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Abstract

Neural models have shown impressive perfor-
mance gains in answering queries from natu-
ral language text. However, existing works
are unable to support database queries, such
as “List/Count all female athletes who were
born in 20th century”, which require reason-
ing over sets of relevant facts with operations
such as join, filtering and aggregation. We
show that while state-of-the-art transformer
models perform very well for small databases,
they exhibit limitations in processing noisy
data, numerical operations, and queries that
aggregate facts. We propose a modular archi-
tecture to answer these database-style queries
over multiple spans from text and aggregating
these at scale. We evaluate the architecture
using WIKINLDB,1 a novel dataset for ex-
ploring such queries. Our architecture scales
to databases containing thousands of facts
whereas contemporary models are limited by
how many facts can be encoded. In direct com-
parison on small databases, our approach in-
creases overall answer accuracy from 85% to
90%. On larger databases, our approach re-
tains its accuracy whereas transformer base-
lines could not encode the context.

1 Introduction

Question answering (QA) over text has made sig-
nificant strides in recent years owing to the avail-
ability of new datasets and models. Machines have
surpassed human performance on the well-known
SQUaD task (Rajpurkar et al., 2016) where mod-
els extract answer spans from a short passage of
text. The subsequent body of work has further con-
sidered incorporating retrieval from large corpora
such as Wikipedia (Dhingra et al., 2017; Joshi et al.,
2017; Kwiatkowski et al., 2019) to identify relevant
information, conditioning answer generation (Chen

1https://github.com/facebookresearch/
NeuralDB

Facts: (8 of 500 shown)

Queries:

- Nicholas lives in Washington D.C. with his wife.
- Sheryl is Nicholas’s wife.
- Teuvo was born in 1912 in Ruskala.
- Sheryl’s mother gave birth to her in 1978.
- Nicholas is a doctor.
- Sarah was born in Chicago in 1982.
- Sarah married John in 2010.
- Sarah works in a hospital in NY as a doctor.

Whose spouse is a doctor?
(Join) → Sheryl, John, . . .

List everyone born before 1980.
(Set) → Sheryl, Teuvo, . . .

Who is the oldest person?
(Max) → Teuvo

Who is Sheryl’s mother?
(Set) → NULL

Figure 1: Examples of set and aggregation queries over
a natural language database: a database where facts are
stored in free-form text without the need for a schema.

et al., 2017; Lewis et al., 2020b; Izacard and Grave,
2020). More sophisticated architectures have been
proposed with incremental retrieval for multi-hop
QA (Xiong et al., 2020; Das et al., 2019), where
several passages are required, which may have low
lexical or semantic similarity with the question.

This paper considers the problem of answering
questions similar to database queries, such as those
shown in Figure 1. For example, the query “List
all the female athletes in Wikipedia who were born
in the 20th century”, requires reasoning over hun-
dreds or thousands of facts, retrieved from multiple
Wikipedia pages, and applying set-based filters to
them (e.g., gender, birth date). If our query fur-
ther asked how many such athletes exist, we would

https://github.com/facebookresearch/NeuralDB
https://github.com/facebookresearch/NeuralDB
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have to perform an aggregation function to count
the result set. The ability to answer the aforemen-
tioned queries would enable a new kind of database
(Thorne et al., 2021) where facts can be described
in natural language and would therefore obviate the
need for a pre-defined schema, which is a major
limitation of current database systems. An example
application for such flexible text databases exists
in the area of storing knowledge for personal assis-
tants where users store data about their habits and
experiences, their friends and their preferences, for
which designing a schema is impractical.

We introduce WIKINLDB, a benchmark dataset
for exploring database reasoning over facts ex-
pressed in natural language. WIKINLDB con-
tains a number of query types that require systems
to return large set-based answers and aggregate
over these (with operators such as count, min,
and max). Our dataset is generated using publicly
available knowledge graph data, enabling large vol-
umes of instances to be generated with minimal
effort. Most queries in WIKINLDB require rea-
soning over hundreds of facts to generate answers,
exposing limitations in current neural models. In
contrast to DROP (Dua et al., 2019) where queries
are answered over single passages, and bAbI (We-
ston et al., 2015), where each query is based on
a context of less than 20 facts, our dataset scales
from databases of 25 instances to 1000, and could
be extended further.

