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Abstract

In Machine Translation, assessing the quality
of alarge amount of automatic translations can
be challenging. Automatic metrics are not re-
liable when it comes to high performing sys-
tems. In addition, resorting to human evalua-
tors can be expensive, especially when evalu-
ating multiple systems. To overcome the latter
challenge, we propose a novel application of
online learning that, given an ensemble of Ma-
chine Translation systems, dynamically con-
verges to the best systems, by taking advantage
of the human feedback available. Our experi-
ments on WMT’19 datasets show that our on-
line approach quickly converges to the top-3
ranked systems for the language pairs consid-
ered, despite the lack of human feedback for
many translations.

1 Introduction

In Machine Translation (MT), measuring the qual-
ity of a large amount of automatic translations can
be a challenge. Automatic metrics like BLEU (Pap-
ineni et al., 2002) remain popular due to their fast
and free computations. Yet, in the last few years
we have seen that, as MT quality improves, auto-
matic metrics become less reliable (Ma et al., 2019;
Mathur et al., 2020). For example, in the Con-
ference on Machine Translation (WMT) 19 News
Translation shared task, the winning system accord-
ing to human annotators was not even in the top-5
according to BLEU (Barrault et al., 2019). On the
other hand, using human assessments can be expen-
sive, especially when evaluating multiple systems.
In a real world scenario, given an arbitrary number
of MT systems, one would need to evaluate them
individually to find the best systems for a given lan-
guage pair. However, that requires a considerable
effort and there may not be enough human anno-
tators to evaluate all the systems’ translations. For
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instance, in the aforementioned WMT’19 shared
task, many translations from the competing sys-
tems did not receive any human assessment.

Given an ensemble of competing, independent
MT systems, how can we dynamically find the best
ones for a given language pair, while making the
most of existing human feedback? To address this
question, we present a novel application of online
learning to MT: each MT system in the ensemble
is assigned to a weight, and the systems’ weights
are updated considering human feedback regarding
the quality of their translations at each iteration.
We use online learning algorithms with theoretical
performance guarantees, under the frameworks of
prediction with expert advice (Cesa-Bianchi and
Lugosi, 2006) and multi-armed bandits (Robbins,
1952; Lai and Robbins, 1985).

We contribute with an online MT ensemble that
allows to reduce human effort by immediately in-
corporating human feedback in order to dynam-
ically converge to the best systems!. Our experi-
ments on WMT’ 19 News Translation test sets show
that our online approaches indeed converge to the
shared task’s official top-3 systems (or to a subset
of them) in just a few hundred iterations for all the
language pairs experimented. Moreover, it does
so while coping with the aforementioned lack of
human assessments for many translations, through
the use of fallback metrics.

2 Online learning frameworks

To provide some background on our proposal, we
start by describing the online learning frameworks
that we apply in this paper: prediction with expert
advice and multi-armed bandits.

A problem of prediction with expert advice can
be described as an iterative game between a fore-

!The code for our experiments can be found in https:
//github.com/vania-mendonca/MTOL
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caster and the environment, in which the forecaster
seeks advice from different sources (experts) in or-
der to provide the best forecast (Cesa-Bianchi and
Lugosi, 2006). At each iteration ¢, the forecaster
consults the predictions p;;,j = 1....J, made by
a set of J weighted experts, in the decision space
D. Considering these predictions, the forecaster
makes its own prediction, pr; € D. At the same
time, the environment reveals an outcome 3 in the
decision space ) (which may not necessarily be
the same as D).

A well-established algorithm to learn the ex-
perts’ weights in this framework is Exponen-
tially Weighted Average Forecaster (EWAF) (Cesa-
Bianchi and Lugosi, 2006). In EWAF, the predic-
tion made by the forecaster is randomly selected
following the probability distribution based on the
experts” weights w41 ... wyz—1:

J

> o1 Wit—1Djit

==
D1 Wji-1

At the end of each iteration, the forecaster and
each of the experts receive a non-negative loss
based on the outcome y; revealed by the environ-
ment (¢ ; and /; 4, respectively). The weight w; ; of
each expert j = 1...J is then updated according
to the loss received by each expert, as follows:

brt= (1)

wjt = wjt—1€ T 2)

If the parameter 7 is set to 4/ 81‘;5‘], it can be
shown that the forecaster quickly converges to the

performance of the best expert after 7" iterations
(Cesa-Bianchi and Lugosi, 2006).

