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Abstract

Multilingual neural machine translation aims
at learning a single translation model for mul-
tiple languages. These jointly trained mod-
els often suffer from performance degradation
on rich-resource language pairs. We attribute
this degeneration to parameter interference. In
this paper, we propose LaSS to jointly train a
single unified multilingual MT model. LaSS
learns Language Specific Sub-network (LaSS)
for each language pair to counter parameter
interference. Comprehensive experiments on
IWSLT and WMT datasets with various Trans-
former architectures show that LaSS obtains
gains on 36 language pairs by up to 1.2 BLEU.
Besides, LaSS shows its strong generalization
performance at easy adaptation to new lan-
guage pairs and zero-shot translation. LaSS
boosts zero-shot translation with an average
of 8.3 BLEU on 30 language pairs. Codes
and trained models are available at https:

//github.com/NLP-Playground/LaSS.

1 Introduction

Neural machine translation (NMT) has been very
successful for bilingual machine translation (Bah-
danau et al., 2015; Vaswani et al., 2017; Wu et al.,
2016; Hassan et al., 2018; Su et al., 2018; Wang,
2019). Recent research has demonstrated the effi-
cacy of multilingual NMT, which supports transla-
tion from multiple source languages into multiple
target languages with a single model (Johnson et al.,
2017; Aharoni et al., 2019; Zhang et al., 2020; Fan
et al., 2020; Siddhant et al., 2020). Multilingual
NMT enjoys the advantage of deployment. Further,
the parameter sharing of multilingual NMT encour-
ages transfer learning of different languages. An
extreme case is zero-shot translation, where direct
translation between a language pair never seen in
training is possible (Johnson et al., 2017).
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Figure 1: Illustration of a full network and language-
specific ones (LaSS). — represents shared weights. —
, — and — represents weights for En→Zh, En→Fr
and En→De, respectively. Compared to the full multi-
lingual model, each LaSS learned model has language
universal and language specific weights.

While very promising, several challenges remain
in multilingual NMT. The most challenging one is
related to the insufficient model capacity. Since
multiple languages are accommodated in a single
model, the modeling capacity of NMT model has
to be split for different translation directions (Aha-
roni et al., 2019). Therefore, multilingual NMT
models often suffer from performance degrada-
tion compared with their corresponding bilingual
baseline, especially for rich-resource translation
directions. The simplistic way to alleviate the in-
sufficient model capacity is to enlarge the model
parameters (Aharoni et al., 2019; Zhang et al.,
2020). However, it is not parameter or computa-
tion efficient and needs larger multilingual train-
ing datasets to avoid over-fitting. An alternative
solution is to design language-aware components,
such as division of the hidden cells into shared
and language-dependent ones (Wang et al., 2018),
adaptation layers (Bapna and Firat, 2019; Philip
et al., 2020), language-aware layer normalization

https://github.com/NLP-Playground/LaSS
https://github.com/NLP-Playground/LaSS
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and linear transformation (Zhang et al., 2020), and
latent layers (Li et al., 2020).

In this work, we propose LaSS, a method to
dynamically find and learn Language Specific Sub-
network for multilingual NMT. LaSS accommo-
dates one sub-network for each language pair. Each
sub-network has shared parameters with some other
languages and, at the same time, preserves its lan-
guage specific parameters. In this way, multilingual
NMT can model language specific and language
universal features for each language pair in one
single model without interference. Figure 1 is the
illustration of vanilla multilingual model and LaSS.
Each language pair in LaSS has both language uni-
versal and language specific parameters. The net-
work itself decides the sharing strategy.

The advantages of our proposed method are

• LaSS is parameter efficient, requiring no ex-
tra trainable parameters to model language
specific features.

• LaSS alleviates parameter interference, po-
tentially improving the model capacity and
boosting performance.

• LaSS shows its strong generalization perfor-
mance at easy adaptation to new language
pairs and zero-shot translation. LaSS can be
easily extended to new language pairs with-
out dramatic degradation of existing language
pairs. Besides, LaSS can boost zero-shot trans-
lation by up to 26.5 BLEU.

2 Related Work

Multilingual Neural Machine Translation
The standard multilingual NMT model uses a
shared encoder and a shared decoder for different
languages (Johnson et al., 2017). There is a
transfer-interference trade-off in this architec-
ture (Arivazhagan et al., 2019): boosting the
performance of low resource languages or main-
tain the performance of high resource languages.
To solve this trade-off, previous works assign
some parts of the model to be language specific:
Language specific decoders (Dong et al., 2015),
Language specific encoders and decoders (Firat
et al., 2016; Lyu et al., 2020) and Language specific
hidden states and embeds (Wang et al., 2018).
Sachan and Neubig (2018) compares different
sharing methods and finds different sharing
methods have a great impact on performance.
Recently, Zhang et al. (2021) analyze when and
where language specific capacity matters. Li et al.