We also introduce a modular architecture to sup-
port database reasoning over text and characterize
its behavior on our reference dataset. We find that
even on small databases of 25 facts, naive applica-
tion of transformers is insufficient. When provided
with only the relevant facts, the baseline yields an
answer accuracy of 85%, whereas applying our pro-
posed architecture yields 90% by better answering
queries, such as count, that require computation.
It is well known that transformer models do not
scale well to large inputs due to the use of self-
attention. We found that mechanisms such as Fu-
sion in Decoder (Izacard and Grave, 2020, FiD) and
LongFormer (Beltagy et al., 2020), which mitigate
the scaling issue, harm the model: combining more
than 2 facts with FiD resulted in answer accuracies
of 76% and 39%, respectively. These issues were
mitigated by our approach which generates inter-
mediate query-based derivations of small numbers
of facts in the database, before using conventional
computation to aggregate the results.

2 Answering Database Queries over Text

2.1 Problem Definition

We refer to corpora that consist of unordered col-
lections of facts expressed as short natural lan-
guage sentences as Natural Language Databases
(NLDBs). For example, a corpus may include all
the utterances given to a personal assistant by its
user, or all the claims uttered by a political figure.
The texts in our corpora are similar to databases
as they are sets of stand-alone facts. But unlike a
database, they are not expressed as rows or triples
in a pre-defined schema. For example, a sentence
containing a single fact, “Gustavo likes espresso”
or multiple facts, such as “Robertson Howard, who
attended the University of Virginia, is buried in the
Congressional Cemetery”.

A query Q over a database, D, produces a set
of answers: Q(D) = {a1, . . . , al}. We consider
the following four query types (see examples in
Table 5): (1) Set queries are extractive queries that
return a list of spans, such as entities, from the facts.
(2) Boolean queries return a True/False answer.
(3) Aggregation queries require computation over
answer sets with an operator, such as count, min
and max. For example: “How many people work
for Yale Law School?”). (4) Join queries require
the combination of two (or more) facts to produce
each answer. We combine join operations with set,
Boolean and aggregation queries. For example,
the query “Who works in a company in France?”
considers both the relationship between people and
employer as well as company locations.

2.2 Challenges

The NLP treatment of question answering, where
systems encode the query and context (containing
the background knowledge), forms a good starting
point for NLDBs. Common model architectures
are based on the transformer (Vaswani et al., 2017)
in an encoder-decoder configuration. The encoder
uses self-attention to conditionally encode the con-
text with the query and the decoder allows condi-
tional generation of outputs that are not necessarily
present in the input. To scale question answering
to reason over large knowledge-sources such as
Wikipedia, task formulations typically retrieve text-
spans from a corpus to condition answer generation
(Chen et al., 2017; Dhingra et al., 2017). However,
several challenges encountered in NLDBs preclude
direct application of these techniques:
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John works at Shell

Sarah is a doctor

Sarah married John

John works at Shell

Sarah is a doctor

Sarah married John

Sarah married John

Facts Support sets

NULL

John

Query-based
derivation

Neural SPJ

Support Set
Generator

Query: 
How many peoples'

spouses are doctors?

Neural SPJ

Result set

Aggregation 1

Figure 2: Overview of the proposed architecture. Consisting of a support set generator, SPJ and aggregation

Scale To scale neural reasoning to databases of
non-trivial size, it would not be feasible to en-
code the entire database as input to the transformer.
Question answering systems combine a retrieval
mechanism to select relevant spans from knowl-
edge sources as context. This task is usually re-
ferred to as open-domain QA (Lewis et al., 2020a;
Izacard and Grave, 2020). It is common to use a
maximum input size of 512 or 1024 tokens for con-
text. While extensions such as Linformer (Wang
et al., 2020), Longformer (Beltagy et al., 2020) and
Fusion in Decoder (Izacard and Grave, 2020) en-
able larger contexts to be encoded, their application
of self-attention varies and the number of tokens
that may be encoded is limited by GPU memory.

Multiple answer spans The NLP formulation of
question answering typically requires extracting a
span from a single document or generating a short
answer. Answering queries in a NLDB may require
processing a large number of facts, generating a
large number of items as answer, hundreds or thou-
sands, and performing aggregations over large sets.

Locality and document structure NLDBs do
not enjoy the locality properties that usually hold
in open-domain QA. In NLDBs, a query may be
dependent on multiple facts that can be anywhere
in the database. In fact, by definition, the current
facts in a database can be reordered and the query
answers should not change. In contrast, in open-
domain QA, the fact needed to answer a given ques-
tion is typically located in a paragraph or document
with multiple sentences about the same subject,
in combination with a document title, where this
additional context may help information recall.

Conditional retrieval Similar to open-domain
question answering, NLDBs mandate an informa-
tion retrieval component. When determining which

facts to input to the model, NLDBs may require
conditional retrieval from the database. For ex-
ample, to answer the query “Whose spouse is a
doctor?” we’d first need to fetch spouses and then
their professions. Recent work on multi-hop query
answering (e.g., Asai et al. (2019)), has started con-
sidering this issue but is restricted to the case where
we’re looking for a single answer. In NLDBs, we
may need to perform multi-hops for sets of facts.