Prediction with expert advice assumes that both
the forecaster and all the experts receive a loss
once the environment’s outcome is revealed. How-
ever, this assumption may not always hold (i.e.,
there may not always be an environment’s explicit
feedback or a way to obtain the loss for all the
experts). Thus, we consider a related class of prob-
lems, multi-armed bandits, in which the environ-
ment’s outcome is unknown (Robbins, 1952; Lai
and Robbins, 1985). In this class of problems, one
starts by attempting to estimate the means of the
loss distributions for each expert (also known as
arm) in the first iterations (the exploration phase),
and when the forecaster has a high level of confi-
dence in the estimated values, one may keep choos-
ing the prediction with the smallest estimated loss
(the exploitation phase).

A popular online algorithm for adversarial multi-
armed bandits is Exponential-weighting for Explo-
ration and Exploitation (EXP3) (Auer et al., 1995).
At each iteration ¢, the forecaster’s action is ran-
domly selected according to the probability distri-
bution given by the weights of each arm j:

s Wi 3
pf,t z .}]/ B wj, ( )

In this framework, the forecaster is only able
to measure the loss of the action it selects at each
iteration, but it cannot measure the loss of other
possible actions. Thus, only the weight of the arm
associated with this action is updated, as follows:

i
wjt = wji—1€ T “4)

where lﬁjjt = %’i and p;, is the probability of
J»

choosing arm j at iteration ¢.
2logJ
T|A]|
able, and may be the same as the number of arms
J), it can be shown that the forecaster quickly con-
verges to the performance of the best arm.

Both of these frameworks are relatively under-
explored in NLP, despite their potential to converge
to the best performing approach available in scenar-
ios where feedback is naturally present. Therefore,
we propose to apply them in order to find the best
MT models with little human feedback.

By setting 1 to

(where |.A| is the number the actions avail-

3 Machine Translation with Online
Learning

In this work, we consider the following scenario
as the starting point: there is an ensemble com-
posed of an arbitrary number of MT systems; given
a segment from a source language corpus, each
system outputs a translation in the target language;
then, the quality of the translations produced by
each of the available systems is assessed by one or
more human evaluators with a score reflecting their
quality.

We frame this scenario as an online learning
problem under two different frameworks: (i) predic-
tion with expert advice (using EWAF as the learn-
ing algorithm), and (ii) multi-armed bandits (using
EXP3 as the learning algorithm). The decision on
whether to use one or another framework in an MT
scenario depends on whether there is human feed-
back available for the translations outputted by all
the available systems or only for the final choice of
the ensemble of systems.
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Figure 1: Overview of the online learning process ap-
plied to MT, at each iteration ¢. The grey dashed arrows
represent flows that only occur when using prediction
with expert advice.

An overview of the online learning process is
shown in Fig.1, and can be summed up as follows.
Each MT system is an expert (orarm) j = 1...J,
associated with a weight w; (all the systems start
with same weights). At each iteration ¢, a seg-
ment src; is selected from the source language
corpus and handed to all the MT systems. Each
system outputs a translation transl;; in the target
language, and one of these translations is selected
as the forecaster’s action according to the proba-
bility distribution given by the systems’ weights
(Eq.1 for EWAF and Eq. 3 for EXP3). The cho-
sen translation transly; (when using EXP3) or
the translations outputted by all the systems (when
using EWAF) receive a human assessment score”
score;j ¢, from which the loss ¢ ; is derived for the
respective MT system. Finally, the weight of the
chosen system or the weights of all the systems are
updated as a function of the loss received, accord-
ing to Eq.4 (when using EXP3) and Eq.2 (when us-
ing EWAF), respectively (where £;; = —score; ;).

4 Experimental setup

To validate our proposal, we designed an exper-
iment using data from an MT shared task. The
main questions addressed by our experiment are:
(i) whether an online learning approach can give a
greater weight to the top performing systems for
each language pair according to the shared task’s
official ranking, and (ii) if so, how quickly (i.e.,
how many translations need to be assessed by hu-
man evaluators in order to find the best system).