(2020) uses a binary conditional latent variable to
decide which language each layer belongs to.

Model Pruning Our approach follows the stan-
dard pattern of model pruning: training, finding
the sparse network and fine-tuning (Frankle and
Carbin, 2019; Liu et al., 2019). Frankle and Carbin
(2019) and Liu et al. (2019) highlight the impor-
tance of the sparse network architecture. Zhu and
Gupta (2018) proposed a method to automatically
adjust the sparse threshold. Sun et al. (2020) learns
different sparse architecture for different tasks.
Evci et al. (2020) iteratively redistribute the sparse
network architecture by the gradient.

3 Methodology

We describe LaSS method in this section. The
goal is to learn a single unified model for many
translation directions. Our overall idea is to find
sub-networks corresponding to each language pair,
and then only update the parameters of those sub-
networks during the joint training.

3.1 Multilingual NMT

A multilingual NMT model learns a mapping func-
tion f from a sentence in one of many languages
to another language. We adopt the multilingual
Transformer (mTransformer) as the backbone net-
work (Johnson et al., 2017). mTransformer has the
same encoder-decoder architecture with layers of
multihead attention, residual connection, and layer
normalization. In addition, it has two lanuage iden-
tifying tokens for the source and target. Define a
multilingual dataset {Dsi→ti}Ni=1 where si, ti rep-
resents the source and target language.

We train an initial multilingual MT model with
the following loss.

L =
∑
i

∑
〈x,y〉∼Dsi→ti

− logPθ(y | x) (1)

where 〈x,y〉 is a sentence pair from the language
si to ti, and θ is the model parameter.

3.2 Finding Language Specific Model Masks

Training a single model jointly on multiple lan-
guage directions will lead to performance degrada-
tion for rich resource pairs (Johnson et al., 2017).
The single model will improve on low resource lan-
guage pairs, but will reduce performance on pairs
like English-German. Intuitively, jointly training
on all translation pairs will obtain an “average”
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model. For rich resources, such averaging may hurt
the performance since a multilingual MT model
must distribute its modeling capacity for all trans-
lation directions. Based on this intuition, our idea
is to find a sub-network of the original multilin-
gual model. Such sub-network is specific to each
language pair.

We start from a multilingual base model θ0. The
θ0 is trained with Eq. (1). A sub-network is indi-
cated by a binary mask vector Msi→ti ∈ {0, 1}|θ|
for language pair si → ti. Each element being 1
indicates to retain the weight and 0 to abandon
the weight. Then the parameters associated with
si → ti is θsi→ti = {θj0 | M

j
si→ti = 1}, where

j denotes the jth element in θ0. The parameters
θsi→ti are only responsible for the particular lan-
guage si and ti. We intend to find such language
specific sub-networks. Figure 1 illustrates the orig-
inal model and its language specific sub-networks.

Given an initial model θ0, we adopt a simple
method to find the language specific mask for each
language pairs.

1. Start with a multilingual MT model θ0 jointly
trained on {Dsi→ti}Ni=1.

2. For each language pair si → ti, fine-tuning
θ0 on Dsi→ti . Intuitively, fine-tuning θ0 on
specific language pair si → ti will amplify
the magnitude of the important weights for
si → ti and diminish the magnitude of the
unimportant weights.

3. Rank the weights in fine-tuned model and
prune the lowest α percent. The mask Msi→ti
is obtained by setting the remaining indices of
parameters to be 1.

3.3 Structure-aware Joint Training

Once we get masks Msi→ti for all language pairs,
we further continue to train θ0 with language-
grouped batching and structure-aware updating.

First, we create random batches of bilingual sen-
tence pairs where each batch contains only samples
from one pair. This is different from the plain joint
multilingual training where each batch can contain
fully random sentence pairs from all languages.
Specifically, a batch Bsi→ti is randomly drawn
from the language-specific data Dsi→ti . Second,
we evaluate the loss in Eq. 1 on the batch Bsi→ti .
During the back-propagation step, we only update
the parameters in θ0 belonging to the sub-network
indicated by Msi→ti . We iteratively update the pa-
rameters until convergence.

In this way, we still get a single final model θ∗

that is able to translate all language directions.
During the inference, this model θ∗ and its masks

Msi→ti , i = 1, . . . , N are used together to make
predictions. For every given input sentence in lan-
guage s and a target language t, the forward infer-
ence step only uses the parameter θ∗ �Ms→t to
calculate model output.

