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Abstract

Pretrained contextualized embeddings are
powerful word representations for structured
prediction tasks. Recent work found that bet-
ter word representations can be obtained by
concatenating different types of embeddings.
However, the selection of embeddings to form
the best concatenated representation usually
varies depending on the task and the collec-
tion of candidate embeddings, and the ever-
increasing number of embedding types makes
it a more difficult problem. In this paper, we
propose Automated Concatenation of Embed-
dings (ACE) to automate the process of find-
ing better concatenations of embeddings for
structured prediction tasks, based on a formu-
lation inspired by recent progress on neural
architecture search. Specifically, a controller
alternately samples a concatenation of embed-
dings, according to its current belief of the ef-
fectiveness of individual embedding types in
consideration for a task, and updates the be-
lief based on a reward. We follow strategies
in reinforcement learning to optimize the pa-
rameters of the controller and compute the re-
ward based on the accuracy of a task model,
which is fed with the sampled concatenation
as input and trained on a task dataset. Empir-
ical results on 6 tasks and 21 datasets show
that our approach outperforms strong base-
lines and achieves state-of-the-art performance
with fine-tuned embeddings in all the evalua-
tions.!

1 Introduction

Recent developments on pretrained contextualized
embeddings have significantly improved the per-
formance of structured prediction tasks in natural
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language processing. Approaches based on contex-
tualized embeddings, such as ELMo (Peters et al.,
2018), Flair (Akbik et al., 2018), BERT (Devlin
et al., 2019), and XLM-R (Conneau et al., 2020),
have been consistently raising the state-of-the-art
for various structured prediction tasks. Concur-
rently, research has also showed that word represen-
tations based on the concatenation of multiple pre-
trained contextualized embeddings and traditional
non-contextualized embeddings (such as word2vec
(Mikolov et al., 2013) and character embeddings
(Santos and Zadrozny, 2014)) can further improve
performance (Peters et al., 2018; Akbik et al., 2018;
Strakova et al., 2019; Wang et al., 2020b). Given
the ever-increasing number of embedding learn-
ing methods that operate on different granularities
(e.g., word, subword, or character level) and with
different model architectures, choosing the best em-
beddings to concatenate for a specific task becomes
non-trivial, and exploring all possible concatena-
tions can be prohibitively demanding in computing
resources.

Neural architecture search (NAS) is an active
area of research in deep learning to automati-
cally search for better model architectures, and has
achieved state-of-the-art performance on various
tasks in computer vision, such as image classifi-
cation (Real et al., 2019), semantic segmentation
(Liu et al., 2019a), and object detection (Ghiasi
et al., 2019). In natural language processing, NAS
has been successfully applied to find better RNN
structures (Zoph and Le, 2017; Pham et al., 2018b)
and recently better transformer structures (So et al.,
2019; Zhu et al., 2020). In this paper, we propose
Automated Concatenation of Embeddings (ACE)
to automate the process of finding better concatena-
tions of embeddings for structured prediction tasks.
ACE is formulated as an NAS problem. In this
approach, an iterative search process is guided by
a controller based on its belief that models the ef-
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fectiveness of individual embedding candidates in
consideration for a specific task. At each step, the
controller samples a concatenation of embeddings
according to the belief model and then feeds the
concatenated word representations as inputs to a
task model, which in turn is trained on the task
dataset and returns the model accuracy as a reward
signal to update the belief model. We use the policy
gradient algorithm (Williams, 1992) in reinforce-
ment learning (Sutton and Barto, 1992) to solve
the optimization problem. In order to improve the
efficiency of the search process, we also design
a special reward function by accumulating all the
rewards based on the transformation between the
current concatenation and all previously sampled
concatenations.

Our approach is different from previous work on
NAS in the following aspects:

1. Unlike most previous work, we focus on search-
ing for better word representations rather than
better model architectures.

2. We design a novel search space for the embed-
ding concatenation search. Instead of using
RNN as in previous work of Zoph and Le (2017),
we design a more straightforward controller to
generate the embedding concatenation. We de-
sign a novel reward function in the objective of
optimization to better evaluate the effectiveness
of each concatenated embeddings.

3. ACE achieves high accuracy without the need
for retraining the task model, which is typically
required in other NAS approaches.