Below we detail the datasets used (Section 4.1)
and the feedback sources considered (Section 4.2),
as well as other experimental decisions (Sec-
tion 4.3).

2If multiple human assessments were made for the same
translation, score; ; is the average of the scores received.

4.1 Datasets

We used the test datasets made available by the
WMT’ 19 News Translation shared task (Barrault
et al., 2019). For each language pair, each source
segment is associated with the following informa-
tion:

* A reference translation in the target language
(produced specifically for the task);

* The automatic translation outputted by each
system competing in the task for that language
pair;

* The average score obtained by each automatic
translation, according to human assessments
made by one or more human evaluators, in
two formats: a raw score in [0;100] and a z-
score in [—oo; +00]. Not all the automatic
translations received a human assessment;

¢ The number of human evaluators for each au-
tomatic translation (if there were any).

For brevity, we focused on five language pairs,
listed in Table 1. The official top 3 systems for each
pair, according to the average z-score, are shown in
Table 2. Our choice of language pairs attempts to
capture as many different phenomena as possible
with the fewest pairs:

* English — German (en-de): This is the lan-
guage pair with the most competitors and does
not have a clear winning system (the winner
differs depending on whether one considers
the z-score or the raw score);

¢ French — German (fr—de): Unlike most
language pairs, this pair features two lan-
guages other than English. Moreover, there is
a strong imbalance between translations lack-
ing human assessments and translations that
received at least one assessment;

* German — Czech (de—cs): Besides featur-
ing two languages other than English, this
pair stands out as it was devised as an unsu-
pervised task (i.e., English was used as a “hub”
language);

* Gujarati — English (gu—en): This is one of
the task’s low-resource language pairs (i.e.,
whose test set is half the size of most language-
pairs in the task), and is one where there may
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en-de fr-de de-cs gu-en lt-en
Test set size (# segments) 1997 1701 1997 1016 1000
Competing systems 22 10 11 12 11
Human assessments coverage 86.80% 23.52% 62.94% 75.00% 100.00%

Table 1: Overview of the language pairs considered in our experiments.

Top 3 z-score Raw score
v Facebook-FAIR (Ng et al., 2019) 0.347 90.3
L Microsoft-sent-doc (Junczys-Dowmunt, 2019) 0.311 93.0
0 Microsoft-doc-level (Junczys-Dowmunt, 2019) 0.296 92.6
9 MSRA-MADL (Xia et al., 2019) 0.267 82.4
1} eTranslation (Oravecz et al., 2019) 0.246 81.5
w  LIUM (Bougares et al., 2019) 0.082 78.5
a online-Y 0.426 63.9
! online-B 0.386 62.7
< NICT (Dabre et al., 2019) 0.367 614
g NEU (Li et al., 2019) 0.210 64.8
|3 UEDIN (Bawden et al., 2019) 0.126 61.7
o  GTCOM-Primary (Bei et al., 2019) 0.100 594
z:) GTCOM-Primary (Bei et al., 2019) 0.234 77.4
J|J tilde-nc-nmt (Pinnis et al., 2019) 0.216 71.5
—  NEU (Li et al., 2019) 0.213 717.0

Table 2: Top 3 performing systems for each language pair in the WMT’ 19 News Translation shared task (Barrault
et al., 2019). The systems named “online-[letter]” correspond to publicly available translation services and were

anonimized in the shared task.

be more linguistic differences between the
source and the target languages (e.g., different
writing systems). Unlike en-de, there is a
clear winner considering both raw and z-score.
Moreover, three of the competing systems did
not receive any human assessment on their
translations;

* Lithuanian — English (1t—en): This is an-
other low-resource language pair, with a rather
competitive top 3. Unlike most language pairs,
all the translations submitted by the compet-
ing systems for this pair received a human
assessment.

For all these language pairs (except English —
German), each segment was given an assessment
score considering only the reference translation
(and without access to the segment’s context within
the document to which it belongs). For English —
German, scores were given considering the source
segment instead of the reference, and evaluators

had access to the segment’s context within the doc-
ument.