4 Experiment Settings

Datasets and Evaluation The experiments are
conducted on IWSLT and WMT benchmarks. For
IWSLT, we collect 8 English-centric language pairs
from IWSLT2014, whose size ranges from 89k
to 169k. To simulate the scenarios of imbalanced
datasets, we collect 18 language pairs ranging from
low-resource (Gu, 11k) to rich-resource (Fr, 37m)
from previous years’ WMT. The details of the
datasets are listed in Appendix. We apply byte pair
encoding (BPE) (Sennrich et al., 2016) to prepro-
cess multilingual sentences, resulting in a vocab-
ulary size of 30k for IWSLT and 64k for WMT.
Besides, we apply over-sampling for IWSLT and
WMT to balance the training data distribution with
a temperature of T = 2 and T = 5 respectively.
Similar to Lin et al. (2020), we divide the lan-
guage pairs into 3 categories: low-resource (<1M),
medium-resource (>1M and <10M) and rich re-
source (>10M).

We perform many-to-many multilingual trans-
lation throughout this paper, and add special lan-
guage tokens at both the source and the target
side. In all our experiments, we evaluate our model
with commonly used standard testsets. For zero-
shot, where standard testsets (for example, Fr→Zh)
of some language pairs are not available, we use
OPUS-100 (Zhang et al., 2020) testsets instead.

We report tokenized BLEU, as well as win ratio
(WR), informing the proportion of language pairs
we outperform the baseline. In zero-shot transla-
tion, we also report translation-language accuracy1,
which is commonly used to measure the accuracy
of translating into the right target language.

Model Settings Considering the diversity of
dataset volume, we perform our experiments with
variants of Transformer architecture. For IWSLT,
we adopt a smaller Transformer (Transformer-
small2 (Wu et al., 2019)). For WMT, we adopt

1https://github.com/Mimino666/
langdetect

2Transformer-base with dff = 1024 and nhead = 4

https://github.com/Mimino666/langdetect
https://github.com/Mimino666/langdetect
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Lang Fa Pl Ar He
Size 89K 128k 140K 144K

Baseline 16.9 16.4 20.9 29
LaSS 17.9 17.0 22.9 30.9

∆ +1.0 +0.6 +2.0 +1.9

Lang Nl De It Es
Size 153K 160K 167K 169K

Baseline 30.9 28.1 29.2 35.2
LaSS 33.0 29.8 30.9 37.3

∆ +2.1 +1.7 +1.7 +2.1

Table 1: Results on IWLST dataset. Baseline denotes
the multilingual Transformer-small baseline model.
LaSS consistently outperforms multilingual baseline
on all language pairs. We report the average BLEU of
En→X and X→En within one language. Both the base-
line and LaSS have the same number of parameters.

Transformer-base and Transformer-big3. The prun-
ing rate α of IWSLT and WMT is 0.7 and 0.3, re-
spectively. For simplicity, we only report the high-
est BLEU from the best pruning rate and we also
discuss the impact of different pruning rate on per-
formance in Sec.6. In Sec. 6 we discuss the rela-
tionship of performance and pruning rate. For more
training details please refer to Appendix.

5 Experiment Results

This section shows the efficacy and generalization
of LaSS. Firstly, we show that LaSS obtains con-
sistent performance gains on IWSLT and WMT
datasets with different Transformer architecture
variants. Further, we show that LaSS can easily
generalize to new language pairs without losing
the accuracy for previous language pairs. Finally,
we observe that LaSS can even improve zero-shot
translation, obtaining performance gains by up to
26.5 BLEU.

5.1 Main Results
Results on IWSLT We first show our results on
IWSLT. As shown in Table 1, LaSS consistently
outperforms the multilingual baseline on all lan-
guage pairs, confirming that using LaSS to alleviate
parameter interference can help boost performance.

Results on WMT To further verify the general-
ization of LaSS, we also conduct experiments on

3For details of the Transformer setting, please refer to
Vaswani et al. (2017)

WMT, where the dataset is more imbalanced across
different language pairs. We adopt two different
Transformer architecture variants, i.e., Transformer-
base and Transformer-big.

As shown in Table 2, LaSS obtains consis-
tent gains over multilingual baseline on WMT for
both Transformer-base and Transformer-big. For
Transformer-base, LaSS achieves an average im-
provement of 1.2 BLEU on 36 language pairs over
baseline, while for Transformer-big, LaSS obtains
0.6 BLEU improvement.