3 Architecture for querying NLDBs

To address the aforementioned challenges, we pro-
pose an instance of a Neural Database architecture
(Thorne et al., 2021) that operates over textual facts
with parallelizable non-blocking operators before
aggregating the results. The three core components
of the architecture, shown in Figure 2, are a Sup-
port Set Generator (SSG) which retrieves small sets
of relevant facts called support sets, a paralleliz-
able non-blocking Select-Project-Join (SPJ) opera-
tor which generates intermediate answers that can
be unioned to produce the final answer, and an op-
tional aggregation stage which uses conventional
computation to perform numerical reasoning. The
key insight underlying our architecture is to lever-
age neural models for what they excel at, namely,
reasoning over a small set of facts.

Neural SPJ Operator Given a single support
set and a query, the SPJ (Select-Project-Join) op-
erator outputs a machine readable intermediate
representation of the answer that can be gener-
ated from the support set. For example, given the
query “Who was born in Montevideo?” and the
support set {“Mario Sagario was born in Montev-
ideo, Uruguay, ...”}, the Neural SPJ would output
the entity literal Mario Sagario. Examples of
outputs are provided in Figure 3.

The SPJ operator is performing three functions:
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(1) for support sets that are insufficient to answer a
question, the operator should return no output; (2)
for queries that require short chains of reasoning
over multiple facts, the SPJ operator joins the facts
when generating the output; and (3) the SPJ gen-
erates a projection of the support set to a machine
readable format dependent on the given query, and
whether computation or aggregation is required.

Because the SPJ operator is run in parallel, it can
scale independently of the limitations on the size
of the input of a single transformer. In contrast, the
use of self-attention when encoding all facts as one
input precludes parallelization, has high latency,
and is limited by the memory required to compute
the self-attention. By using the SPJ operator to
perform query-dependent information extraction,
aggregations can be performed over the generated
outputs using conventional computation, which
trivially scales to thousands of operands. Further-
more, this allows large result sets to be generated
by the model, whereas accurately decoding long
sequences using an encoder-decoder architecture
remains an open challenge (Hupkes et al., 2020).

Support Set Generator (SSG) A support set
contains the minimal subset of sentences from the
database needed to generate one single operand for
the aggregation module by the SPJ operator. For
example, for queries that are answered by a single
sentence, e.g., “Who is Sheryl’s husband?”, the
support set containing a single fact should be re-
turned, e.g., {“Sheryl is Nicholas’s spouse”}. The
output of the support set generator is a set of sup-
port sets, each of which is fed independently to
a downstream SPJ module. Support sets may not
be pairwise disjoint because some facts may be
required for multiple answers.

The SSG output should satisfy the following
two properties: (1) If multiple facts are needed to
produce an intermediate answer, they should all
be in the support set. For example, if we queried
“When was Sheryl’s husband born?”, the support
set should include a fact stating who the spouse
is and a fact describing when they were born. (2)
When performing aggregation, or outputting a set
of answers, multiple support sets must be generated,
each containing enough information to generate the
intermediate results that are aggregated. For exam-
ple, for the query “Who is the oldest person?”, each
of the support sets would independently contain a
fact that includes a person and indicates their age.

Aggregation The outputs of the SPJ modules
are intermediate answers to the query. For some
queries, e.g., “who lives in London?”, the final
answer is simply the union of the intermediate an-
swers. In other cases, e.g., “how many countries
grow coffee?”, an aggregation operator needs to
be applied to the union of intermediate answers.
Because output of the SPJ operators are machine
readable, we can hence guarantee accuracy and
scalability by performing aggregation using con-
ventional computation. In this paper, we consider
the aggregation functions min, max and count.

4 The WIKINLDB dataset

In this section we introduce WIKINLDB, a
novel dataset for training NLDBs which is gener-
ated by transforming structured data from Wiki-
data (Vrandečić and Krötzsch, 2014) into natu-
ral language facts and queries. Wikidata stores
triples of the form (S,R,O), where R is a relation-
ship between the subject S and the object O, e.g.,
(Tim Cook, employedBy, Apple). The
scale and breadth of Wikidata enables us to gener-
ate databases of many sizes and variety.