4.2

A key condition for applying online learning to
this scenario is the availability of feedback. We
use the human assessment raw scores® present in
the test sets as a feedback source to compute the
loss and update the weight of each MT system,
as already suggested in Section 3. However, not
all translations received human assessments (recall
Table 1). To cope with this issue, we designed
different variants of this loss function, following
different fallback strategies:

Human feedback

e human—-zero: If there is no human assess-
ment for the current translation, a score of zero
is returned (leading to an unchanged weight
on that iteration);

3Although we assume an absolute scale of scores in [0;100]

in our experiments, our approach could be applied to any other
level of granularity.
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* human—-avg: If there is no human assess-
ment for the current translation, the average
of the previous scores received by the system
behind that translation is returned as the cur-
rent score;

* human—-comet: If there is no human assess-
ment for the current translation, the COMET
score (Rei et al., 2020a) between the transla-
tion and the pair source/reference available
in the corpus is returned as the current score.
We pre-trained* this automatic metric on the
datasets of previous shared tasks (WMT’17
(Bojar et al., 2017) and WMT’ 18 (Bojar et al.,
2018)). Thus, for most translations, it displays
a small difference regarding the existing hu-
man scores (see Fig. 2 for the case of en—de).
Moreover, this metric correlates better with
ratings by professional translators than the
WMT scores (Freitag et al., 2021).

Iy = N
) 2] )

Probability density

o
«

0.0-
-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00

| COMET - human |

Figure 2: Distribution of the difference between the (ex-
isting) human assessments and COMET scores for the
same translations, on the en—de test set.

4.3 Experimental design

For each language pair, we shuffled the test set
once, so that the performance of the online algo-
rithms would not be biased by the original order of
the segments in the test set. We ran EWAF once
for each loss function, and we ran EXP3 10 times
per loss function and report the average weights
obtained across runs, since EXP3’s weight evolu-
tion is critically influenced by the random choice of
an arm at each iteration. We normalized the trans-
lation scores scorej; to be in the interval [0, 1]
and rounded them to two decimal places, to avoid
exploding weight values due to the exponential up-
date rule.

*We trained this metric from scratch following the hyper-

parameters described in Rei et al. (2020b), except that we used
the raw scores instead of the z-normalized scores.

5 Results and discussion

In order to observe whether (and how soon) our
online approach converges to the best systems, we
report the overlap between the topn = 1, 3 systems
with greatest weights according to our approaches,
Sn, and the top n = 1,3 systems according to
the shared task’s official ranking, s;, at specific
iterations:

o *
topn, = M,n =1,3 (5)
n

We preferred this metric over a rank correlation
metric, as we are focused on whether our online
approach follows the performance of the best MT
systems. In a realistic scenario (e.g., a Web MT
service), a user would most likely rely solely on
the main translation returned, or would at most
consider one or two alternative translations. More-
over, due to the lack of a large enough coverage
of human assessments, the scores obtained in the
shared task are not reliable enough to discriminate
between similarly performing systems.

Starting with en—de (Table 3), this was the lan-
guage pair for which our approach appears to be
the least successful, since, for most of the itera-
tions examined, it failed to converge to the best
system. Even so, it managed to converge to the top
3 systems, doing so particularly early in the learn-
ing process (50 iterations) when using EWAF with
human—-avg and human—-comet as loss func-
tions (i.e., when using fallback scores). Recall that,
for this language pair, there were different official
winning systems depending on whether one con-
siders the z-score or the raw score (recall Table 2);
since we use the raw score as the loss function, it is
expectable that our approach does not necessarily
converge to the winner according to the z-score.

For fr—de (Table 4), our online approach often
converges to the top 3 systems (or a subset of them)
throughout the learning process (even at just 10
iterations), and it also converges to the best system
when using EWAF with human—comet. This is
a particularly interesting result if we recall that,
out of the five pairs considered, fr—de had the
lowest coverage of human assessments by far (see
Table 1), thus suggesting that using COMET may
be an adequate fallback strategy.