We observe that with the dataset scale of lan-
guage pairs increasing, the improvements of BLEU
and WR become larger, suggesting that the lan-
guage pairs with large scale dataset benefit more
from LaSS than language pairs of low resource.
This phenomenon is intuitive since rich resource
dataset suffers more parameter interference than
low resource dataset. We also find that the BLEU
and WR gains obtained in Transformer-base are
larger than that in Transformer-large. We attribute
it to the more severe parameter interference for
smaller models.

For comparison, we also include the results of
LaSS with randomly initialized masks. Not sur-
prising, Random underperforms the baseline by a
large margin, since Random intensifies rather than
alleviates the parameter interference.

5.2 Generalization to New Language Pairs

LaSS has shown its efficacy in the above section.
A natural question arises that can LaSS adapt to a
new language or language pair that it has not seen
in training phase? In other words, can LaSS gen-
eralize to other language pairs? In this section, we
show the generalization of LaSS in two settings.
We firstly show that LaSS can easily adapt to new
unseen languages to match bilingual models with
training for only a few hundred steps while keep-
ing the performance of the existing language pairs
hardly dropping. Secondly, we show that LaSS can
also boost performance in zero-shot translation
scenario, obtaining performance gains by up to
26.5 BLEU.

The model is Transformer-big trained on WMT
dataset. En↔Ar and En↔It are both unseen lan-
guage pairs.

5.2.1 Extensibility to New Languages
Previous works have studied the easy and rapid
adaptation to a new task or language pair (Bapna
and Firat, 2019; Rebuffi et al., 2017). We show
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Arch Setting Model
Low Medium Rich All

BLEU WR BLEU WR BLEU WR BLEU WR

Transformer-base
Baseline 16.7 - 18.8 - 25.3 - 20.4
Random -2.2 0.0 -2.3 0.0 -2.6 0.0 -2.4 0.0
LaSS +0.7 80.0 +1.3 85.7 +1.7 100.0 +1.2 88.9

Transformer-big
Baseline 18.8 - 22.2 - 29.0 - 23.5 -
Random -1.3 0.0 -1.8 0.0 -1.5 0.0 -1.6 0.0
LaSS +0.1 50.0 +0.7 92.9 +0.8 100.0 +0.6 83.3

Table 2: Average BLEU↑ and Win Ratio (WR) of WMT dataset on Low (<1M), Medium (1M∼10M) and Rich
(>10M) resource dataset. Random denotes LaSS with random masks. LaSS obtains consistent gains for both
Transformer-big and Transformer-base.

that LaSS can also easily adapt to new unseen
languages without dramatic drop for other exist-
ing languages. We distribute a new sub-network to
each new language pair and train the sub-network
with the specific language pair for fixed steps. In
this way, the new language pair will only update
the corresponding parameters and it can alleviate
the interference and catastrophic forgetting (Kirk-
patrick et al., 2016) to other language pairs.

We verify the extensibility of LaSS on 4 lan-
guage pairs. For LaSS, as described in Sec.3, we
first fine-tune the multilingual base model and
prune to obtain the specific mask for the new lan-
guage pair. For both multilingual baseline and our
method, we train on only the specific language pair
for fixed steps.

Figure 2 shows the trend of BLEU score along
with the training steps. We observe that 1) LaSS
consistently outperforms the multilingual baseline
model along with the training steps. LaSS reaches
the bilingual model performance with fewer steps.
2) Besides, the degradation of other language pairs
is much smoother than the baseline. When reaching
the bilingual baseline performance, LaSS hardly
drops on other language pairs, while the multilin-
gual baseline model dramatically drops by a large
margin.

We attribute the easy adaptation for specific lan-
guages to the language specific sub-network. LaSS
only updates the corresponding parameters, avoid-
ing updating all parameters which will hurt the
performance of other languages. Another benefit
of updating corresponding parameters is its fast
adaptation towards specific language pairs.

5.2.2 Zero-shot

Zero-shot translation is the translation between
known languages that the model has never seen
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Figure 2: The trend of BLEU score of new extended
language pairs and other existing language pairs along
with the training steps on the specific language pair.
Compared to multilingual baseline, LaSS reaches the
bilingual performance with fewer steps and only lit-
tle performance degradation on other existing language
pairs.

together at training time (e.g., Fr→En and En→Zh
are both seen in training phase, while Fr→Zh is
not.). It is the ultimate goal of Multilingual NMT
and has been a common indicator to measure the
model capability (Johnson et al., 2017; Zhang et al.,
2020). One of the biggest challenges is the off-
target issue (Zhang et al., 2020), which means that
the model translates into a wrong target language.

