences. However, their use of ex-
ternal information differs. This can be placed on a
continuum from only using the knowledge captured
during language model pre-training, to condition-
ing generation based on a context sentence. We
briefly outline key methods and approaches below.

Grammatical Error Correction (GEC) (Knight
and Chander, 1994; Han et al., 2010; Ng et al.,
2014) is the task of making meaning-preserving
changes to sentences such that grammatical errors
made by language learners are removed. No ex-
ternal information is required as the sentence is
undergoing a surface-level transformation where
the (intended) semantic content of the sentence
should remain unchanged.

In contrast, the semantic content of sentences

undergoing factual error correction will be altered,
if needed, to better align the meaning with ground
truth evidence. Shah et al. (2020) make meaning-
altering updates to sentences in Wikipedia in a
two step process that does not require reference
corrections in training: salient tokens are masked
and a corrector conditionally replaces the masks
with ground truth evidence. In this approach, to-
ken salience is predicted by querying a model that
is trained to perform fact verification for a claim
against evidence. Cao et al. (2020) generate correc-
tions as a post-editing step for outputs from abstrac-
tive summarization so that they are consistent with
the source text. Their approach uses a sequence-to-
sequence model trained to restore artificially gener-
ated corruptions of a reference summary.

One potential way to introduce knowledge is to
use information stored in the parameters of large-
scale pre-trained language models (Petroni et al.,
2019). The language model can be used recover
tokens responsible for causing factual errors that
are masked out as a variant of cloze-style evaluation
(Taylor, 1953). While such approaches have been
employed for fact verification (Lee et al., 2020),
these approaches share the following limitations.
Without explicit control (Nie et al., 2019), the most
likely token when decoded may not be factually
accurate, or supported by the retrieved evidence,
commonly referred to as a hallucination (Rohrbach
et al., 2018; Zhou et al., 2020). Furthermore, even
if the information stored within language model
parameters could be reliably retrieved for factual
error correction, facts change over time and the
need to obtain information from up-to-date sources
becomes greater as the state of the world diverges
from the information captured within the model
parameters. Recent language models augmented
with a retrieval component such as REALM (Guu
et al., 2020) and RAG (Lewis et al., 2020) could be
applied, however, task-specific fine-tuning would
still be required to condition the generation based
on the factual error to mitigate hallucination.

3 Task Definition

Training Let a claim c be the input sentence un-
dergoing correction to yield ¢/. The correction
requires incorporating knowledge from retrieved
evidence F(c) such that ¢’ is supported by this ev-
idence, E(c) E (. Factual error correction is
subject to the following 3 requirements:
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Training

Masked Claim

Correction

John Goodman had the

lead role in The Babe. | | Masker | =

John Goodman had the
lead role in # #.

John Goodman had the

| |Corrector | lead role in The Babe.

A

v Evidence

A

Page John Goodman. Context His other film performances include
lead roles in The Babe (1992) and The Flintstones (1992)

Testing |

Claim

Masked Claim

Correction

John Goodman acted

in Star Wars | |Masker | >

A

John Goodman
acted in # #

John Goodman

| |Corrector | acted in The Babe

v Evidence

A

Page John Goodman Context His other film performances include lead roles in The Babe

Wiki

Page Star Wars Context Star Wars is an American epic space opera media franchise...

Figure 2: The corrector is trained to reconstruct masked claims, conditioned on retrieved evidence, indicated by the
dashed arrow. At test time, the corrector is able to incorporate new facts from the evidence to generate corrections.

R1 - Intelligible Similar to other language gen-
eration tasks, our first requirement is that generated
outputs are fluent and intelligible. They must be
free of grammatical mistakes and the meaning must
be understandable without the aid of additional con-
text or evidence so that their factual correctness can
be assessed.

R2 - Supported by Evidence The generated cor-
rection must be supported by the retrieved evidence.
This property follows from previous work (Thorne
et al., 2018) and also requires models to condition
generation on the retrieved evidence — penalizing
models that hallucinate (Holtzman et al., 2020).

R3 - Error correction Specific to our task, the
corrections should be targeted to the errors present
in the inputted claim. While this, in part, can be
assessed by R2 we need to compare the correction
to the inputted claim to ensure the output is not in-
troducing new unrelated information. For example,
an erroneous claim: France is in South America
could be supported by evidence if it were rewrit-
ten as France is a republic. However, the desired
correction should instead state France is in Europe.