For de—cs (Table 5), we can see that, regardless
of the algorithm and loss function used, there is an
overlap of at least one system between our top 3 and
the shared task’s official top 3, after going through

3109



Iteration 10 50

100 500 1000 1997

Top 1 3 1 3

3 1 3 1 3 1 3

0.00 0.33 0.00 0.00
0.00 0.00 1.00 0.67
0.00 033 0.00 1.00

human-zero
human-avg
human-comet

EWAF

0.00
1.00
0.00

0.33 1.00 0.67 1.00 0.67 0.00 0.67
0.33 0.00 1.00 0.00 1.00 0.00 1.00
0.67 0.00 1.00 0.00 1.00 0.00 1.00

0.00 0.33 0.00 0.00
0.00 0.00 0.00 0.33
0.00 0.00 0.00 0.00

human-zero
human-avg
human-comet

EXP3

0.00
0.00
0.00

0.00 0.00 033 1.00 033 1.00 0.33
0.67 0.00 033 0.00 033 0.00 0.33
0.33 0.00 0.00 0.00 0.00 0.00 0.33

Table 3: Overlap ratios of top 1 and top 3 systems in common between the online approaches and the official
ranking for en—de. Recall that, for this pair, the official ranking differed depending on whether the z-score or the

raw score was considered.

Iteration 10 50 100 500 1000 1701
Top 1 3 1 3 3 1 3 1 3 1 3
. human-zero 0.00 0.67 0.00 033 0.00 033 0.00 067 000 067 1.00 0.67
§ human-avg 0.00 0.67 0.00 0.67 0.00 0.67 0.00 033 0.00 033 0.00 0.33
“ human-comet | 1.00 1.00 1.00 0.67 1.00 100 1.00 1.00 100 1.00 1.00 1.00
., human-zero 0.00 0.67 0.00 033 0.00 033 000 033 1.00 067 1.00 0.67
& human-avg 0.00 033 0.00 033 0.00 033 0.00 033 000 033 0.00 0.33
" human-comet 0.00 033 000 067 000 0.67 000 033 000 067 000 0.67

Table 4: Overlap ratios of top 1 and top 3 systems in common between the online approaches and the official
ranking for fr—de. Recall that this was the language pair with the lowest coverage of human assessments.

Iteration 10 50 100 500 1000 1997
Top 1 3 1 3 3 1 3 1 3 1 3
. human-zero 0.00 033 1.00 0.67 1.00 0.67 0.00 0.67 1.00 1.00 0.00 1.00
§ human-avg 0.00 033 000 033 1.00 067 1.00 067 1.00 0.67 1.00 1.00
“ human-comet 0.00 033 100 0.67 1.00 0.67 1.00 1.00 100 1.00 1.00 1.00
., human-zero 0.00 033 0.00 0.67 0.00 0.67 000 0.67 0.00 0.67 1.00 1.00
& human-avg 0.00 033 0.00 033 000 033 0.00 067 1.00 0.67 1.00 0.67
" human-comet 0.00 033 [1.00 033 1.00 033 1.00 067 100 067 1.00 0.67

Table 5: Overlap ratios of top 1 and top 3 systems in common between the online approaches and the official

ranking for de—cs.

only as few as 10 iterations (despite a considerable
lack of human assessments in this language pair).
We can also see that the human—comet loss func-
tion is the most successful overall, which reinforces
the idea that COMET may be an appropriate fall-
back metric in the absence of human scores for a
given translation. Since this is the language pair
for which there seems to be a more similar perfor-
mance across different algorithms and loss func-
tions, we also report the weight evolution plots for
this pair in order to inspect what changes depending

on the algorithm and fallback strategy used®. Look-
ing at EWAF combined with the human-zero
loss function (Fig. 3), one can see a rather irreg-
ular evolution for the weights of the top systems,
which may be explained by the distribution of the
translations lacking human assessments across dif-
ferent systems and learning iterations. Using the
human-avg loss function (Fig.4) allows for a
more monotonous evolution, by rewarding the sys-

5The plots for the remaining pairs can be found in App. A.
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Tteration 10 50 100 500 1000 1016

Top 1| 3 1 3 3 1 3 1 3 1 3

“ humanzero  1.00 067 100 1.00 1.00 1.00 100 067 100 067 100 0.67
2 human-comet 1.00 0.67 000 067 000 067 000 067 000 033 000 0.33
© human-zero  0.00 033 0.00 0.67 000 033 000 033 000 033 000 033
% human-comet 0.00 033 1.00 033 1.00 033 1.00 033 000 0.67 000 0.67

Table 6: Overlap ratios of top 1 and top 3 systems in common between the online approaches and the official
ranking for gu—-en. Recall that there were three systems competing on this language pair that did not receive
human assessments at all (thus, using human—-avg yields the same results as using human-zero).