In previous experiments, we apply specific
masks to their corresponding language pairs. As
the training dataset is English-centric, non-English-
centric masks are not available. We remedy it by
merging two masks to create non-English-centric
masks. For example, We create X→Y mask by
combining the encoder mask of X→En and the
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Figure 3: Mask similarity for language pairs within
En→X (x-axis and y-axis), within X→En (x-axis and y-
axis) and between En→X (x-axis) and X→En (y-axis),
respectively. The mask similarity is positively corre-
lated to the language family similarity.

decoder mask of En→Y. We select 6 languages
and evaluate zero-shot translation in language pairs
between each other.

As shown in Table 3, surprisingly, by directly ap-
plying X→Y masks, LaSS obtains consistent gains
over baselines in all language pairs for both BLEU
and translation-language accuracy, indicating that
the superiority of LaSS in learning to bridge be-
tween languages. It is worth noting that for Fr→Zh,
LaSS outperforms the baseline by 26.5 BLEU,
reaching 32 BLEU.

We also sample a few translation examples from
Fr→Zh to analyze why LaSS can help boost zero-
shot (More examples are listed in Appendix).

As shown in Table 4 as well as translation-
language accuracy in Table 3, we observe that the
multilingual baseline has severe off-target issue.
As a counterpart, LaSS significantly alleviates the
off-target issue, translating into the right target lan-
guage. We attribute the success of “on-target” in
zero-shot to the language specific parameters as a
strong signal, apart from language indicator, to the
model to translate into the target language.

6 Analysis and Discussion

In this section, we conduct a set of analytic ex-
periments to better understand the characteristics
of language specific sub-network. We first mea-
sure the relationship between language specific sub-
network as well as its capacity and language family.
Secondly, we study how masks affect performance
in zero-shot scenario. Lastly, we discuss the rela-
tionship between pruning rate α and performance.

We conduct our analytic experiments on IWSLT
dataset. For readers not familiar with language fam-
ily and clustering, Figure 4 is the hierarchical clus-
tering according to language family.

es it nl de pl ar hefa

Romance Germanic Slavic Arabic Iranian Semitic

Latin Latin Latin Latin Latin Arabic Arabic Hebrew

Figure 4: Language clustering of 8 languages in
IWSLT, according to language family. Es(Spanish),
It(Italian), De(Germany), Nl(Dutch) and Pl(Polish) are
all European languages and written in Latin while
Ar(Arabic), Fa(Farsi) and He(Hebrew) are similar lan-
guages.

6.1 Mask similarity v.s Language family
Ideally, similar languages should share more pa-
rameters since they share more language charac-
teristics. Therefore, a natural question arises: Does
the model automatically capture the relationship of
language family defined by human?

We calculate the similarity of masks between
language pairs to measure the sub-network rela-
tionship between language pairs. We define mask
similarity as the number of 1 where two masks
share divided by the number of 1 of the first mask:

Sim(M1,M2) =
‖M1 ∩M2‖0
‖M1‖0

, (2)

where ‖·‖0 represent L0 norm. Mask similarity re-
flects the degree of sharing among different lan-
guage pairs.

Figure 3(a) and 3(b) shows the mask similarity
in En→X and X→En. We observe that, for both
En→X and X→En, the mask similarity is posi-
tively correlated to the language family similarity.
The color of grids in Figure is deeper between sim-
ilar languages (for example, es and it) while more
shallow between dissimilar languages (for example,
es and he).

We also plot the similarity between En→X and
X→En in Figure 3(c) . We observe that, unlike
En→X or X→En, the mask similarity does not cor-
respond to language family similarity. We suspect
that the mask similarity is determined by combi-
nation of source and target languages. That means
that En→Nl does not necessarily share more pa-
rameters with Nl→En than En→De.

6.2 Where language specific capacity
matters?

To take a step further, we study how model schedule
language specific capacity across layers. Figure 5
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Target Languages
Fr Cs De Es Ru Zh

BLEU ACC BLEU ACC BLEU ACC BLEU ACC BLEU ACC BLEU ACC

So
ur

ce
L

an
gu

ag
es

Fr
baseline - - 2.0 1.7 2.9 3.1 6.4 15.1 1.5 4.4 5.5 4.9
LaSS - - 5.4 32.6 7.5 35.9 23.0 77.7 4.6 24.7 32.0 31.3
∆ - - +3.4 +30.9 +4.6 +32.8 +16.6 +62.6 +3.1 20.3 +26.5 +26.4

Cs
baseline 3.9 7.0 - - 2.6 2.1 5.6 13.9 2.5 9.6 0.9 0.9
LaSS 15.3 61.1 - - 7.7 37.2 18.5 74.2 6.6 34.5 13.5 35.3
∆ +11.4 +54.1 - - +5.1 +35.1 +12.9 +60.3 +4.1 +24.9 +12.6 +34.4