4. Our approach is efficient and practical. Al-
though ACE is formulated in a NAS framework,
ACE can find a strong word representation on
a single GPU with only a few GPU-hours for
structured prediction tasks. In comparison, a lot
of NAS approaches require dozens or even thou-
sands of GPU-hours to search for good neural
architectures for their corresponding tasks.

Empirical results show that ACE outperforms
strong baselines. Furthermore, when ACE is
applied to concatenate pretrained contextualized
embeddings fine-tuned on specific tasks, we can
achieve state-of-the-art accuracy on 6 structured
prediction tasks including Named Entity Recog-
nition (Sundheim, 1995), Part-Of-Speech tagging
(DeRose, 1988), chunking (Tjong Kim Sang and
Buchholz, 2000), aspect extraction (Hu and Liu,

2004), syntactic dependency parsing (Tesniere,
1959) and semantic dependency parsing (Oepen
et al., 2014) over 21 datasets. Besides, we also
analyze the advantage of ACE and reward function
design over the baselines and show the advantage
of ACE over ensemble models.

2 Related Work
2.1 Embeddings

Non-contextualized embeddings, such as word2vec
(Mikolov et al., 2013), GloVe (Pennington et al.,
2014), and fastText (Bojanowski et al., 2017), help
lots of NLP tasks. Character embeddings (San-
tos and Zadrozny, 2014) are trained together with
the task and applied in many structured prediction
tasks (Ma and Hovy, 2016; Lample et al., 2016;
Dozat and Manning, 2018). For pretrained contex-
tualized embeddings, ELMo (Peters et al., 2018),
a pretrained contextualized word embedding gen-
erated with multiple Bidirectional LSTM layers,
significantly outperforms previous state-of-the-art
approaches on several NLP tasks. Following this
idea, Akbik et al. (2018) proposed Flair embed-
dings, which is a kind of contextualized character
embeddings and achieved strong performance in
sequence labeling tasks. Recently, Devlin et al.
(2019) proposed BERT, which encodes contex-
tualized sub-word information by Transformers
(Vaswani et al., 2017) and significantly improves
the performance on a lot of NLP tasks. Much re-
search such as RoBERTa (Liu et al., 2019¢) has
focused on improving BERT model’s performance
through stronger masking strategies. Moreover,
multilingual contextualized embeddings become
popular. Pires et al. (2019) and Wu and Dredze
(2019) showed that Multilingual BERT (M-BERT)
could learn a good multilingual representation ef-
fectively with strong cross-lingual zero-shot trans-
fer performance in various tasks. Conneau et al.
(2020) proposed XLLM-R, which is trained on a
larger multilingual corpus and significantly outper-
forms M-BERT on various multilingual tasks.

2.2 Neural Architecture Search

Recent progress on deep learning has shown that
network architecture design is crucial to the model
performance. However, designing a strong neu-
ral architecture for each task requires enormous
efforts, high level of knowledge, and experiences
over the task domain. Therefore, automatic design
of neural architecture is desired. A crucial part of
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NAS is search space design, which defines the dis-
coverable NAS space. Previous work (Baker et al.,
2017; Zoph and Le, 2017; Xie and Yuille, 2017)
designs a global search space (Elsken et al., 2019)
which incorporates structures from hand-crafted
architectures. For example, Zoph and Le (2017) de-
signed a chained-structured search space with skip
connections. The global search space usually has a
considerable degree of freedom. For example, the
approach of Zoph and Le (2017) takes 22,400 GPU-
hours to search on CIFAR-10 dataset. Based on the
observation that existing hand-crafted architectures
contain repeated structures (Szegedy et al., 2016;
He et al., 2016; Huang et al., 2017), Zoph et al.
(2018) explored cell-based search space which can
reduce the search time to 2,000 GPU-hours.

In recent NAS research, reinforcement learning
and evolutionary algorithms are the most usual ap-
proaches. In reinforcement learning, the agent’s
actions are the generation of neural architectures
and the action space is identical to the search space.
Previous work usually applies an RNN layer (Zoph
and Le, 2017; Zhong et al., 2018; Zoph et al., 2018)
or use Markov Decision Process (Baker et al., 2017)
to decide the hyper-parameter of each structure and
decide the input order of each structure. Evolution-
ary algorithms have been applied to architecture
search for many decades (Miller et al., 1989; Ange-
line et al., 1994; Stanley and Miikkulainen, 2002;
Floreano et al., 2008; Jozefowicz et al., 2015). The
algorithm repeatedly generates new populations
through recombination and mutation operations
and selects survivors through competing among
the population. Recent work with evolutionary al-
gorithms differ in the method on parent/survivor
selection and population generation. For exam-
ple, Real et al. (2017), Liu et al. (2018a), Wistuba
(2018) and Real et al. (2019) applied tournament
selection (Goldberg and Deb, 1991) for the par-
ent selection while Xie and Yuille (2017) keeps
all parents. Suganuma et al. (2017) and Elsken
et al. (2018) chose the best model while Real et al.
(2019) chose several latest models as survivors.