Facts To automate generation of questions and
answers, sentences must be grounded in Wiki-
data identifiers. One approach to generate facts
would be to use templates or collect them through
grounded information extraction datasets such as
T-REx (Elsahar et al., 2018). However, to en-
sure wider linguistic variety as well as accuracy
of the mapping, we use verbalizations of knowl-
edge graph triples that are synthesized through a
sequence to sequence model. Concretely, we use
generated sentences from KELM (Agarwal et al.,
2020), which are not grounded with Wikidata IDs,
and generate a post-hoc mapping back to Wiki-
data.For example, given the sentence: “The Slice
of Life manga series The Film Lives On was writ-
ten by Osamu Tezuka.” we map it to the Wiki-
data triple (Q11332517,P50,Q193300). Our
mapping is a two-step process: firstly, we look up
entity names from Wikipedia, returning multiple
matches for Osamu Tezuka, and secondly fil-
ter these based on which have an author relations
to The Slice of Life in the Wikidata graph.
While out of scope for this paper, this technique
could be applied to generate training datasets for
novel domains. WIKINLDB uses both atomic facts
in KELM (about a single relation of an entity) or
composite facts (about multiple relations).
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Queries Following previous work on large-scale
question answering (Hartmann et al., 2018; Tal-
mor and Berant, 2018), queries are generated using
templates. For each relation and operator, multi-
ple templates were written by the authors where
placeholders can be replaced with the subject and
objects for each relation. While multiple templates
are used to ensure variety, these are limited in di-
versity in comparison to the facts. Templates were
generated for the first 25 relations on Wikidata
with mapped data in KELM. To generate queries
that require joins we apply the same technique,
combining to combine two or more connected re-
lations, chaining the entities. We further select
the 15 most popular relations and generate ad-
ditional templates which chain the two relations.
For example, we chain (Y,locatedIn,Z) and
(X,employedBy,Y) to create a template for the
query “Does $X work at a company based in $Z?”.

Data Quality We manually inspect randomly se-
lected queries and facts and score them using the
categories introduced in this section. For queries,
we sample 70 instances, 10 for each query type.
We score each query for fluency and intelligibility.
Out of 70 queries, only one question was marked
as non-fluent due to a typo which was corrected
for the final dataset. All 70 queries were intelligi-
ble. We observed that the clarity of some queries
depended on the facts in the database to provide
context (e.g. “Who is male?”), but otherwise met
the task requirements.

To assess the quality of mapped facts from
KELM, a sample of 50 was evaluated based on 6
categories: intelligibility, fluency, inclusivity (con-
veying information from all the mapped relations),
faithfulness to these relations, and whether extra-
neous information (not in the mapped relations) is
present. 49/50 facts were intelligible and 45/50
facts were fluent. The remaining 5 had redundant
information or missing conjunctions. 50/50 facts
contained all mapped relations and 48/50 were
faithful to these relations. 8/50 facts had extra-
neous information for relations that could not be
mapped. The relations that could not be mapped
are not used for query generation and did not affect
how answers were automatically generated.

WIKINLDB Statistics We create databases
over 25 common relationships from Wikidata,
and create 643 templates from which queries are
phrased. For join-type queries, we chain a fur-

DB Size Avg #Q/DB #DBs

(up to) Train Valid Test

25 8 4000 631 621
50 7 4986 498 499

100 13 2500 250 250
250 53 1000 100 100
500 66 500 50 50

1000 70 250 25 25

Table 1: The statistics for datasets with varying size of
DBs (i.e. number of facts). Average number of queries
per each DB instance and also the number of DB in-
stances per split is displayed.

Example Input

Which place has the highest yearly number of
visitors? [SEP] The Ibaraki Prefectural Museum of

History has a visitor count of 93976 per year.

Example Output

[ARGMAX] Ibaraki Prefectural 
Museum of History [SEP] +93976

Figure 3: Example input and output of the Neural SPJ
operator (blue: query, brown: support set sentences)

ther 15 relations with a further 86 template frag-
ments. The relations we chose were selected from a
weighted sample of the most common entity types
in KELM. In total, we generate five variants of
the dataset containing databases of size 25 to 1000
facts where each fact has between 30-50 tokens.
Dataset statistics are reported in Table 1.

5 Models

5.1 Neural Select-Project-Join
The SPJ operator is trained as a sequence-to-
sequence model to generate intermediate results
from a support set and a given query. All facts
in the support set are concatenated with the query
before being input to a transformer model.

The model is trained to output different deriva-
tions depending on the query type. For the
min, max operators, the projection is a machine-
readable key-value pair, illustrated in Figure 3. For
example “which place has the highest yearly num-
ber of visitors?” has the projection of the form:
(place, number of visitors) allowing
an argmax operation by the downstream aggrega-
tion module. For queries with Boolean answers,
the output is a token indicating whether the answer
is true or false. And for all other queries where a
set of results is returned or counted, the output is
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simply a span, such as an entity or numerical value,
extracted from the support set.