De
baseline 6.3 18.8 2.6 5.7 - - 5.6 14.0 2.2 8.6 5.7 19.6
LaSS 17.9 70.3 7.4 40.5 - - 19.4 75.1 6.1 33.2 16.1 41.6
∆ +11.6 +51.5 +4.8 +34.8 - - +13.8 +61.1 +3.9 +24.6 +10.4 +22.0

Es
baseline 7.4 17.5 2.0 1.6 2.6 1.9 - - 1.4 3.7 3.6 9.2
LaSS 20.8 66.3 4.9 25.7 6.7 30.3 - - 4.5 22.2 15.2 42.8
∆ +13.4 +48.8 +2.9 +24.1 +4.1 +28.4 - - +3.1 +18.5 +11.6 +33.6

Ru
baseline 5.6 19.9 2.4 8.1 2.0 2.4 6.3 20.6 - - 10.5 13.4
LaSS 16.2 69.0 8.0 47.7 5.9 32.0 18.8 75.5 - - 30.0 33.1
∆ +10.6 +49.1 +5.6 +39.6 +3.9 +29.6 +12.5 +54.9 - - +19.5 +19.7

Zh
baseline 5.6 4.0 0.3 1.0 1.1 1.6 0.8 2.1 4.8 5.6 - -
LaSS 18 53.2 1.7 22.9 1.2 7.1 3.8 28.0 7.2 27.6 - -
∆ +12.4 +49.2 +1.4 +21.9 +0.1 +5.5 +3.0 +25.9 +2.4 +22.0 - -

Table 3: BLEU score and Translation-language Accuracy (ACC, in percentage) of zero-shot translation for multi-
lingual baseline and LaSS. LaSS outperforms the multilingual baseline on both BLEU and ACC by a large margin
for most language pairs. Low accuracy indicates severe off-target translation.

Src La production annuelle d’acier était le sym-
bole incontesté de la vigueur économique
des nations.

Ref 钢的年产量是国家经济实力的重要象征
Baseline Annual steel production was the undisputed

symbol of nations’ economic strength.
LaSS 年度钢铁生产是各国经济活力的无可争

辩的象征.

Src De l’avis de ma délégation donc, l’ONU
devrait élargir ces activités de la faon suiv-
ante.

Ref 因此,我国代表团认为,联合国现在应该
以下述方式扩大这些活动。

Baseline 因此, in my delegation’s view, the United
Nations should expand these activities in the
following manner.

LaSS 因此,我国代表团认为,联合国应该扩大
这些活动,如下.

Table 4: Fr→Zh Case Study. The multilingual baseline
suffers from severe off-target issue, while LaSS greatly
alleviates the issue.

shows the similarity of different components on the
encoder and decoder side along with the increase
of layer. More concretely, we plot query, key, value
on the attention sub-layer and fully-connected layer
on the positional-wise feed-forward sub-layer.

We observe that a) On both the encoder and
decoder side, the model tends to distribute more
language specific components on the top and bot-

tom layers rather than the middle ones. This phe-
nomenon is intuitive. The bottom layers deal more
with embedding, which is language specific, while
the top layers are near the output layer, which is
also language specific. b) For fully-connected layer,
the model tends to distribute more language spe-
cific capacity on the middle layers for the encoder,
while distribute more language specific capacity in
the decoder for the top layers.

6.3 How masks affect zero-shot?

In Sec.4, we show that simply applying X→Y
masks can boost zero-shot performance. We con-
duct experiments to analyze how masks affect zero-
performance. Concretely, we take Fr→Zh as an
example, replacing the encoder or decoder mask
with another language mask, respectively.

As shown in Table 5, we observe that replacing
the encoder mask with other languages causes only
littler performance drop, while replacing the de-
coder mask causes dramatic performance drop. It
suggests that the decoder mask is the key ingredient
of performance improvement.

6.4 About Sparsity

To better understand the pruning rate, we plot the
performance along with the increase of pruning
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Figure 5: The mask similarity of different components
(attention layer and feed-forward layer) on the encoder
and decoder side along with the increase of layer. The
model tends to distribute more language specific capac-
ity on the top and bottom layers.