3 Automated Concatenation of
Embeddings

In ACE, a task model and a controller interact with
each other repeatedly. The task model predicts the
task output, while the controller searches for better
embedding concatenation as the word representa-
tion for the task model to achieve higher accuracy.

Given an embedding concatenation generated from
the controller, the task model is trained over the
task data and returns a reward to the controller. The
controller receives the reward to update its param-
eter and samples a new embedding concatenation
for the task model. Figure 1 shows the general
architecture of our approach.

3.1 Task Model

For the task model, we emphasis on sequence-
structured and graph-structured outputs. Given a
structured prediction task with input sentence x
and structured output y, we can calculate the prob-
ability distribution P(y|x) by:

exp (Score(x,y))
Zy’eY(m) exp (SCOI’C(%, y/))

P(yle) =

where Y (x) represents all possible output struc-
tures given the input sentence . Depending on
different structured prediction tasks, the output
structure y can be label sequences, trees, graphs
or other structures. In this paper, we use sequence-
structured and graph-structured outputs as two
exemplar structured prediction tasks. We use
BiLSTM-CRF model (Ma and Hovy, 2016; Lample
et al., 2016) for sequence-structured outputs and
use BiLSTM-Biaffine model (Dozat and Manning,
2017) for graph-structured outputs:

P*(y|z) = BILSTM-CRF(V, )
PEah (41 2) = BILSTM-Biaffine(V, y)

where V' = [v1;--- ;v,], V € R is a matrix
of the word representations for the input sentence
x with n words, d is the hidden size of the concate-
nation of all embeddings. The word representation
v; of ¢-th word is a concatenation of L types of
word embeddings:

l

v = ; /]

embed!(x); v; = [v};v%.. ;0]

where embed’ is the model of I-th embeddings,
v; € RY, 'vf € R . @' is the hidden size of embed'.

3.2 Search Space Design

The neural architecture search space can be repre-
sented as a set of neural networks (Elsken et al.,
2019). A neural network can be represented as a
directed acyclic graph with a set of nodes and di-
rected edges. Each node represents an operation,
while each edge represents the inputs and outputs
between these nodes. In ACE, we represent each
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embedding candidate as a node. The input to the
nodes is the input sentence x, and the outputs are
the embeddings v'. Since we concatenate the em-
beddings as the word representation of the task
model, there is no connection between nodes in
our search space. Therefore, the search space can
be significantly reduced. For each node, there are
a lot of options to extract word features. Taking
BERT embeddings as an example, Devlin et al.
(2019) concatenated the last four layers as word
features while Kondratyuk and Straka (2019) ap-
plied a weighted sum of all twelve layers. However,
the empirical results (Devlin et al., 2019) do not
show a significant difference in accuracy. We fol-
low the typical usage for each embedding to further
reduce the search space. As a result, each embed-
ding only has a fixed operation and the resulting
search space contains 2°—1 possible combinations
of nodes.

In NAS, weight sharing (Pham et al., 2018a)
shares the weight of structures in training differ-
ent neural architectures to reduce the training cost.
In comparison, we fixed the weight of pretrained
embedding candidates in ACE except for the char-
acter embeddings. Instead of sharing the parame-
ters of the embeddings, we share the parameters
of the task models at each step of search. How-
ever, the hidden size of word representation varies
over the concatenations, making the weight shar-
ing of structured prediction models difficult. In-
stead of deciding whether each node exists in the
graph, we keep all nodes in the search space and
add an additional operation for each node to in-
dicate whether the embedding is masked out. To
represent the selected concatenation, we use a bi-
nary vector @ = [a1, -+ ,a;, - ,ar] as an mask
to mask out the embeddings which are not selected:

v = [vlar;.. . ;vlag; .. vlag) (1)
where q; is a binary variable. Since the input V' is
applied to a linear layer in the BiLSTM layer, multi-
plying the mask with the embeddings is equivalent
to directly concatenating the selected embeddings:

L
Wio =Y W, vla 2)
=1

where W=[Wy;Wa;...; W] and WeR>"
and VVleRdl *h Therefore, the model weights can
be shared after applying the embedding mask to
all embedding candidates’ concatenation. Another

benefit of our search space design is that we can re-
move the unused embedding candidates and the cor-
responding weights in W for a lighter task model
after the best concatenation is found by ACE.