Even though we use intermediary annotation for
the SPJ operator, we believe that collecting such
annotation is a simpler labeling task compare to
collecting the answers to the queries. For exam-
ple, given the fact “Serena Jameka Williams (born
September 26, 1981) is an American professional
tennis player and former world No.” and the query
“List all the female athletes who were born in 20th
centure.”, it seems relatively simple to provide
the label “Serena Jameka Williams”. However, it
is non-trivial to produce a list of potentially hun-
dreds of entities as answer (e.g. [“Serena Jameka
Williams, Simona Halep, Mary Lou Retton, Megan
Rapinoe, Kim Simmone, Mary Abichi, . . .”]). The
training of the components in our proposed archi-
tecture does not depend on the final answer and
instead, on the simpler intermediary labels.

Predicting Aggregation Operator Rather than
using a separate classifier to predict the question
type, we encode the choice of operator as a spe-
cial token that is predicted by the SPJ operator
prepended to the model output (Figure 3). The ag-
gregation operator is chosen using a majority vote
over all generated derivations from all support sets.

Negative Example Generation It is important
for the SPJ to be resilient to extraneous facts that
might be returned by a low-precision high-recall
SSG. Negative instances for training are generated
in two ways: (1) queries are paired with randomly
sampled facts and the model is trained to generate
a NULL projection (indicating the support set does
not contribute to the answer). For example, a fact
about someone’s date of birth isn’t useful when
answering a query about the visitor count of an
attraction. (2) for a portion of the training instances,
we additionally sample extraneous unrelated facts
and append these to the support sets simulating
false-positive facts from the SSG.

5.2 Support Set Generator
For simple queries over single facts, conventional
information retrieval, such as TF·IDF could be con-
sidered a primitive SSG. However, this would not
scale for joins, aggregation queries or for queries
outputting a set of answers as generating relevant
sets requires incremental decoding, conditioning
on already retrieved facts.

Naively generating the set of all relevant support
sets, SSGQ(D) ⊂ P(D), would be intractable as

Algorithm 1: SSG modeled as multi-label
classification: using maximum inner prod-
uct search (MIPS) over vector encodings of
facts U and state V

Input: Bi-encoders C: CU (for actions), CV (for
state), Database D, Query Q, Threshold τ

Output: Set of support sets (D̂1, . . . , D̂b) ⊂ P(D)
open := {{}} closed := {};
U := [CU (u1); . . . ;CU (un);CU (STOP)] for ui ∈ D;
while open 6= {} do

next := {};
for D̂k in open do

V := [CV (Q, u1 . . . um)], for ui ∈ D̂k;
A := MIPS(U ,V ,τ );
for aj in A do

if aj == STOP then
closed := closed ∪{D̂k};

else
next := next ∪{{aj ∪ D̂k}};

open := next;
return closed;

it is akin to enumerating the powerset. We con-
struct support sets efficiently by taking an incre-
mental approach, starting from the empty set (see
Algorithm 1). At each step, the classifier considers
the partially generated support set D̂k and the query
and predicts which candidate facts ui ∈ D from the
database should be added, or whether to stop the
iteration, these choices being modeled as a multi-
label classification task. If STOP is predicted, the
partial result set D̂k is closed (i.e., it forms part of
the output); otherwise, for each fact added, a new
intermediate (open) support set is generated which
is explored in the next iteration. For efficiency, we
use a bi-encoder architecture that independently en-
codes the facts in the database and the state (query
and a partial support set) and computes the inner
product between the encoded representations to
generate a score: CU (ui)

TCV (Q, D̂k). The en-
coders are pre-trained transformers fine-tuned to
yield a high inner product between the state’s en-
codings and relevant facts to be added. At predic-
tion time, the vectors encoding the facts are static
and are pre-computed offline. At each step, t, we
encode the state using a transformer by concatenat-
ing the query tokens and the facts in the partially
generated support set Dk. The SSG is trained with
full supervision of all partial support sets from the
dataset and trained to predict which facts to add to
the support set using a contrastive loss.
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Complexity of SSG The inner loop of Algo-
rithm 1 involves a Maximum Inner Product Search
(MIPS) between the encoded state and the encod-
ings of the facts, which is linear in the number of
facts. Approximate search, such as FAISS (John-
son et al., 2019), accelerate retrieval to O(log2 n).
If we assume a query needs a maximum of b sup-
port sets, and the average size of a support set is
m, then the complexity of the SSG algorithm is
O(bm log2 n). Both b and m are bounded by the
number of facts in the database n, but in practice
we’d expect only one of b or m factors to be large.
However, there is fertile ground for developing
methods for indexing (and/or clustering) the facts
in the database so that only few facts need to be
considered in each iteration of the inner loop of the
algorithm, leading to significant speedups.