Fr→X

Fr Cs De Es Ru Zh
- 12.3 13.8 7.1 18.6 32.0

X→ Zh

Fr Cs De Es Ru Zh
32.0 30.5 29.6 30.9 29.6 -

Table 5: Performance of applying Fr→X or X→Zh
mask to Fr→Zh testset. Replacing encoder mask
causes only little performance drop, while replacing de-
coder mask causes dramatic performance drop.

rate in Figure 6. For WMT, the best choice for α is
0.3 for both Transformer-base and Transformer-big,
while for IWSLT the best α lies between 0.6∼0.7.
The results are consistent with our intuition, that
large scale training data need a smaller pruning rate
to keep the model capacity. Therefore, we suggest
tuning α based on both the dataset and model size.
For large datasets such as WMT, setting a smaller
α is better, while a larger α will slightly decrease
the performance (i.e. less than 0.5 BLEU score).
For small datasets like IWSLT, setting a larger α
may yield better performance.

7 Conclusion

In this paper, we propose to learn Language-
Specific Sub-network (LaSS) for multilingual
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Figure 6: BLEU score along with the increase of
pruning rate α. Large α indicates small sub-network.
Small dataset requires a larger α to yield better perfor-
mance. IWSLT uses Transformer-small and WMT uses
Transformer-base and Transformer-big.

NMT. Extensive experiments on IWSLT and WMT
have shown that LaSS is able to alleviate parameter
interference and boost performance. Further, LaSS
can generalize well to new language pairs by train-
ing with a few hundred steps, while keeping the per-
formance of existing language pairs. Surprisingly,
in zero-shot translation, LaSS surpasses the multi-
lingual baseline by up to 26.5 BLEU. Extensive an-
alytic experiments are conducted to understand the
characteristics of language specific sub-network.
Future work includes designing a more dedicated
end-to-end training strategy and incorporating the
insight we gain from analysis to design a further
improved LaSS.
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A Appendices

A.1 Datasets Details

ISO Language Family Script Size

fa Farsi Iranian Arabic 89k
ar Arabic Arabic Arabic 140k
he Hebrew Semitic Hebrew 144k

nl Dutch Germanic Latin 153k
de German Germanic Latin 160k

it Italian Romance Latin 167k
es Spanish Romance Latin 169k

pl Polish Slavic Latin 128k

Table 6: Statistics and Language Family of IWSLT.
Languages grouped together are similar languages.

A.2 Training Details
As stated in the previous section, we first train a
multilingual baseline (Phase 1). Then we fine-tune
the baseline on specific language pair to obtain the
mask (Phase 2). After that we train the LaSS model
with the obtained masks (Phase 3). Note that we
only apply masks on linear weights, which means
that the embedding weights, layer normalization
are not masked out. We also exclude the output
projection weight. We apply label smoothing of
value 0.1 in all our experiments.

A.2.1 IWSLT
Model We adopt Transformer-small 4 with
dropout 0.1.

Data Following Tan et al. (2019), we first tok-
enize the data then apply BPE. The BPE vocab size
is 30k. We apply over-sampling with a temperature
of T = 2.

Training For Phase 1, we train the baseline with
Adam with a learning rate schedule of (5e-4,4k).
The max tokens per batch is set to 262144. For
Phase 2, we keep all other settings unchanged ex-
cept we set the max tokens to be 16384 and the
dropout 0.3. For Phase 3, we keep the same setting
as Phase 1, except we apply masks on the model.

A.2.2 WMT
Model We adopt Transformer-base and
Transformer-big with pre-norm (Wang et al.,

4Transformer-base with dff = 1024 and nhead = 4

https://doi.org/10.18653/v1/2020.acl-main.148
https://doi.org/10.18653/v1/2020.acl-main.148
https://openreview.net/forum?id=Sy1iIDkPM
https://openreview.net/forum?id=Sy1iIDkPM
https://openreview.net/forum?id=Sy1iIDkPM


304

ISO Language Family Script Train Valid Test Size

gu Gujarati Indo-Aryan Gujarati WMT19 newsdev19 newstest19 11k
ta Tamil Dravidian Tamil WMT20 newsdev20 newstest20 64k

kk Kazakh Turkic Cyrillic WMT19 newsdev19 newstest19 120k
tr Turkish Turkic Latin WMT16 newsdev16 newstest16 205k

ro Romanian Romance Latin WMT16 newsdev16 newstest16 597k
es Spanish Romance Latin WMT13 newstest12 newstest13 13m
fr French Romance Latin WMT14 newstest13 newstest14 37m

ps Pashto Iranian Arabic WMT20 newsdev20 newstest20 1m

fi Farsi Uralic Latin WMT16 newstest15 newstest16 2m
lv Latvian Baltic Latin WMT17 newsdev17 newstest17 2m
et Estonian Uralic Latin WMT18 newsdev18 newstest18 2.1m

lt Lithuanian Baltic Latin WMT19 newsdev19 newstest19 2.3m

ru Russian Slavic Cyrillic WMT16 newstest15 newstest16 2.5m

cs Czech Slavic Latin WMT14 newstest13 newstest14 11m
pl Polish Slavic Latin WMT20 newsdev20 newstest20 11.1m

ja Japanese Japonic Kanji; Kana WMT20 newsdev20 newstest20 16.8m
zh Chinese Chinese Chinese WMT17 newsdev17 newstest17 20.8m

de German Germanic Latin WMT16 newstest13 newstest14 4.5m

Table 7: Statistics and Language Family of WMT daatset. Languages grouped together are similar languages.

