
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 3066–3079

August 1–6, 2021. ©2021 Association for Computational Linguistics

3066

Few-Shot Question Answering by Pretraining Span Selection

Ori Ram∗,1 Yuval Kirstain∗,1 Jonathan Berant1,2 Amir Globerson1 Omer Levy1

Blavatnik School of Computer Science, Tel Aviv University1

Allen Institute for AI2

{ori.ram,yuval.kirstain,joberant,gamir,levyomer}@cs.tau.ac.il

Abstract

In several question answering benchmarks,
pretrained models have reached human parity
through fine-tuning on an order of 100,000 an-
notated questions and answers. We explore
the more realistic few-shot setting, where only
a few hundred training examples are avail-
able, and observe that standard models per-
form poorly, highlighting the discrepancy be-
tween current pretraining objectives and ques-
tion answering. We propose a new pretrain-
ing scheme tailored for question answering: re-
curring span selection. Given a passage with
multiple sets of recurring spans, we mask in
each set all recurring spans but one, and ask
the model to select the correct span in the pas-
sage for each masked span. Masked spans
are replaced with a special token, viewed as a
question representation, that is later used dur-
ing fine-tuning to select the answer span. The
resulting model obtains surprisingly good re-
sults on multiple benchmarks (e.g., 72.7 F1
on SQuAD with only 128 training examples),
while maintaining competitive performance in
the high-resource setting.1

1 Introduction

The standard approach to question answering is to
pretrain a masked language model on raw text, and
then fine-tune it with a span selection layer on top
(Devlin et al., 2019; Joshi et al., 2020; Liu et al.,
2019). While this approach is effective, and some-
times exceeds human performance, its success is
based on the assumption that large quantities of an-
notated question answering examples are available.
For instance, both SQuAD (Rajpurkar et al., 2016,
2018) and Natural Questions (Kwiatkowski et al.,
2019) contain an order of 100,000 question and

∗ Equal contribution.
1Our code, models, and datasets are publicly available:

https://github.com/oriram/splinter.
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Figure 1: Performance of SpanBERT (red) and
RoBERTa (yellow) base-size models on SQuAD, given
different amounts of training examples. Our model
(Splinter, green) dramatically improves performance.
SpanBERT-base trained on the full training data of
SQuAD (blue, dashed) is shown for reference.

answer pairs in their training data. This assump-
tion quickly becomes unrealistic as we venture out-
side the lab conditions of English Wikipedia, and
attempt to crowdsource question-answer pairs in
other languages or domains of expertise (Tsatsaro-
nis et al., 2015; Kembhavi et al., 2017). How do
question answering models fare in the more practi-
cal case, where an in-house annotation effort can
only produce a couple hundred training examples?

We investigate the task of few-shot question an-
swering by sampling small training sets from exist-
ing question answering benchmarks. Despite the
use of pretrained models, the standard approach
yields poor results when fine-tuning on few exam-
ples (Figure 1). For example, RoBERTa-base fine-
tuned on 128 question-answer pairs from SQuAD
obtains around 40 F1. This is somewhat expected,
since the pretraining objective is quite different
from the fine-tuning task. While masked language
modeling requires mainly local context around the
masked token, question answering needs to align
the question with the global context of the pas-

https://github.com/oriram/splinter
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Figure 2: An example paragraph before (a) and after (b) masking recurring spans. Each color represents a different
cluster of spans. After masking recurring spans (replacing each with a single [QUESTION] token), only one span
from each cluster remains unmasked, and is considered the correct answer to the masked spans in the cluster. The
pretraining task is to predict the correct answer for each [QUESTION].

sage. To bridge this gap, we propose (1) a novel
self-supervised method for pretraining span selec-
tion models, and (2) a question answering layer
that aligns a representation of the question with the
text.

We introduce Splinter (span-level pointer), a
pretrained model for few-shot question answering.
The challenge in defining such a self-supervised
task is how to create question-answer pairs from
unlabeled data. Our key observation is that one
can leverage recurring spans: n-grams, such as
named entities, which tend to occur multiple times
in a given passage (e.g., “Roosevelt” in Figure 2).
We emulate question answering by masking all but
one instance of each recurring span with a special
[QUESTION] token, and asking the model to se-
lect the correct span for each such token.

To select an answer span for each [QUESTION]
token in parallel, we introduce a question-aware
span selection (QASS) layer, which uses the
[QUESTION] token’s representation to select the
answer span. The QASS layer seamlessly inte-
grates with fine-tuning on real question-answer
pairs. We simply append the [QUESTION] to-
ken to the input question, and use the QASS layer
to select the answer span (Figure 3). This is unlike
existing models for span selection, which do not
include an explicit question representation. The
compatibility between pretraining and fine-tuning
makes Splinter an effective few-shot learner.