5.3 Baselines

We compare our proposed architecture to
transformer-based models that explore the effect
of three attention mechanisms representative of
the state-of-the-art. Self-attention in transformers
captures both inter-fact as well as intra-fact in-
teractions between tokens. However, computing
self-attention is quadratic with respect to memory
and scaling beyond 1024 tokens is non-trivial. In
our baselines, the task formulation is a sequence
to sequence model, similar to that used in ques-
tion answering. All (relevant) facts are encoded
with the query and the transformer is trained to
predict the answer without using any intermedi-
ate representations. We compare full self-attention
against independently encoding the facts (in the
context of the query) and fusing the embeddings
in the decoder (Izacard and Grave, 2020, Fusion
in Decoder (FiD)). Because FiD independently en-
codes contexts, run-time complexity is reduced to
be linear with respect to the number of facts at the
expense of not having inter-fact attention. We addi-
tionally compare to using windowed attention over
facts with global attention to the query using Long-
former (Beltagy et al., 2020). Inter-fact attention is
captured only within the window.

6 Implementation

We use the HuggingFace (Wolf et al., 2020) trans-
formers library and its implementations of T5 and
Longformer. For SSG, we use BERT to generate
encodings, which has a comparable architecture to
T5. The learning-rate for fine-tuning and number

Model Answer Accuracy (%)

PerfectIR WholeDB

NeuralSPJ + Aggr (ours) 90.10 ± 0.3 -
T5 85.59 ± 0.2 65.96 ± 0.5
Longformer 76.43 ± 3 58.58 ± 0.4
Fusion in Decoder 39.61 ± 0.2 23.18 ± 0.6

Table 2: T5 and Longformer both capture inter-fact at-
tention whereas Fusion in Decoder does not. Regard-
less of how attention is used, using all facts in the
database harms the model.

of epochs were selected through maximizing the
Exact-Match (EM) accuracy on a held-out valida-
tion set for the tasks. For each experiment, we train
3 separate models with different seeds and report
mean accuracy. The SPJ models are only trained
on the small database of 25 facts and applied to
larger databases at test time.

For most queries, we measure correctness using
Exact Match (EM), which is 1 if the answer string
generated by the model is exactly equal to the ref-
erence answer and 0 otherwise. This metric is used
to score outputs where either a Boolean, null an-
swer, string or numeric answer is expected. When a
set of results is returned, we compute the F1 score
considering exact matches of set elements. When
comparing models and reporting results, we report
macro-averages over all instances in the test set.
We collectively refer to this as Answer Accuracy.

7 Experiments & Results

We first consider the suitability of transformer mod-
els over small databases of 25 facts comparing
two information retrieval settings: PerfectIR, which
is representative of other question answering ap-
proaches that combine an information retrieval sys-
tem to select only the facts needed to answer a
query, and WholeDB, where the entire database
is encoded by the model, assessing resilience to
unrelated information and noise.

The overall scores, in Table 2, indicate that with-
out a retrieval mechanism (i.e., WholeDB), all mod-
els were susceptible to distractor facts. Further-
more, encoding all facts in a single model is not a
viable solution to answer queries posed to NLDBs
as this approach does not accurately answer queries
that combine multiple support sets, illustrated in
Figure 4, and cannot easily scale to thousands of
facts. Using a transformer yields errors when the
query requires computation, such as counting, high-
lighted when comparing rows 1 and 3 of Table 3.



3098

0 1 2-4 5-9 10-19
Number of support sets

0.2

0.4

0.6

0.8

1.0
An

sw
er

 A
cc

ur
ac

y

Neural SPJ
T5
Longformer
FiD

Figure 4: (PerfectIR) Even when provided with the cor-
rect contexts, baseline scores decrease for queries re-
quiring the combination of multiple support sets.

Inter-fact attention Applying FiD, which does
not capture inter-fact attention, to scale to larger
databases would not be successful because answer
accuracy further decreases with with support set
size. Applying Longformer, which captures inter-
fact attention within a window could yield out-
comes similar to the T5 transformer baseline where
relevant facts are encoded with similar locality.
However, in the limit, where context falls between
different attention windows, the model could de-
grade to be similar to FiD.

7.1 Evaluating the SSG+SPJ architecture

Our architecture consists of a support set generator
(SSG), a select-project-join (SPJ) operator that gen-
erates derivations over the support sets and an ag-
gregation function over the results of the SPJ oper-
ators. Assuming a perfect SSG, the SPJ accurately
answers more queries than the T5 transformer base-
line (Table 2) because of the computation within
the aggregation function that yields higher scores
for min/max and count queries, displayed in Ta-
ble 3. In combination with SSG, the overall score
decreases to 67% due to retrieval errors. However,
SSG+SPJ still exceeds the WholeDB baselines.