4 Task Decomposition

The choice of supervision for the error correction
system influences the task decomposition. For ex-
ample, with full supervision, the system can be

constructed with an information retrieval module
and a sequence-to-sequence module that condition-
ally generates a correction given the claim and ev-
idence. However, large datasets of claims paired
with corrections are not available. The absence of
full supervision requires that we distantly-supervise
our systems using fact verification datasets, which
are an abundant resource. Fact verification datasets
contain claims labeled with evidence but do not
contain corrections. With this resource, we propose
a task decomposition that generated corrections by
training models to reconstruct claims with masked
tokens using retrieved evidence.

4.1 Distantly-supervised corrections

Test time Corrections are generated by a two-
stage process, illustrated in Figure 2. Tokens from
the claim, c, are first masked, yielding ¢, and then
input to the corrector ¢ = Corr(¢, E(c)). The
masker, ¢ = Mask(c, E(c)), replaces a subset
of tokens in the claim with a blank placeholder,
conditioned on E(c). Its purpose is to remove to-
kens that are salient to the claim being supported or
refuted by the evidence. Using the masked claim, ¢,
the corrector replaces the blank placeholders with
tokens conditionally generated using retrieved evi-
dence. To correct errors, evidence refuting a claim
(E(c) ¥ c) conditions generation of a correction
supported by it E(c) E /. This extends the pro-
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tocol Shah et al. (2020) by conditioning both the
masker and corrector with multiple retrieved evi-
dence sentences, rather than a single gold factoid.

Training the corrector Similar to masked lan-
guage modeling, the training objective is to gen-
erate the input claim ¢ = ¢ conditioned on the
masked claim ¢ and evidence F(c). By training
the model to generate the input claim, we expect
the model to generate the input claim only if it
was in complete agreement with the evidence (as-
suming the masking and the evidence are correct).
Otherwise, the generated correction will contain ev-
idence pertinent to the correcting the masked claim,
which enables us to generate corrections satisfying
requirements R2 and R3.

Masker When applied to factual error correction,
masking the tokens from the claim acts as a proxy
to which tokens need to be removed to correct an
error. Parallels can be drawn between masking and
generating token-level explanations. We briefly
summarize common approaches to generating ex-
planations in Section 5.2.

5 Model

5.1 Evidence retrieval

We use GENRE (Cao et al., 2021) and Dense Pas-
sage Retrieval (Karpukhin et al., 2020) together
to retrieve evidence for claims E(c). Both have
shown success for a number of language under-
standing tasks over Wikipedia (Petroni et al., 2020).
GENRE is a pre-trained seq2seq model, trained to
predict a Wikipedia page name for a claim. DPR
encodes fixed length passages from Wikipedia into
vectors using a BERT encoder to build a static in-
dex. At test-time, the claim is encoded and the
most-similar passages are returned using an inner-
product search. We return the top-k passages re-
turned by DPR from pages predicted by GENRE.

5.2 Token-level explanations as masks

At test time, the purpose of the masker is to selec-
tively remove tokens that contribute to the factual
errors within a claim. We study how the choice of
masker influences the quality of corrections. This
considers varying levels of access to model infor-
mation and different run-time complexity. Both
the black- and white-box methods, outlined below,
require querying a model trained to classify the
veracity of claims given evidence whereas the the
language model masker and baselines do not.

Black-box masker We evaluate perturbing the
input to a classifier that is trained to predict the
veracity of a claim given evidence. We use LIME
(Ribeiro et al., 2016), a diagnostic that trains a
locally linear model to score the importance of
input features (in our case, tokens in the claim)
with respect to the predicted labels. The model
under test is a BERT classifier where evidence and
the claim are concatenated in the input. This is
referred to as black-box because the model does
not undergo modification and no information about
internal values or states is exposed.

White-box masker In contrast, to obtain white-
box model explanations, the model has undergone
modification to expose internal information. We
use the Neutrality Masker from (Shah et al., 2020)
to predict which tokens, when masked, are likely
to cause a label flip from supports or refuted to not
enough information. This masker exposes encoded
input of an ESIM classifier (Chen et al., 2017), and
adds a linear classifier over the hidden states to
predict per-token masking probability. At test time,
masks can be generated through a single query to
the model (unlike LIME in the black-box masker
which requires multiple queries to the model), how-
ever this requires an additional step to train, using
predictions from the classifier as signal.