Splinter exhibits surprisingly high performance
given only a few training examples throughout a va-

riety of benchmarks from the MRQA 2019 shared
task (Fisch et al., 2019). For example, Splinter-base
achieves 72.7 F1 on SQuAD with only 128 exam-
ples, outperforming all baselines by a very wide
margin. An ablation study shows that the pretrain-
ing method and the QASS layer itself (even without
pretraining) both contribute to improved perfor-
mance. Analysis indicates that Splinter’s represen-
tations change significantly less during fine-tuning
compared to the baselines, suggesting that our pre-
training is more adequate for question answering.
Overall, our results highlight the importance of de-
signing objectives and architectures in the few-shot
setting, where an appropriate inductive bias can
lead to dramatic performance improvements.

2 Background

Extractive question answering is a common task in
NLP, where the goal is to select a contiguous span
a from a given text T that answers a question Q.
This format was popularized by SQuAD (Rajpurkar
et al., 2016), and has since been adopted by several
datasets in various domains (Trischler et al., 2017;
Kembhavi et al., 2017) and languages (Lewis et al.,
2020; Clark et al., 2020), with some extensions
allowing for unanswerable questions (Levy et al.,
2017; Rajpurkar et al., 2018) or multiple answer
spans (Dua et al., 2019; Dasigi et al., 2019). In
this work, we follow the assumptions in the recent
MRQA 2019 shared task (Fisch et al., 2019) and
focus on questions whose answer is a single span.

The standard approach uses a pretrained encoder,
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Figure 3: An example of our fine-tuning setup, taken from the development set of SQuAD. The question, followed
by the [QUESTION] token, is concatenated to the context. The [QUESTION] token’s representation is then used
to select the answer span.

such as BERT (Devlin et al., 2019), and adds two
parameter vectors s, e to the pretrained model in
order to detect the start position s and end position
e of the answer span a, respectively. The input
text T and question Q are concatenated and fed
into the encoder, producing a contextualized token
representation xi for each token in the sequence.
To predict the start position of the answer span,
a probability distribution is induced over the en-
tire sequence by computing the inner product of
a learned vector s with every token representation
(the end position is computed similarly using a
vector e):

P (s = i | T,Q) =
exp(x>i s)∑
j exp(x

>
j s)

,

P (e = i | T,Q) =
exp(x>i e)∑
j exp(x

>
j e)

.

The parameters s, e are trained during fine-tuning,
using the cross-entropy loss with the start and end
positions of the gold answer span.

This approach assumes that each token repre-
sentation xi is contextualized with respect to the
question. However, the masked language model-
ing objective does not necessarily encourage this
form of long-range contextualization in the pre-
trained model, since many of the masked tokens
can be resolved from local cues. Fine-tuning the
attention patterns of pretrained masked language
models may thus entail an extensive learning effort,
difficult to achieve with only a handful of training
examples. We overcome this issue by (1) pretrain-
ing directly for span selection, and (2) explicitly
representing the question with a single vector, used
to detect the answer in the input text.

3 Splinter

We formulate a new task for pretraining ques-
tion answering from unlabeled text: recurring
span selection. We replace spans that appear
multiple times in the given text with a special
[QUESTION] token, except for one occurrence,
which acts as the “answer” span for each (masked)
cloze-style “question”. The prediction layer is a
modification of the standard span selection layer,
which replaces the static start and end parame-
ter vectors, s and e, with dynamically-computed
boundary detectors based on the contextualized rep-
resentation of each [QUESTION] token. We reuse
this architecture when fine-tuning on question-
answer pairs by adding a [QUESTION] token at
the end of the actual question, thus aligning the
pretraining objective with the fine-tuning task. We
refer to our pretrained model as Splinter.

3.1 Pretraining: Recurring Span Selection

Given an input text T , we find all recurring spans:
arbitrary n-grams that appear more than once in the
same text. For each set of identical recurring spans
R, we select a single occurrence as the answer
a and replace all other occurrences with a single
[QUESTION] token.2 The goal of recurring span
selection is to predict the correct answer a for a
given [QUESTION] token q ∈ R \ {a}, each q
thus acting as an independent cloze-style question.

Figure 2 illustrates this process. In the given pas-
sage, the span “Roosevelt” appears three times.
Two of its instances (the second and third) are
replaced with [QUESTION], while one instance
(the first) becomes the answer, and remains intact.
After masking, the sequence is passed through a
transformer encoder, producing contextualized to-

2In practice, only some sets of recurring spans are pro-
cessed; see Cluster Selection below.
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ken representations. The model is then tasked with
predicting the start and end positions of the answer
given each [QUESTION] token representation. In
Figure 2b, we observe four instances of this predic-
tion task: two for the “Roosevelt” cluster, one for
the “Allied countries” cluster, and one for “Decla-
ration by United Nations”.