Iteration 10 50

100 500 1000

Top 1 3 1

1 3 1 3 1 3

EWAF human-zero

0.00 0.00 0.00 0.67 0.00 0.67

1.00 0.67 0.00 1.00

EXP3

human-zero 0.00 0.33 0.00 0.00 0.00 0.33

1.00 0.67 1.00 0.67

Table 7: Overlap ratios of top 1 and top 3 systems in common between the online approaches and the official
ranking for 1t —en. Recall that this was the only language pair for which all the translations received at least one
human assessment, thus there is no need to use a fallback loss function.

tems that were doing better overall in the absence
of human assessments. Using the human-comet
loss function (Fig. 5) paints a similar picture, as
the COMET scores for this language pair seem to
be in line with the official ranking (although they
appear to benefit the third best system in detriment
of the second best). Finally, using EXP3 instead
of EWAF (Fig. 6), combined with human—-zero,
leads to much less pronounced weights, but still
in line with the official ranking. Recall that, for
EXP3, these weights are averaged across different
runs: since each run may lead to different top sys-
tems, the difference between the averaged weights
ends up being more smooth, i.e., there is a great
variance across runs (this happens regardless of the
language pair or loss function).

As for gu-en (Table 6), our approach (using
EWAF with human-zero) converges to the best
system and to a subset of the top 3 within just 10 it-
erations; on the other hand, using human-comet
does not do as well as not using a fallback strategy,
at least when combined with EWAF. However,
recall that, for this pair, there were systems that
did not receive any human assessments at all for
their translations (that being the reason why we
do not report human-avg for this pair: the result-
ing weights end up being the same as when using
human-zero). One of the systems that did not re-
ceive any human assessments, online-B, ended

up receiving high COMET scores, thus leading to a
weaker overlap between the online approach rank-
ing and the official ranking.

Finally, for 1t —en (Table 7) we only report the
human-zero loss function, since this is the only
pair for which there are human assessments for all
translations. Interestingly, the online approaches
do not do well as quickly as for other pairs, but
eventually get there (within 100 to 500 iterations).

To sum up these results: although factors like
the coverage of human assessments or the combi-
nations of online algorithm and loss function used
influence how well our approach does, we can still
conclude that using an online learning approach
allows to converge to the top 3 systems according
to the official ranking (or at least to a subset of
them) in just a few hundred iterations (and, in some
cases, in just a few dozens of iterations) for all the
language pairs considered.

6 Related work

6.1 WMT’19 News Translation Shared Task

Every year, since 2006, the Conference on Ma-
chine Translation (WMT) is responsible for orga-
nizing several shared tasks where participants push
the limits of MT and MT evaluation (Koehn and
Monz, 2006; Barrault et al., 2020). In the News
Translation shared task, participants submit the out-
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Figure 3: Weight evolution per MT system when using EWAF and human-zero as the loss function (de-cs).
Recall that, for this language pair, the official top 3 systems were online-Y, online-B, and NICT.
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Figure 4: Weight evolution per MT system when using EWAF and human-avg as the loss function (de-cs).
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Figure 5: Weight evolution per MT system when using EWAF and human-comet as the loss function (de-cs).
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Figure 6: Weight evolution per MT system when using EXP3 and human-zero as the loss function (de-cs),
averaged across 10 runs (the error bars represent the weights’ variance across the 10 runs).

puts of their systems that are then evaluated by a  main differences among them being: (i) whether
community of human evaluators using Direct As-  they considered document-level or only sentence-
sessment scores (Graham et al., 2013). Thus, the  level information; (ii) whether they were trained
winner is the system that achieves the highest av-  only on the training data provided by the shared
erage score. For WMT’19 (Barrault et al., 2019),  task, or on additional sources as well; (iii) whether
most of the competing systems followed a Trans-  they consisted of a single model or an ensemble.
former architecture (Vaswani et al., 2017), with the
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6.2 Online learning for Machine Translation