Language model masker We evaluate whether
it is possible to generate masks without the need
for a fact verification model. We use a BERT pre-
trained language model (Devlin et al., 2019) to
measure the surprisal of tokens in the claim. Our
intuition is to identify tokens which introduce mis-
information under the hypothesis that the world
knowledge (Petroni et al., 2019) captured in re-
training would assign lower probabilities to tokens
contradictory to the world state. This language
model has no additional task-specific fine-tuning.
We independently predict the cross-entropy for
each token under a masked language modelling
objective using BERT and return the top-k tokens.

Baselines We additionally consider two simple
baseline maskers: random masking of a subset
of tokens and also a heuristic method of masking
tokens which are not in common between the claim
and the retrieved evidence.

5.3 Corrections

We train an encoder-decoder transformer model
to generate corrections from masked claims and
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evidence. Our model uses a pre-trained TS5 trans-
former (Raffel et al., 2020) which we fine-tune with
the distant supervision protocol described in Sec-
tion 4.1. This model jointly encodes the masked
claim and evidence by concatenating these two in-
puts in the input.

We also compare against a baseline model from
a related task of fact guided sentence modification
(Shah et al., 2020) which uses a pointer genera-
tor network (See et al., 2017). Unlike our model,
which captures long-range dependencies between
claim and evidence through the transformer self-
attention (Vaswani et al., 2017), the baseline inde-
pendently encodes the evidence and masked claim
using LSTMs (Hochreiter and Schmidhuber, 1997)
before decoding using a pointer-copy mechanism.

In order to evaluate the impact of conditioning on
evidence, we decode tokens from masked claims us-
ing a language model without fine-tuning or condi-
tioning, similar to the Language Models as Knowl-
edge Bases hypothesis introduced by Petroni et al.
(2019). This would consider correcting claims us-
ing the implicit knowledge stored within the model
parameters rather than using external evidence.

6 Data

We make use of FEVER (Thorne et al., 2018), a
commonly used fact verification dataset, as the
basis for our experiments. FEVER is one of the
largest resources consisting of claims paired with
evidence from Wikipedia. There are 185k instances
with corresponding evidence sentences and a la-
bel as to whether the claim is SUPPORTED or RE-
FUTED by it. Claims where no information could
be found are labeled as NOTENOUGHINFO.

To comprehensively evaluate the corrections gen-
erated manual evaluation is required. However, this
is expensive and not suitable for system develop-
ment and hyper-parameter optimization. To auto-
mate system evaluation or to train a seq2seq model
with full supervision, a reference “gold standard”
correction is also required. For this, we release
annotations from the FEVER shared task as fol-
lows. The claims in FEVER were generated in a
two-stage process: annotators extracted facts from
Wikipedia and then performed meaning altering
perturbations called mutations over these extracted
facts. Each claim was independently labeled using
retrieved evidence. Our reference corrections are
the unmodified facts extracted from Wikipedia.

The class balance and size of the dataset is re-

ported in Table 1. The training and test splits are
disjoint by entity. The additional hidden shared
task test set was not used. The claims labelled as
NOTENOUGHINFO. are used for training fact ver-
ification classifiers, but they will not be used for
training the error correction systems in this paper
as there is no labeled evidence to make corrections
from. For completeness, we also release these un-
used NOTENOUGHINFO instances, as they have
claims paired unmodified extracted facts (21934
training, 1870 development and 2037 test).

Instance Count

Label

Train Validation Test
Supports 37961 1477 1593
Refutes 20075 2091 2289
Total Training 58036 3568 3891

Table 1: Instance counts by class and dataset partitions

7 Evaluation

While it’s convenient to use an automatic metric
during development, these metrics compute token
overlap against a single reference sentence and can-
not capture the nuances required to assess the ve-
racity of the generated corrections against evidence.
Thus, our primary evaluation will use human raters
to label whether the model predictions meet the
task requirements stated in Section 3.