Taking advantage of recurring words in a pas-
sage (restricted to nouns or named entities) was
proposed in past work as a signal for coreference
(Kocijan et al., 2019; Ye et al., 2020). We further
discuss this connection in Section 7.

Span Filtering To focus pretraining on semanti-
cally meaningful spans, we use the following defi-
nition for “spans”, which filters out recurring spans
that are likely to be uninformative: (1) spans must
begin and end at word boundaries, (2) we consider
only maximal recurring spans, (3) spans containing
only stop words are ignored, (4) spans are limited
to a maximum of 10 tokens. These simple heuristic
filters do not require a model, as opposed to mask-
ing schemes in related work (Glass et al., 2020; Ye
et al., 2020; Guu et al., 2020), which require part-
of-speech taggers, constituency parsers, or named
entity recognizers.

Cluster Selection We mask a random subset of
recurring span clusters in each text, leaving some
recurring spans untouched. Specifically, we replace
up to 30 spans with [QUESTION] from each input
passage.3 This number was chosen to resemble
the 15% token-masking ratio of Joshi et al. (2020).
Note that in our case, the number of masked tokens
is greater than the number of questions.

3.2 Model: Question-Aware Span Selection
Our approach converts texts into a set of questions
that need to be answered simultaneously. The stan-
dard approach for extractive question answering
(Devlin et al., 2019) is inapplicable, because it uses
fixed start and end vectors. Since we have multiple
questions, we replace the standard parameter vec-
tors s, e with dynamic start and end vectors sq, eq,
computed from each [QUESTION] token q:

sq = Sxq eq = Exq

Here, S,E are parameter matrices, which extract
ad hoc start and end position detectors sq, eq from
the given [QUESTION] token’s representation xq.

3In some cases, the last cluster may have more than one
unmasked span.

The rest of our model follows the standard span
selection model by computing the start and end
position probability distributions. The model can
also be viewed as two bilinear functions of the
question representation xq with each token in the
sequence xi, similar to Dozat and Manning (2017):

P (s = i | T, q) = exp(x>i Sxq)∑
j exp(x

>
j Sxq)

P (e = i | T, q) = exp(x>i Exq)∑
j exp(x

>
j Exq)

Finally, we use the answer’s gold start and end
points (sa, ea) to compute the cross-entropy loss:

− logP (s = sa | T, q)− logP (e = ea | T, q)

We refer to this architecture as the question-aware
span selection (QASS) layer.

3.3 Fine-Tuning
After pretraining, we assume access to labeled ex-
amples, where each training instance is a text T ,
a question Q, and an answer a that is a span in
T . To make this setting similar to pretraining, we
simply append a [QUESTION] token to the input
sequence, immediately after the question Q (see
Figure 3). Selecting the answer span then proceeds
exactly as during pretraining. Indeed, the advan-
tage of our approach is that in both pretraining and
fine-tuning, the [QUESTION] token representa-
tion captures information about the question that is
then used to select the span from context.

4 A Few-Shot QA Benchmark

To evaluate how pretrained models work when only
a small amount of labeled data is available for fine-
tuning, we simulate various low-data scenarios by
sampling subsets of training examples from larger
datasets. We use a subset of the MRQA 2019
shared task (Fisch et al., 2019), which contains
extractive question answering datasets in a unified
format, where the answer is a single span in the
given text passage.

Split I of the MRQA shared task contains 6 large
question answering datasets: SQuAD (Rajpurkar
et al., 2016), NewsQA (Trischler et al., 2017), Triv-
iaQA (Joshi et al., 2017), SearchQA (Dunn et al.,
2017), HotpotQA (Yang et al., 2018), and Natural
Questions (Kwiatkowski et al., 2019). For each
dataset, we sample smaller training datasets from
the original training set with sizes changing on a
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logarithmic scale, from 16 to 1,024 examples. To
reduce variance, for each training set size, we sam-
ple 5 training sets using different random seeds and
report average performance across training sets.
We also experiment with fine-tuning the models on
the full training sets. Since Split I of the MRQA
shared task does not contain test sets, we evaluate
using the official development sets as our test sets.