It is tricky to evaluate the SSG in isolation be-
cause errors here not necessarily translate into er-
rors in query answers. For example, the SSG may
return a superset of a support set, but the SPJ may
still generate the correct answer. Table 4 shows
the performance of the SSG for a database of 25
facts. An output is considered an exact match if it
is exactly the same as a support set in the reference
data and soft match if it is a superset thereof.

Decoding machine-readable outputs The ag-
gregation operator was selected by predicting a

Method Answer Accuracy (%)

Min/Max Bool Count Set

SPJ PerfectIR 89.72 99.10 94.68 85.25
SSG + SPJ 74.03 77.79 50.75 65.32

T5 PerfectIR 78.23 99.34 87.33 89.19

Table 3: Using retrieved evidence achieves results com-
petitive to the PerfectIR on a DB of 25 facts.

Query
Type

Exact Match (%) Soft Match (%)

Precision Recall Precision Recall

Boolean 64.00 80.28 66.15 80.68
Set 63.28 80.77 65.23 81.30
Count 60.21 83.11 61.58 83.41
Min/Max 70.88 93.25 71.80 93.41

Average 65.96 86.51 67.36 86.82

Table 4: Precision and recall of supervised SSG w.r.t.
the reference set. Note that errors in retrieval do not
necessarily translate to wrong query answers because
the SPJ operator is trained to be robust to noise.

special token decoded by the SPJ. For 1.4% of in-
stances, an incorrect choice of aggregation function
was made or the machine-readable outputs from
the SPJ could not be parsed.

7.2 Scaling to larger databases

We scale the baseline transformers to larger
databases using TF-IDF and DPR to retrieve ap-
propriate facts. However, these models are still
limited by the encoder size of the transformer. In
contrast, the SPJ operates over support sets of 1-2
facts and, in combination with the SSG, can scale
to arbitrarily large databases, illustrated in Figure 5.
For Boolean queries, the combination of T5 and
TF-IDF scored 89%, exceeding the accuracy of the
SSG+SPJ. This is because TF-IDF exploits token
matching between the query and facts. For larger
databases, the retrieval errors resulted in lower an-
swer accuracy. While, with a perfect SSG, the
the SPJ accurately answers most query types, as
database size increases, the propagation of errors
from the SSG resulted in erroneous answers.

8 Related Work

Database queries require reasoning over a large set
of relevant and non-redundant facts and perform-
ing aggregation. While in-roads have been made to
perform discrete reasoning and computation over
passages (Dua et al., 2019), with explicit computa-
tion (Andor et al., 2019) or differentiable modules
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Figure 5: Scaling to larger databases with a model
trained using 25 facts and tested on larger databases.

(Gupta et al., 2020), these use only a single pas-
sage rather than requiring aggregation over large
numbers of facts from different texts.

Multi-hop question answering requires finding
supporting evidence in multiple documents (see
(Welbl et al., 2018; Talmor and Berant, 2018; Wolf-
son et al., 2020) for datasets facilitating this re-
search). In answering multi-hop questions, the
works decompose the question into simpler sub
questions (Min et al., 2019; Wolfson et al., 2020),
or condition each hop on the previously retrieved
documents (Asai et al., 2019; Xiong et al., 2020).

While tasks such as ComplexWebQuestions (Tal-
mor and Berant, 2018) and BREAK (Wolfson et al.,
2020) focus on complex queries that can be bro-
ken down into simpler ones, our focus is on set-
based and aggregation queries where the complex-
ity comes from the need to retrieve and process a
large number of non-redundant relevant facts. In
contrast to the set and count tasks in bAbI (Weston
et al., 2015), where each query is based on a small
context (less than 20 facts), our dataset scales from
databases of 25 facts to 1000.

Bridging the gap between unstructured natural
language data and database-style querying has been
a long-standing theme in database research (Halevy
et al., 2003). The work on information extraction
has developed techniques for translating segments
of natural language text into triples that can be
further processed by a database system. There
has been significant work on translating queries
posed in natural language into SQL queries on a
database whose schema is known (Androutsopou-
los et al., 1995; Li and Jagadish, 2014; Zeng et al.,
2020), with extensions to semi-structured data and
knowledge bases (Pasupat and Liang, 2015; Be-
rant et al., 2013). More recently, systems such as

BREAK (Wolfson et al., 2020) and ShARC (Saeidi
et al., 2018) have trained models to translate a nat-
ural language query into a sequence of relational
operators (or variants thereof).

9 Conclusions

Database systems are the workhorse of data anal-
ysis but they require a pre-defined schema. Part
of their power stems from the fact that a data ana-
lyst can explore the data by easily posing a wide
variety of queries. Given the rise in the amount
of data that is becoming available in text, images
and other modalities, we would like to build sys-
tems that enable the flexibility of posing complex
queries against such data, but without the need for
a pre-defined schema.