Human raters are asked three questions about
system outputs to assess whether the corrections
meet the requirements of intelligibility, supported
by evidence, and error correction introduced in Sec-
tion 3. For the first 2 requirements, the question
has a binary answer. For the third requirement of
error correction, the question has 3 answer choices:
(1) the information content w.r.t. the evidence im-
proved, (2) information unrelated to the claim was
added (i.e. the claim was ignored), (3) no correc-
tion was needed (i.e. the claim was already sup-
ported by evidence). The raters were shown each
question in this sequence without knowledge of
which system generated the correction. Negative
answers to a question automatically assigned nega-
tive answers to subsequent ones (prescribing that
an unintelligible sentence could not contain a fact
supported by evidence or introduce a correction).
20% of the tasks are assigned to two raters to mea-
sure inter-annotator agreement. We used 4 expert
participants from our lab (none of them co-authors
of the paper) who were familiar with fact verifica-
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tion, but not with error correction. Responses were
calibrated using a pilot study on the validation set.

For automated evaluation, we use SARI (Xu
etal., 2016) which is a metric used for sentence sim-
plification. SARI considers ngrams retained from
the source as well added or deleted ngrams through
comparison against a reference sentence. We ad-
ditionally report BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004) to indicate precision and re-
call of the correction. In Section 9, we report cor-
relation of automated metrics against our manual
evaluation.

8 Implementation

TS Masker-Corrector We fine-tuned the T5-
base pre-trained models released by HuggingFace
(Wolf et al., 2020). The number of training epochs
and learning rate was selected through optimizing
the overall SARI score. The search space for learn-
ing rate was {10755 -107°,10%,5 - 107%}. We
used 5 - 107 for all experiments. We found dimin-
ishing returns in SARI after 4 epochs and stopped
training.

Fully Supervised Ceiling We use this model to
estimate the ceiling performance of a factual error
correction system (assuming a reasonable amount
of training data is available) that other methods
can be compared against. We fine-tune a T5-base
model with supervision of the correction (see Sec-
tion 6), using the same hyper-parameter choices as
the TS Masker-Corrector.

Automated Scoring A single reference sentence
from the FEVER dataset is used for automated
scoring. We consider BLEU, ROUGE, and SARI.
SARI considers the F1 of added tokens, F1 of kept
tokens, precision of deletions, and the mean of
these 3 scores (denoted final). We use code made
available by Xu et al. (2016).

Evidence Retrieval We use the Facebook imple-
mentation of DPR (Karpukhin et al., 2020) with-
out fine-tuning and constructed an index over the
Wikipedia version released with FEVER (Thorne
et al., 2018), chunked into passages of 50 tokens.
For GENRE, the original authors’ implementation
was used. We selected the top matching 2 passages.
This resulted in the highest scores on the down-
stream corrections; SARI was lower when using 1
or 3 passages.

Maskers For the white-box masker, we use the
implementation provided by Shah et al. (2020)
applied to our dataset retaining original hyper-
parameters trained on FEVER. For the black-box
masker, we use the LIME implementation from
(Ribeiro et al., 2016) to probe a BERT classifier
(Devlin et al., 2019) fine-tuned on FEVER. For the
LM and random baseline maskers, where the num-
ber of masks was tunable, we masked 50% of the
tokens, which was similar to the number of tokens
masked by the black- and white-box maskers.

Language Model as Correctors? We greedily
decode masked tokens using a BERT-base-cased
language model using the HuggingFace implemen-
tation (Wolf et al., 2020) without fine-tuning.

Comparison to Previous Work For comparison
to previous work, we use the dual-encoder pointer
network implementation from (Shah et al., 2020),
retaining the original hyper-parameter choices.

9 Results

We first report results from a manual evaluation,
assessing the requirements that corrections are in-
telligible, supported by evidence, and improve the
factuality of the claim, as listed in Section 3. Our
evaluation considers a sample of 200 instances per
system. We report the results in Table 2. For inter-
annotator agreement control, 20% of instances
were annotated by two annotators: the Cohen’s
k scores for the 3 questions are 0.92 for intelligible,
0.92 for supported, and 0.86 for corrected. When
using retrieved evidence, the white-box masker gen-
erated no masks for 41% of instances. Without
masked tokens, the TS corrector copied the input
claim to the output. This fits the assumption that,
if the claim is already supported well by evidence,
no correction is required.