3.3 Searching in the Space

During search, the controller generates the embed-
ding mask for the task model iteratively. We use
parameters 6 = [0;;0s; ... ;0] for the controller
instead of using the RNN structure applied in pre-
vious approaches (Zoph and Le, 2017; Zoph et al.,
2018). The probability distribution of selecting an
concatenation a is P"(a; 6) = HlL: L PR (ag; 0)).
Each element a; of a is sampled independently
from a Bernoulli distribution, which is defined as:

o (61)
1-P(q=1;0,) a;=0

al:1

P ag; 0r)= { 3)
where o is the sigmoid function. Given the mask,
the task model is trained until convergence and re-
turns an accuracy R on the development set. As
the accuracy cannot be back-propagated to the
controller, we use the reinforcement algorithm
for optimization. The accuracy R is used as the
reward signal to train the controller. The con-
troller’s target is to maximize the expected reward
J(0) = Epeu(q,9)[ ] through the policy gradient
method (Williams, 1992). In our approach, since
calculating the exact expectation is intractable, the
gradient of J (@) is approximated by sampling only
one selection following the distribution P°"(a; )
at each step for training efficiency:

L
VoJ(0) ~ > Volog Pf™(a;0)(R—b) (4)
=1

where b is the baseline function to reduce the high
variance of the update function. The baseline usu-
ally can be the highest accuracy during the search
process. Instead of merely using the highest accu-
racy of development set over the search process as
the baseline, we design a reward function on how
each embedding candidate contributes to accuracy
change by utilizing all searched concatenations’ de-
velopment scores. We use a binary vector |a’ — a’|
to represent the change between current embedding
concatenation a' at current time step ¢ and a’ at
previous time step . We then define the reward
function as:
t—1
r* =) (R; — R;)|a’ — a’ 5)
i=1
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Figure 1: The main paradigm of our approach is shown in the middle, where an example of reward function is
represented in the left and an example of a concatenation action is shown in the right.

where 7! is a vector with length L representing
the reward of each embedding candidate. Ry
and R; are the reward at time step ¢ and <.
When the Hamming distance of two concatena-
tions Hamm(a', a®) gets larger, the changed can-
didates’ contribution to the accuracy becomes less
noticeable. The controller may be misled to re-
ward a candidate that is not actually helpful. We
apply a discount factor to reduce the reward for two
concatenations with a large Hamming distance to

alleviate this issue. Our final reward function is:

t—

—_

(Rt—R) Hamm(at,a 1‘at_ai’ (6)

' M

—_

1=

where v € (0, 1). Eq. 4 is then reformulated as:

VoJi (0 Z Vo log Pcm(af; 91)7‘; @)

=1
3.4 Training

To train the controller, we use a dictionary D to
store the concatenations and the corresponding val-
idation scores. At t = 1, we train the task model
with all embedding candidates concatenated. From
t = 2, we repeat the following steps until a maxi-
mum iteration 7'

1. Sample a concatenation a’ based on the proba-
bility distribution in Eq. 3.

2. Train the task model with a' following Eq. 1
and evaluate the model on the development set
to get the accuracy ;.

3. Given the concatenation a?, accuracy R; and D,

compute the gradient of the controller following
Eq. 7 and update the parameters of controller.

4. Adda’ and R; into D, sett =t + 1.

When sampling a!, we avoid selecting the previous
concatenation a‘~! and the all-zero vector (i.e., se-
lecting no embedding). If a’ is in the dictionary D,

we compare the R; with the value in the dictionary
and keep the higher one.

4 Experiments

We use ISO 639-1 language codes to represent
languages in the table?.