There has been a number of online learning ap-
proaches applied to MT in the past, mainly in
Interactive MT and/or post-editing MT systems.
However, most approaches aim at learning the
parameters or feature weights of an MT model
(Mathur et al., 2013; Denkowski et al., 2014; Ortiz-
Martinez, 2016; Sokolov et al., 2016; Nguyen
etal., 2017; Lam et al., 2018) or fine-tuning a pre-
trained model for domain adaptation (Turchi et al.,
2017; Karimova et al., 2018; Peris and Casacuberta,
2019). Even in cases where the MT model is com-
posed of several sub-models (e.g., Ortiz-Martinez
(2016)), the goal is to online learn each sub-model’s
specific parameters (while our learning goal is the
weights of each system in an ensemble). Another
key difference between these approaches and ours
is that most of them use human post-edited trans-
lations as a source of feedback. The exceptions to
this are the systems competing for WMT’17 shared
task on online bandit learning for MT (Sokolov
et al., 2017), as well as Lam et al. (2018), who use
(simulated) quality judgments.

The most similar proposal to ours is that of
Naradowsky et al. (2020), who ensemble different
MT systems and dynamically select the best one for
a given MT task or domain using stochastic multi-
armed bandits and contextual bandits. The bandit
algorithms learn from feedback simulated using a
sentence-level BLEU score between the selected
automatic translation and a reference translation.

Thus, to the best of our knowledge, we are the
first to frame the MT problem as a problem of
prediction with expert advice and adversarial multi-
armed bandits in order to combine different sys-
tems into an ensemble that converges to the perfor-
mance of the best individual systems, simulating
the human-in-the-loop by using actual human as-
sessments (when available).

7 Conclusions and future work

We proposed an online learning approach to ad-
dress the issue of finding the best MT systems
among an ensemble, while making the most of
existing human feedback. In our experiments on
WMT’19 News Translation datasets, our approach
converged to the top-3 systems (or a subset of them)
according to the official shared task’s ranking in
just a few hundred iterations for all the language
pairs considered (and just a few dozens in some
cases), despite the lack of human assessments for

many translations. This is a promising result, not
only for the purpose of reducing the human evalua-
tions required to find the best systems in a shared
task, but also for any MT application that has ac-
cess to an ensemble of multiple independent sys-
tems and to a source of feedback from which it can
learn iteratively (e.g., Web translation services).

Yet, our approach is limited by the guality of the
collected human judgments. For future work, we
plan to combine online learning with a more reli-
able human metric, such as the Multidimensional
Quality Metric MQM) (Lommel et al., 2014), so
that we can focus on the quality of the assessments
instead of their quantity.
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A Weight evolution (all language pairs)

Here we present the weight evolution per MT
system for all the combinations of language
pairs, learning algorithms (EWAF or EXP3), and
loss functions (human-zero, human-avg, or
human-comet, when applicable) — except for
those combinations that are already part of the main
document.

A.1 English — German (en-de)
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Figure 7: EWAF with human-zero loss.
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Figure 10: EXP3 with human-zero loss.
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Figure 12: EXP3 with human-comet loss.

A.2 French — German (fr-de)
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for this language pair, the official top 3 systems were
MSRA-MADL, eTranslation, and LIUM.
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Figure 16: EXP3 with human-zero loss.
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Figure 17: EXP3 with human-avg loss.

CUNIT2T-transfer-guen 6431

Figure 23: EXP3 with human-zero loss.
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Figure 18: EXP3 with human-comet loss.

German — Czech (de—cs)

Figure 24: EXP3 with human-comet loss.

A.5 Lithuanian — English (1t-en)
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Figure 19: EXP3 with human-avg loss. Recall that,
for this language pair, the official top 3 systems were
online-Y, online-B, and NICT.
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Figure 20: EXP3 with human-comet loss.

A4 Gujarati — English (gu-en)
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Figure 21: EWAF with human-zero loss. Recall that,
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for this language pair, the official top 3 systems were
NEU, UEDIN, and GTCOM-Primary.
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Figure 22: EWAF with human-comet loss.

Figure 25: EWAF with human-zero loss. Recall that,

for this language pair, the official top 3 systems were

GTCOM-Primary, tilde-nc-nmt, and NEU.
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Figure 26: EXP3 and human-zero loss.
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