The fully supervised models had the highest rate
of satisfactory corrections that improved the fac-
tuality of the claim (requirement 3), indicating a
performance ceiling for the distantly-supervised
models. Incorporating retrieved evidence in these
supervised models (rather than gold) reduced the
number of corrections supported by evidence from
88.9% to 64.7% and the number of satisfactory
corrections from 68.9% to 48.9% showing the chal-
lenges of incorporating (possibly noisy) retrieved
evidence when generating the corrections.

When using the masker and corrector distant su-
pervision strategy, different maskers could be used
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System Evidence T;’;unll(ng 1\/’Il‘eslt( Aggregated Score (%)
asks asKs Intelligible Supported Corrected
TS5 Fully Supervised Gold - - 98.9 88.9 68.9
TS5 Fully Supervised  Retrieved - - 97.7 64.7 48.9
TS5 Masker + Corrector Retrieved  Random Heuristic 89.3 579 40.0
T5 Masker + Corrector  Retrieved  Heuristic Heuristic 90.0 38.0 20.0
T5 Masker + Corrector Retrieved  Random  Black-box 93.1 42.2 24.0
T5 Masker + Corrector  Retrieved Black-box Black-box 914 37.0 19.8
T5 Masker + Corrector Retrieved White-box White-box 90.6 41.7 23.9
BERT Language Model - - Heuristic 48.0 20.7 15.0
BERT Language Model - - Black-box 30.1 4.9 34
Shah et al. (2020) M+C Gold White-box  White-box 32.2 10.7 5.0

Table 2: Aggregated scores from human evaluation considering intelligibility, whether generated instances were

supported by evidence and errors corrected.

to train the corrector to the masker used at test
time. We observed that training the corrector with
random masks yielded both a higher rate of satis-
factory corrections and corrections supported by
evidence when using either the black-box or heuris-
tic masker at test time. We further evaluate other
maskers with automated metrics in Section 9.2.

Using a heuristic masker at test time, which re-
moved tokens from the claim not present in the
evidence, generated more claims meeting the sup-
ported and corrected requirements than masks gen-
erated by querying a fact verification model (both
black-box and white-box). An analysis of the
masker’s influence on the corrections is provided
in Section 9.1. The two baseline systems, Dual
Encoder M+C, based on Shah et al. (2020), and
a pre-trained BERT language model, generated
corrections that were intelligible or supported by
evidence at a lower rate than the aforementioned
models, further discussed in Sections 9.3 and 9.4.

We report the correlation between automated
scoring metrics and our manual evaluation in Ta-
ble 3. The KEEP component of SARI, which mea-
sures the F1 of n-grams from the claim retained in
the output, had the highest correlation with all three
requirements. Overly aggressive maskers which re-
move too much content from the claim can result in
unintelligible outputs, or corrections unrelated to
the claim. ROUGE2, which measures the recall of
bigrams in the correction w.r.t. the reference, exhib-
ited reasonable correlation to the manual evaluation
against the supported and corrected requirements,
however does not correlate as well with intelligibil-

ity. The ADD and DELETE components of SARI
provide further information but do not correlate
as strongly with the human judgements. Having
only one reference correction reduces the utility
of precision-oriented metrics, like BLEU, as valid
corrections can differ from the reference.

Correlation (Pearson r)

Metric
Intelligible Supported Corrected

SARI Keep 87 95 93
SARI Final 78 92 91
SARI Delete 72 .82 91
SARI Add 52 .84 79
ROUGE2 5 .90 91
ROUGEI 71 .87 .88
BLEU2 —.05 32 45
BLEU1 —.46 —.10 .05

Table 3: Both SARI and ROUGE automated scoring
metrics have high correlation to manual evaluation.