This paper proposed an architecture for neural
databases and the associated WIKINLDB dataset,
as first steps towards realizing a system for query-
ing multi-modal data. Our architecture is capable
of overcoming the limitations of transformer mod-
els because it runs multiple transformers in parallel,
each taking a small set of facts. Consequently,
NLDBs can scale to large databases.

Additional research is required in order to scale
NLDBs to larger datasets, more complex queries,
and to multi-modal data. In particular, one of the
key components of the architecture is the SSG mod-
ule that retrieves the relevant facts to feed to each
instance of the neural SPJ. We believe that in prac-
tice, the semantics of the application will provide
a strong hint on which facts may be relevant. For
example, when querying a large corpus of social-
media posts, each post is a candidate support set
as long as the query does not require joining data
from multiple posts. In addition, we assumed that
our databases describe a snapshot of the world. In
practice, we may have facts that override previous
ones (e.g., ‘Samantha works for Apple’, followed
by ‘Samantha works for Twitter’) and we would
need to reason about which facts should be ignored.
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Broader Impact Statement

Ethical Concerns A NL database is very similar
to a traditional database in terms of applications
with a difference that it extends the use of databases
on unstructured text. For example, NL databases
can be used to produce analytics on data expressed
in natural language. For an NL database to be
applicable in the context of a virtual assistance,
they will likely need to be trained on real-world
conversations. Privacy preserving ML methods
should be considered for such applications.

Environmental Concerns Large transformer-
based models take a lot of computational resources
and energy for pre-training and fine-tuning. As a
result such models raise environmental concerns.
In our proposed architecture, we only fine-tune
transformer models on small support sets. We then
use several instances of such models in parallel for
inference, instead of a single large model, even on
large datasets. Therefore, the model is relatively
efficient, both during the fine-tuning and during the
inference.
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data: a free collaborative knowledgebase. Commu-
nications of the ACM, 57(10):78–85.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han
Fang, and Hao Ma. 2020. Linformer: Self-Attention
with Linear Complexity. 2048(2019).

Johannes Welbl, Pontus Stenetorp, and Sebastian
Riedel. 2018. Constructing datasets for multi-hop
reading comprehension across documents. Transac-
tions of the Association for Computational Linguis-
tics, 6:287–302.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart van Merriënboer, Armand Joulin,
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A Appendix

A.1 Sample Data and Dataset Statistics

Example: Set
Question Who studied at University of Minnesota?

Supporting Facts 1. [John B Totushek was born on 7 September 1944 in Minneapolis. He attended the University
of Minnesota and became a US Naval Aviator. Mr. Totushek was also a human being.]
2. [Melvin Maas graduated from the University of Minnesota and is buried at Arlington National
Cemetery. He is a native of Minnesota and his language is English.]
3. [Clarence Larson graduated from the University of Minnesota and is a member of the
National Academy of Engineering.]
4. [Ted Mann, who is the surname of Ted Mann, attended Duke University and the University
of Minnesota. He is a human being.]

Answer [John B. Totushek, Ted Mann, Clarence Larson, Melvin Maas]
Example: count
Question How many people work for Yale Law School?

Supporting Facts 1. [Michael Ponsor, born in Oxford, graduated from Pembroke College in Oxford. He was
awarded the Rhodes Scholarship and is an employee at Yale Law School. He is an expert in the
field of human rights.]
2. [Stephen Wizner is an American legal scholar who graduated from Dartmouth College and is
a graduate of the University of Chicago Law School. He works at Yale Law School.]

Answer 2
Example: Min/Max
Question What is the largest yearly attendance?

Supporting Facts 1. [The musee en herbe has a visitor per year of] 70000.
2. [The total number of visitors to the Hirschsprung Collection is 71779 per year.]
...
24. [The Tate Modern has a visitor count of 5839197 visitors per year.]
25. [Catoctin Mountain Park attracts 221750 visitors per year.]

Answer 5839197
Example: Bool
Question Is North Carolina State University the employer of Wes Moore?

Supporting Facts 1. [Wes Moore is a human being who is employed at Francis Marion University and is a
basketball player for North Carolina State University.]

Answer TRUE
Example: Join
Question Who plays for a team in Ligue 1?

Supporting Facts 1. [Thomas Allofs started his career in 1989 with RC Strasbourg Alsace. He finished his career
in 1990.,
RC Strasbourg Alsace is an association football club in the Ligue 1 league. It was founded in
1906 and is located in Strasbourg, France.]

Answer [Thomas Allofs]

Table 5: Examples of different types of queries, their supporting facts and answers. These examples are based on
databases of size 25.
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Figure 6: Dataset statistics for DBs of varying sizes provided with WIKINLDB