We also select two datasets from Split II of the
MRQA shared task that were annotated by do-
main experts: BioASQ (Tsatsaronis et al., 2015)
and TextbookQA (Kembhavi et al., 2017). Each
of these datasets only has a development set that
is publicly available in MRQA, containing about
1,500 examples. For each dataset, we sample 400
examples for evaluation (test set), and follow the
same protocol we used for large datasets to sam-
ple training sets of 16 to 1,024 examples from the
remaining data.

To maintain the few-shot setting, every dataset
in our benchmark has well-defined training and test
sets. To tune hyperparameters, one needs to extract
validation data from each training set. For simplic-
ity, we do not perform hyperparameter tuning or
model selection (see Section 5), and thus use all of
the available few-shot data for training.

5 Experimental Setup

We describe our experimental setup in detail, in-
cluding all models and baselines.

5.1 Baselines

Splinter-base shares the same architecture (trans-
former encoder (Vaswani et al., 2017)), vocabu-
lary (cased wordpieces), and number of parameters
(110M) with SpanBERT-base (Joshi et al., 2020).
In all experiments, we compare Splinter-base to
three baselines of the same capacity:

RoBERTa (Liu et al., 2019) A highly-tuned and
optimized version of BERT, which is known to
perform well on a wide range of natural language
understanding tasks.

SpanBERT (Joshi et al., 2020) A BERT-style
model that focuses on span representations. Span-
BERT is trained by masking contiguous spans of
tokens and optimizing two objectives: (a) masked
language modeling, which predicts each masked to-
ken from its own vector representation; (b) the span
boundary objective, which predicts each masked

token from the representations of the unmasked
tokens at the start and end of the masked span.

SpanBERT (Reimpl) Our reimplementation of
SpanBERT, using exactly the same code, data, and
hyperparameters as Splinter. This baseline aims
to control for implementation differences and mea-
sures the effect of replacing masked language mod-
eling with recurring span selection. Also, this ver-
sion does not use the span boundary objective, as
Joshi et al. (2020) reported no significant improve-
ments from using it in question answering.

5.2 Pretraining Implementation
We train Splinter-base using Adam (Kingma and
Ba, 2015) for 2.4M training steps with batches of
256 sequences of length 512.4 The learning rate is
warmed up for 10k steps to a maximum value of
10−4, after which it decays linearly. As in previous
work, we use a dropout rate of 0.1 across all layers.

We follow Devlin et al. (2019) and train on En-
glish Wikipedia (preprocessed by WikiExtractor
as in Attardi (2015)) and the Toronto BookCorpus
(Zhu et al., 2015). We base our implementation on
the official TensorFlow implementation of BERT,
and train on a single eight-core v3 TPU (v3-8) on
the Google Cloud Platform.

5.3 Fine-Tuning Implementation
For fine-tuning, we use the hyperparameters from
the default configuration of the HuggingFace Trans-
formers package (Wolf et al., 2020).5 Specifically,
we train all models using Adam (Kingma and Ba,
2015) with bias-corrected moment estimates for
few-shot learning (Zhang et al., 2021). When fine-
tuning on 1024 examples or less, we train for either
10 epochs or 200 steps (whichever is larger). For
full-size datasets, we train for 2 epochs. We set the
batch size to 12 and use a maximal learning rate of
3 · 10−5, which warms up in the first 10% of the
steps, and then decays linearly.

An interesting question is how to fine-tune the
QASS layer parameters (i.e., the S and E matri-
ces in Section 3.2). In our implementation, we
chose to discard the pretrained values and fine-tune

4We used this setting to approximate SpanBERT’s hyperpa-
rameter setting in terms of epochs. That said, SpanBERT-base
was trained for a quarter of the steps (600k steps) using four
times as many examples per batch (1024 sequences). See Sec-
tion 5.1 for additional baselines that control for this difference.

5We did rudimentary tuning on the number of steps only,
using a held-out portion of the SQuAD training set, since
our training sets can be too small for the default values (e.g.,
running 10 epochs on 16 examples results in 20 update steps).
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Figure 4: Performance (F1) of Splinter-base (green), compared to all baselines as a function of the number of
training examples on two datasets. Each point reflects the average performance across 5 randomly-sampled training
sets of the same size.

from a random initialization, due to the possible
discrepancy between span statistics in pretraining
and fine-tuning datasets. However, we report re-
sults on fine-tuning without resetting the QASS
parameters as an ablation study (Section 6.3).

6 Results

Our experiments show that Splinter dramatically
improves performance in the challenging few-shot
setting, unlocking the ability to train question an-
swering models with only hundreds of examples.
When trained on large datasets with an order of
100,000 examples, Splinter is competitive with
(and often better than) the baselines. Ablation stud-
ies demonstrate the contributions of both recurring
span selection pretraining and the QASS layer.