9.1 Choice of masker

When training the corrector with the same masker
that is used at test time, both the heuristic and black-
box maskers yielded comparable scores under hu-
man evaluation. Inspection of SARI breakdown in
Table 4 indicates that more tokens were kept when
using the heuristic masker (Keep=.651) whereas
the black box model was more aggressive in mask-
ing, resulting in less information from the claim be-
ing retained (Keep=.594). This correlated well with
human judgements as more information retained
gives a richer context for generating the correction
and prevents erasure of claims already (partially)
supported by the evidence.
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Both the black-box (LIME) and white-box (the
masker from Shah et al. (2020)) methods require
querying a veracity classifier to generate the masks.
Using retrieved evidence for the veracity classi-
fier, which was used to generate the masks in con-
junction with these two methods, had a negative
impact on most components of the SARI score.
For the black-box masker, using retrieved evidence
reduced the number of masked tokens from an aver-
age of 4.7 per claim to 3.9. Whereas the number of
masked tokens by the white-box masker remained
unchanged at 4.7 (approximately 50% of number of
tokens in the claim). Most notably, the white-box
method of mask generation (row 4 in Table 4) did
not to generate masks for 41% of instances when
using retrieved evidence, whereas all instances had
at least one mask when using gold evidence — an
artefact of the noise introduced by retrieval.

SARI Score
Keep Delete Add

Black-box (Gold)  .630 582 .088 433
White-box (Gold)  .652 .559 A28 447
Black-box (IR) .594 .526 .090 412
White-box (IR) .628 .535 107 426
Heuristic (IR) 651 574 .041 422
Masked LM .538 .509 062 370
Random .619 475 .087 .390

Masker

Final

Table 4: Extrinsic evaluation of maskers, varying the
use of evidence when generating the masks, evaluated
using the TS Masker+Corrector model.

9.2 Corrector trained with random masks

Generating large quantities of masked training data
through querying a model, such as with the black-
box model explanation techniques, can be compu-
tationally expensive. In contrast, random masks
can be generated without querying a model. Us-
ing a corrector trained on random masks resulted
in higher quality outputs at test time when paired
the black-box and heuristic maskers. Training with
random masks promotes good exploration of the
task. In contrast, while the black-box and heuristic
approaches worked well during testing, correctors
trained on these maskers generated worse outputs
due to the limited exploration of the task space. Ad-
ditionally, generating training data using the black-
and white-box methods requires making predic-
tions using the model’s training data which may
result in different outcomes to making predictions
on unseen test data.

SARI Score
Keep Delete Add

Black-box (Gold) .618 .622 .102 447
White-box (Gold)  .640 .570 114 441
Black-box (IR) 611 .543 194 419
White-box (IR) 618 .590 144 452
Heuristic (IR) .652 627 155 478
Masked LM 561 .529 .078  .389

Masker

Final

Table 5: Using random masks at training resulted in
higher scores when testing with different maskers

9.3 Comparison to previous work

Previous work uses a dual encoder pointer network
(Shah et al., 2020) to make corrections, reported
in Table 6. The corrector tended to copy portions
of claim rather than correct it, resulting in a SARI
KEEP score of .452 which is lower than the T5
model using the same white-box masker (Table 4).
Human evaluation considered these corrections
mostly unintelligible, even when using gold evi-
dence (Table 2). This was especially the case for
rarer entities. Hyper-parameter tuning of the cor-
rector’s coverage ratio, as suggested by the authors,
did not yield improvements.

SARI Score
Keep Delete Add Final

Dual Enc Ptr (Gold)  .452 569 039 353
Dual Enc Ptr (IR) .345 481 017 281

System

Table 6: Results using a dual encoder pointer network
(Shah et al., 2020) were low, despite the strong masker.

9.4 Language Models as Correctors?

With the exception of the heuristic masker, using
a pre-trained language model, without fine-tuning,
to correct claims resulted in low SARI scores (Ta-
ble 7). Without conditioning on the evidence, the
correction is not related to the claim or supported
by evidence to verify the claim, which is indicated
by the low SARI Add scores which consider the
precision of the added tokens. As these maskers
deleted most tokens, retaining only stop-words, de-
coding most likely tokens without a prompt or con-
text tokens resulted in unintelligible outputs. For
the heuristic masker, more content words were re-
tained yielding more intelligible outputs. However,
these were not always supported by evidence, indi-
cated in the human evaluation in Table 2.
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SARI Score
Keep Delete Add

Masked LM .360 472 .019  .289
Heuristic (IR) .629 .651 .034 438
White-box (IR)  .232 446 .005 228
Black-box (IR)  .364 .003 .001 122

Masker

Final

Table 7: Correcting claims using a language model
does not condition the generation on evidence.