Tgt
Fr Cs De Es Ru Zh

Sr
c

Fr nt13 nt13 nt13 nt13 opus
Cs nt13 nt13 nt13 ted
De nt13 nt13 opus
Es nt13 ted
Ru opus
Zh

Table 8: Datasets used in Zero-shot Translation. “nt13”
indicates newstest2013.

2019). We replace fixed positional embedding with
learnable one and replace ReLU with GeLU. Also
we use Layernorm-embedding (Liu et al., 2020) to
stabilize training.

Data We use SentencePiece (Kudo and Richard-
son, 2018) to preprocess the data and learn BPE.
Since the WMT dataset is highly imbalanced, we
apply a temperature-based sampling strategy with
T = 5. To ensure all languages are represented
adequately in the vocabulary, we apply the same
temperature-based sampling strategy for training

the BPE model.

Training For Phase 1, we train the baseline with
Adam with a learning rate schedule of (5e-4,8k).
The max tokens per batch is set to 524288. For
Phase 2, the warm-up updates are set to 1000. To
guarantee that the model does not overfit the data,
we train on different language pairs with different
steps and different batch size. Concretely, we fine-
tune on >10k, >100k, >1m, >10m language pairs
with 1k, 2k, 4k, 8k steps and max tokens per batch
with 20480, 40960, 81920 and 163840. For Phase
3, we keep the setting the same as Phase 1.

A.3 Case Study



305

Fr→ Zh

Src La production annuelle d’acier était le symbole incontesté de la vigueur
économique des nations.

Ref 钢的年产量是国家经济实力的重要象征
Baseline Annual steel production was the undisputed symbol of nations’ economic strength.
LaSS 年度钢铁生产是各国经济活力的无可争辩的象征.

Src De l’avis de ma délégation donc, l’ONU devrait élargir ces activités de la faon
suivante.

Ref 因此,我国代表团认为,联合国现在应该以下述方式扩大这些活动。
Baseline 因此, in my delegation’s view, the United Nations should expand these activities in

the following manner.
LaSS 因此,我国代表团认为,联合国应该扩大这些活动,如下.

Src Le domicile de la femme dépendait du lieu du mariage et de la résidence familiale.
Ref 妇女的住处取决于婚姻和家庭位置。
Baseline The woman’s place of residence depended on the place of marriage and family

residence.
LaSS 妻子的住所取决于婚姻地点和家庭住所.

De→ Zh

Src Du bist gebissen worden.
Ref 你被咬了
Baseline You have been bitten.
LaSS 你被咬了

Src Einmal würde schon reichen.
Ref 你只需要道歉一次就够了!
Baseline Once upon a time it would be enough.
LaSS 一次就足够了.

Src Wenn wir warten, hat er Zeit zum Tanken und Munitionieren.
Ref 如果我们等待,他就有了时间加油和补给弹药
Baseline When we wait, he has time for tanks and ammunition.
LaSS 当我们等待时,他有时间去坦克和弹药.

Ru→ Zh

Src Помощник заместителя министра

здравоохранения Саудовской Аравии

Его Превосходительство д-р Якуб бен

Юсуфаль-Масрува
Ref 沙特阿拉伯卫生部助理副部长雅各布·本·优素福·马斯如瓦博士阁下
Baseline Dr Yakub bin Yusuf al-Masruva, Deputy Minister of Health of Saudi Arabia
LaSS 沙特阿拉伯卫生部副部长的助理,His Excellency Dr Yakub bin Yusuf al-Masruva

Src Не хочу я, чтобы Пит показывал нам фото,
Элли.

Ref 我不要皮特给我们看照片艾莉
Baseline I don’t want Pete showing us a photo, Elly.
LaSS 我不想让皮特给我们看一下照片,艾丽.

Src Роджерс!Ясказал,встатьвстрой!
Ref 罗杰斯我说跟上
Baseline 罗吉尔斯! I said, get up!
LaSS 罗吉尔斯,我说,你要站起来!

Table 9: Case Study