6.1 Few-Shot Learning
Figure 4 shows the F1 score (Rajpurkar et al., 2016)
of Splinter-base, plotted against all baselines for
two datasets, TriviaQA and TextbookQA, as a func-
tion of the number of training examples (see Fig-
ure 6 in the appendix for the remaining datasets). In
addition, Table 1 shows the performance of individ-
ual models when given 16, 128, and 1024 training
examples across all datasets (see Table 3 in the
appendix for additional performance and standard
deviation statistics). It is evident that Splinter out-
performs all baselines by large margins.

Let us examine the results on SQuAD, for exam-
ple. Given 16 training examples, Splinter obtains
54.6 F1, significantly higher than the best base-
line’s 18.2 F1. When the number of training exam-
ples is 128, Splinter achieves 72.7 F1, outperform-
ing the baselines by 17 points (our reimplementa-
tion of SpanBERT) to 30 (RoBERTa). When con-
sidering 1024 examples, there is a 5-point margin

between Splinter (82.8 F1) and SpanBERT (77.8
F1). The same trend is seen in the other datasets,
whether they are in-domain sampled from larger
datasets (e.g. TriviaQA) or not; in TextbookQA,
for instance, we observe absolute gaps of 9 to 23
F1 between Splinter and the next-best baseline.

6.2 High-Resource Regime

Table 1 also shows the performance when fine-
tuning on the entire training set, when an order
of 100,000 examples are available. Even though
Splinter was designed for few-shot question an-
swering, it reaches the best result in five out of six
datasets. This result suggests that when the target
task is extractive question answering, it is better to
pretrain with our recurring span selection task than
with masked langauge modeling, regardless of the
number of annotated training examples.

6.3 Ablation Study

We perform an ablation study to better understand
the independent contributions of the pretraining
scheme and the QASS layer. We first ablate the
effect of pretraining on recurring span selection by
applying the QASS layer to pretrained masked lan-
guage models. We then test whether the QASS
layer’s pretrained parameters can be reused in
Splinter during fine-tuning without reinitializion.

Independent Contribution of the QASS Layer
While the QASS layer is motivated by our pretrain-
ing scheme, it can also be used without pretraining.
We apply a randomly-initialized QASS layer to our
implementation of SpanBERT, and fine-tune it in
the few-shot setting. Figure 5 shows the results of
this ablation study for two datasets (see Figure 7
in the appendix for more datasets). We observe
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Model SQuAD TriviaQA NQ NewsQA SearchQA HotpotQA BioASQ TextbookQA

16 Examples

RoBERTa 7.7 7.5 17.3 1.4 6.9 10.5 16.7 3.3
SpanBERT 12.5 12.8 19.7 6.0 13.0 12.6 22.0 5.6
SpanBERT (Reimpl) 18.2 11.6 19.6 7.6 13.3 12.5 15.9 7.5
Splinter 54.6 18.9 27.4 20.8 26.3 24.0 28.2 19.4

128 Examples

RoBERTa 43.0 19.1 30.1 16.7 27.8 27.3 46.1 8.2
SpanBERT 48.5 24.2 32.2 17.4 34.3 35.1 55.3 9.4
SpanBERT (Reimpl) 55.8 26.3 36.0 29.5 26.3 36.6 52.2 20.9
Splinter 72.7 44.7 46.3 43.5 47.2 54.7 63.2 42.6

1024 Examples

RoBERTa 73.8 46.8 54.2 47.5 54.3 61.8 84.1 35.8
SpanBERT 77.8 50.3 57.5 49.3 60.1 67.4 89.3 42.3
SpanBERT (Reimpl) 77.8 55.5 59.5 52.2 58.9 64.6 89.0 45.7
Splinter 82.8 64.8 65.5 57.3 67.3 70.3 91.0 54.5

Full Dataset

RoBERTa 90.3 74.0 79.6 69.8 81.5 78.7 - -
SpanBERT 92.0 77.2 80.6 71.3 80.1 79.6 - -
SpanBERT (Reimpl) 92.0 75.8 80.5 71.1 81.4 79.7 - -
Splinter 92.2 76.5 81.0 71.3 83.0 80.7 - -

Table 1: Performance (F1) across all datasets when the number of training examples is 16, 128, and 1024. We
also show performance when training on the full-sized large datasets (MRQA version). All models have the same
capacity to BERT-base (110M parameters). NQ stands for Natural Questions.

that replacing the static span selection layer with
QASS can significantly improve performance on
few-shot question answering. Having said that,
most of Splinter’s improvements in the extremely
low data regime do stem from combining the QASS
layer with our pretraining scheme, and this com-
bination still outperforms all other variants as the
amount of data grows.