10 Qualitative Error Analysis

In this section we discuss the following issues
which were present in all master-corrector systems:

Over-erasure In some instances, the masker re-
moved most or all of the non-stopword tokens from
the claim. This resulted in the original meaning of
the claim being erased. Without this information
the corrector could not reconstruct the claim, result-
ing in corrections that were unrelated to the input
claim. This issue was most prevalent for the black-
box masker, where 15% of instances had more than
5 consecutive tokens masked and 32% of instances
had 4 consecutive tokens masked. In contrast, the
heuristic masker, which identifies the tokens not
present in the retrieved evidence had 5 consecutive
tokens masked for 3% of instances and 4 consecu-
tive tokens masked for 9% of instances. While, in
some cases, appropriate corrections could be made
despite the aggressive masking (e.g. the claim “Exit
the King is by man[sic].” was fully masked, but cor-
rected to include the author’s name), others were
re-written focusing on a different fact, e.g. a claim
about the length of reign of Maria Theresa was
rewritten to be about her date of birth.

Incorrect masking When the erroneous tokens
in a claim were not masked, the corrector would
generate outputs not supported by evidence. For
example the following claim, which has an in-
correct year, was masked but retaining the error:
“Ghost, the film was released in 1994 as “[MASK]
, [IMASK] [MASK] [MASK] [MASK] [MASK]
in 1994”. Even with suitable retrieved evidence,
indicating the release year is 1990, no appropriate
correction could be made.

Inadequate evidence retrieval Where the evi-
dence retrieved was related, but not specifically
supporting or refuting the claim, the generated
corrections were vague: the claim “Poldark aired
on HBO” was corrected to “Poldark premiered on
TV” as the evidence lacked the name of the cor-

rect TV station. Similarly, where incorrect masks
were made, additional retrieval retrieval may be
required to prevent the corrector from hallucinating
information to cover the knowledge missing from
the evidence. For example, the name of the TV
show was masked in the claim “Two and a half
men starred Jamie Fox[sic]”, but as no mention of
Jamie Fox was present in the evidence, the model
hallucinated a different TV show name.

11 Conclusions and Future Work

Going beyond simply identifying errors, factual
error correction presents a number of challenges
for information retrieval, fact verification and ab-
stractive summarization communities alike. In this
paper, we demonstrated that the task can be per-
formed with distant supervision in the form of
claims labeled by evidence supporting or refuting
them. However, there are a number of outstand-
ing challenges that must be addressed. The data
we used from the FEVER task was re-purposed to
evaluate whether systems can undo mutations intro-
duced by human annotators and may not be repre-
sentative of the range of factual errors that would be
present in real-world documents. While some auto-
mated metrics correlated well with human judge-
ments, future work should consider how automated
scoring can be better used to discriminate the ade-
quacy of the generated corrections going beyond
similarity to the reference sentence. From a mod-
elling perspective, the masks strongly influenced
the corrector and further work is required to gen-
erate masks that result in better corrections. We
observed where masks mismatched the evidence,
the correction was vague, hallucinated or did not
correct the factual errors in the claim. This could
be addressed through joint training of both com-
ponents to enable them to avoid error propagation
from masking to correction.
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Broader Impact Statement

Our experiments were performed on publicly avail-
able data about common facts from Wikipedia.
These data are released under a creative-commons
license. The expert raters from our lab who manu-
ally reviewed the generated instances were volun-
teers and were compensated through quid-pro-quo
help on their own projects.

The intended use of this project is to help explain
reasoning using evidence, going beyond single-
label classification. This adds an additional safe-
guard, making the decision process more transpar-
ent as poor predictions by our model expose limi-
tations that would be hidden by classification. Our
data is synthetic in nature and is biased towards
synthetic facts from popular entities. Application
to political or scientific domains would require ad-
ditional work. Misinformation about populations
that are under-represented in our data may not be
accurately identified or corrected without further
mitigation. One positive finding in our paper was
that some of biases perpetuated in the hallucina-
tions of language models were mitigated when con-
ditioning the generation on retrieved evidence.

Model fine-tuning took approximately 2 hours
per experiment on a single P100 GPU. Generating
LIME explanations of the training dataset took ap-
proximately one day — motivating our experiments
that used models trained on random or heuristic
maskers which required fewer resources by several
orders of magnitude.
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