QASS Reinitialization Between pretraining and
fine-tuning, we randomly reinitialize the parame-
ters of the QASS layer. We now test the effect
of fine-tuning with the QASS layer’s pretrained
parameters; intuitively, the more similar the pre-
training data is to the task, the better the pretrained
layer will perform. Figure 5 shows that the ad-
vantage of reusing the pretrained QASS is data-
dependent, and can result in both performance
gains (e.g. extremely low data in SQuAD) and stag-
nation (e.g. BioASQ with 256 examples or more).
Other datasets exhibit similar trends (see appendix).
We identify three conditions that determine whether
keeping the pretrained head is preferable: (1) when
the number of training examples is extremely low,
(2) when the target domain is similar to that used
at pretraining (e.g. Wikipedia), and (3) when the
questions are relatively simple (e.g. SQuAD versus
HotpotQA). The latter two conditions pertain to the

Model Representation Similarity

RoBERTa 0.29
SpanBERT 0.23
SpanBERT (Reimpl) 0.19
Splinter 0.89

Table 2: Cosine similarity of the representations pro-
duced by the transformer encoder before and after fine-
tuning on 128 SQuAD examples.

compatibility between pretraining and fine-tuning
tasks; the information learned in the QASS layer is
useful as long as the input and output distribution
of the task are close to those seen at pretraining
time.

6.4 Analysis

The recurring span selection objective was de-
signed to emulate extractive question answering
using unlabeled text. How similar is it to the actual
target task? To answer this question, we measure
how much each pretrained model’s functionality
has changed after fine-tuning on 128 examples of
SQuAD. For the purpose of this analysis, we mea-
sure change in functionality by examining the vec-
tor representation of each token as produced by the
transformer encoder; specifically, we measure the
cosine similarity between the vector produced by
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Figure 5: Ablation studies on SQuAD and BioASQ datasets. We examine the role of the QASS layer by fine-tuning
it on top of our reimplementation of SpanBERT. In addition, we test whether it is beneficial to keep the pretrained
parameters of the QASS layer when fine-tuning Splinter.

the pretrained model and the one produced by the
fine-tuned model, given exactly the same input. We
average these similarities across every token of 200
examples from SQuAD’s test set.

Table 2 shows that Splinter’s outputs are very
similar before and after fine-tuning (0.89 aver-
age cosine similarity), while the other models’
representations seem to change drastically. This
suggests that fine-tuning with even 128 question-
answering examples makes significant modifica-
tions to the functionality of pretrained masked lan-
guage models. Splinter’s pretraining, on the other
hand, is much more similar to the fine-tuning task,
resulting in much more modest changes to the pro-
duced vector representations.

7 Related Work

The remarkable results of GPT-3 (Brown et al.,
2020) have inspired a renewed interest in few-shot
learning. While some work focuses on classifica-
tion tasks (Schick and Schütze, 2020; Gao et al.,
2021), our work investigates few-shot learning in
the context of extractive question answering.

One approach to this problem is to create syn-
thetic text-question-answer examples. Both Lewis
et al. (2019) and Glass et al. (2020) use the tra-
ditional NLP pipeline to select noun phrases and
named entities in Wikipedia paragraphs as potential
answers, which are then masked from the context
to create pseudo-questions. Lewis et al. (2019) use
methods from unsupervised machine translation
to translate the pseudo-questions into real ones,
while Glass et al. (2020) keep the pseudo-questions
but use information retrieval to find new text pas-
sages that can answer them. Both works assume
access to language- and domain-specific NLP tools
such as part-of-speech taggers, syntactic parsers,

and named-entity recognizers, which might not al-
ways be available. Our work deviates from this
approach by exploiting the natural phenomenon
of recurring spans in order to generate multiple
question-answer pairs per text passage, without as-
suming any language- or domain-specific models
or resources are available beyond plain text.

Similar ideas to recurring span selection were
used for creating synthetic coreference resolution
examples (Kocijan et al., 2019; Varkel and Glober-
son, 2020), which mask single words that occur
multiple times in the same context. CorefBERT
(Ye et al., 2020) combines this approach with a
copy mechanism for predicting the masked word
during pretraining, alongside the masked language
modeling objective. Unlike our approach, which
was designed to align well with span selection,
CorefBERT masks only single-word nouns (rather
than arbitrary spans) and replaces each token in the
word with a separate mask token (rather than a sin-
gle mask for the entire multi-token word). There-
fore, it does not emulate extractive question an-
swering. We did not add CorefBERT as a baseline
since the performance of both CorefBERT-base
and CorefBERT-large was lower than SpanBERT-
base’s performance on the full-data MRQA bench-
mark, and pretraining CorefBERT from scratch
was beyond our available computational resources.

8 Conclusion

We explore the few-shot setting of extractive ques-
tion answering, and demonstrate that existing meth-
ods, based on fine-tuning large pretrained language
models, fail in this setup. We propose a new pre-
training scheme and architecture for span selection
that lead to dramatic improvements, reaching sur-
prisingly good results even when only an order of
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a hundred examples are available. Our work shows
that choices that are often deemed unimportant
when enough data is available, again become cru-
cial in the few-shot setting, opening the door to new
methods that take advantage of prior knowledge on
the downstream task during model development.
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Figure 6: Results complementary to Table 1. Performance (F1) of Splinter-base (green line, triangular points),
compared to all baselines as a function of the number of training examples on 4 datasets. Each point reflects the
average performance across 5 randomly-sampled training sets of the same size.
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Model SQuAD TriviaQA NQ NewsQA SearchQA HotpotQA BioASQ TBQA

16 Examples

RoBERTa 7.7 (4.3) 7.5 (4.4) 17.3 (3.3) 1.4 (0.8) 6.9 (2.7) 10.5 (2.5) 16.7 (7.1) 3.3 (2.1)
SpanBERT 12.5 (5.7) 12.8 (5.4) 19.7 (3.6) 6.0 (1.6) 13.0 (4.2) 12.6 (4.3) 22.0 (4.6) 5.6 (2.5)

(Reimpl) 18.2 (6.7) 11.6 (2.1) 19.6 (3.0) 7.6 (4.1) 13.3 (6.0) 12.5 (5.5) 15.9 (4.4) 7.5 (2.9)
Splinter 54.6 (6.4) 18.9 (4.1) 27.4 (4.6) 20.8 (2.7) 26.3 (3.9) 24.0 (5.0) 28.2 (4.9) 19.4 (4.6)

32 Examples

RoBERTa 18.2 (5.1) 10.5 (1.8) 22.9 (0.7) 3.2 (1.7) 13.5 (1.8) 10.4 (1.9) 23.3 (6.6) 4.3 (0.9)
SpanBERT 19.0 (4.6) 19.0 (4.8) 23.5 (0.9) 7.5 (1.3) 20.1 (3.9) 14.4 (2.9) 32.5 (3.5) 7.4 (1.1)

(Reimpl) 25.8 (7.7) 15.1 (6.4) 25.1 (1.6) 7.2 (4.6) 14.6 (8.5) 13.2 (3.5) 25.1 (3.3) 7.6 (2.3)
Splinter 59.2 (2.1) 28.9 (3.1) 33.6 (2.4) 27.5 (3.2) 34.8 (1.8) 34.7 (3.9) 36.5 (3.2) 27.6 (4.3)

64 Examples

RoBERTa 28.4 (1.7) 12.5 (1.4) 24.2 (1.0) 4.6 (2.8) 19.8 (2.4) 15.0 (3.9) 34.0 (1.8) 5.4 (1.1)
SpanBERT 33.6 (4.3) 22.8 (2.6) 28.4 (1.8) 8.8 (2.4) 26.7 (2.9) 21.8 (1.5) 43.9 (4.5) 7.4 (1.2)

(Reimpl) 45.8 (3.3) 15.9 (6.4) 29.7 (1.5) 12.5 (4.3) 18.0 (4.6) 23.3 (1.1) 35.3 (3.1) 13.0 (6.9)
Splinter 65.2 (1.4) 35.5 (3.7) 38.2 (2.3) 37.4 (1.2) 39.8 (3.6) 45.4 (2.3) 49.5 (3.6) 35.9 (3.1)

128 Examples

RoBERTa 43.0 (7.1) 19.1 (2.9) 30.1 (1.9) 16.7 (3.8) 27.8 (2.5) 27.3 (3.9) 46.1 (1.4) 8.2 (1.1)
SpanBERT 48.5 (7.3) 24.2 (2.1) 32.2 (3.2) 17.4 (3.1) 34.3 (1.1) 35.1 (4.2) 55.3 (3.8) 9.4 (3.0)

(Reimpl) 55.8 (3.7) 26.3 (2.1) 36.0 (1.9) 29.5 (7.3) 26.3 (4.3) 36.6 (3.4) 52.2 (3.2) 20.9 (5.1)
Splinter 72.7 (1.0) 44.7 (3.9) 46.3 (0.8) 43.5 (1.3) 47.2 (3.5) 54.7 (1.4) 63.2 (4.1) 42.6 (2.5)

256 Examples

RoBERTa 56.1 (5.2) 26.9 (3.5) 36.0 (3.2) 31.2 (2.4) 37.5 (1.7) 42.7 (3.1) 63.5 (1.8) 13.5 (1.9)
SpanBERT 55.2 (8.8) 34.0 (5.7) 41.3 (2.2) 34.7 (4.1) 42.3 (4.1) 49.4 (4.0) 67.5 (3.9) 18.2 (4.5)

(Reimpl) 67.1 (2.1) 39.4 (4.0) 44.4 (3.2) 41.8 (1.8) 41.5 (3.2) 51.5 (2.8) 66.4 (2.8) 31.1 (3.4)
Splinter 76.8 (0.6) 57.2 (2.2) 54.6 (1.2) 49.0 (0.4) 55.7 (1.9) 62.0 (1.6) 77.4 (2.0) 48.5 (2.2)

512 Examples

RoBERTa 67.3 (0.7) 38.7 (3.8) 46.7 (2.2) 41.5 (2.2) 46.9 (1.6) 56.7 (1.3) 77.0 (1.9) 27.0 (2.2)
SpanBERT 70.0 (4.3) 44.2 (2.9) 51.5 (1.8) 42.4 (2.6) 53.9 (3.2) 61.6 (1.7) 80.3 (3.0) 33.7 (3.4)

(Reimpl) 73.4 (0.4) 50.4 (2.8) 52.5 (1.9) 47.6 (1.3) 48.8 (4.1) 59.5 (1.5) 79.0 (1.9) 40.2 (0.8)
Splinter 80.1 (0.4) 61.9 (1.8) 61.4 (1.1) 53.2 (0.9) 63.1 (1.6) 66.2 (0.6) 84.8 (0.9) 54.2 (1.7)

1024 Examples

RoBERTa 73.8 (0.8) 46.8 (0.9) 54.2 (1.1) 47.5 (1.1) 54.3 (1.2) 61.8 (1.3) 84.1 (1.1) 35.8 (2.0)
SpanBERT 77.8 (0.9) 50.3 (4.0) 57.5 (0.9) 49.3 (2.0) 60.1 (2.2) 67.4 (1.6) 89.3 (0.6) 42.3 (1.9)

(Reimpl) 77.8 (0.6) 55.5 (1.9) 59.5 (1.7) 52.2 (1.2) 58.9 (1.9) 64.6 (1.2) 89.0 (1.8) 45.7 (1.5)
Splinter 82.8 (0.8) 64.8 (0.9) 65.5 (0.5) 57.3 (0.8) 67.3 (1.3) 70.3 (0.8) 91.0 (1.0) 54.5 (1.5)

Table 3: Average performance (F1) across all datasets and training set sizes. We add the standard deviation over the
five seeds for each setting in parentheses. NQ and TBQA stand for Natural Questions and TextbookQA respectively.
(Reimpl) stands for the SpanBERT (Reimpl) baseline (see Section 5.1).



3079

# Examples

F1

0.0

20.0

40.0

60.0

80.0

100.0

16 32 64 128 256 512 1024

SpanBERT (Reimpl) SpanBERT (Reimpl) + QASS Splinter
Splinter (with pretrained QASS)

Natural Questions

# Examples
F1

0.0

20.0

40.0

60.0

80.0

100.0

16 32 64 128 256 512 1024

SpanBERT (Reimpl) SpanBERT (Reimpl) + QASS Splinter
Splinter (with pretrained QASS)

TriviaQA

# Examples

F1

0.0

20.0

40.0

60.0

80.0

100.0

16 32 64 128 256 512 1024

SpanBERT (Reimpl) SpanBERT (Reimpl) + QASS Splinter
Splinter (with pretrained QASS)

SearchQA

# Examples

F1

0.0

20.0

40.0

60.0

80.0

100.0

16 32 64 128 256 512 1024

SpanBERT (Reimpl) SpanBERT (Reimpl) + QASS Splinter
Splinter (with pretrained QASS)

NewsQA

# Examples

F1

0.0

20.0

40.0

60.0

80.0

100.0

16 32 64 128 256 512 1024

SpanBERT (Reimpl) SpanBERT (Reimpl) + QASS Splinter
Splinter (with pretrained QASS)

HotpotQA

# Examples

F1

0.0

20.0

40.0

60.0

80.0

100.0

16 32 64 128 256 512 1024

SpanBERT (Reimpl) SpanBERT (Reimpl) + QASS Splinter
Splinter (with pretrained QASS)

TextbookQA

Figure 7: Results complementary to ablation studies (Section 6.3). We examine the role of QASS layer by fine-
tuning it on top of our SpanBERT. In addition, we test whether it is beneficial to keep the parameters of QASS
from pretraining (Splinter with Head).