4.1 Datasets and Configurations

To show ACE’s effectiveness, we conduct extensive
experiments on a variety of structured prediction
tasks varying from syntactic tasks to semantic tasks.
The tasks are named entity recognition (NER), Part-
Of-Speech (POS) tagging, Chunking, Aspect Ex-
traction (AE), Syntactic Dependency Parsing (DP)
and Semantic Dependency Parsing (SDP). The de-
tails of the 6 structured prediction tasks in our ex-
periments are shown in below:

* NER: We use the corpora of 4 languages from
the CoNLL 2002 and 2003 shared task (Tjong
Kim Sang, 2002; Tjong Kim Sang and De Meul-
der, 2003) with standard split.

* POS Tagging: We use three datasets, Ritter11-T-
POS (Ritter et al., 2011), ARK-Twitter (Gimpel
et al., 2011; Owoputi et al., 2013) and Tweebank-
v2 (Liu et al., 2018b) datasets (Ritter, ARK and
TB-v2 in simplification). We follow the dataset
split of Nguyen et al. (2020).

* Chunking: We use CoNLL 2000 (Tjong
Kim Sang and Buchholz, 2000) for chunking.
Since there is no standard development set for
CoNLL 2000 dataset, we split 10% of the train-
ing data as the development set.

* Aspect Extraction: Aspect extraction is a sub-
task of aspect-based sentiment analysis (Pontiki
et al., 2014, 2015, 2016). The datasets are from
the laptop and restaurant domain of SemEval

https://en.wikipedia.org/wiki/List_
of _ISO_639-1_codes
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NER POS AE

de en es nl |Ritter ARK TB-v2|14Lap 14Res 15Res 16Res es nl ru tr
ALL 83.1 92.4 88.9 89.8| 90.6 92.1 94.6 | 827 885 742 732 74.6 75.0 67.1 67.5
RANDOM ||84.0 92.6 88.8 91.9|91.3 92.6 94.6 | 83.6 88.1 735 747 750 73.6 68.0 70.0
ACE 84.2 93.0 889 92.1| 91.7 92.8 94.8 | 839 88.6 749 75.6 75.7 753 70.6 71.1
CHUNK DP SDP AVG

CoNLL 2000 |UAS LAS |DM-ID DM-OOD PAS-ID PAS-OOD PSD-ID PSD-OOD
ALL 96.7 96.7 95.1| 94.3 90.8 94.6 92.9 824 81.7 85.3
RANDOM 96.7 96.8 95.2| 944 90.8 94.6 93.0 823 81.8 85.7
ACE 96.8 96.9 95.3| 94.5 90.9 94.5 93.1 82.5 82.1 86.2

Table 1: Comparison with concatenating all embeddings and random search baselines on 6 tasks.

14, restaurant domain of SemEval 15 and restau-
rant domain of SemEval 16 shared task (14Lap,
14Res, 15Res and 16Res in short). Addition-
ally, we use another 4 languages in the restaurant
domain of SemEval 16 to test our approach in
multiple languages. We randomly split 10% of
the training data as the development set following
Liet al. (2019).

* Syntactic Dependency Parsing: We use Penn
Tree Bank (PTB) 3.0 with the same dataset pre-
processing as (Ma et al., 2018).

* Semantic Dependency Parsing: We use DM,
PAS and PSD datasets for semantic dependency
parsing (Oepen et al., 2014) for the SemEval
2015 shared task (Oepen et al., 2015). The three
datasets have the same sentences but with dif-
ferent formalisms. We use the standard split for
SDP. In the split, there are in-domain test sets
and out-of-domain test sets for each dataset.

Among these tasks, NER, POS tagging, chunk-
ing and aspect extraction are sequence-structured
outputs while dependency parsing and semantic
dependency parsing are the graph-structured out-
puts. POS Tagging, chunking and DP are syntactic
structured prediction tasks while NER, AE, SDP
are semantic structured prediction tasks.

We train the controller for 30 steps and save the
task model with the highest accuracy on the devel-
opment set as the final model for testing. Please
refer to Appendix A for more details of other set-
tings.

4.2 Embeddings

Basic Settings: For the candidates of embed-
dings on English datasets, we use the language-
specific model for ELMo, Flair, base BERT, GloVe
word embeddings, fastText word embeddings, non-
contextual character embeddings (Lample et al.,
2016), multilingual Flair (M-Flair), M-BERT and

XLM-R embeddings. The size of the search space
in our experiments is 2! —1=2047>. For language-
specific models of other languages, please refer to
Appendix A for more details. In AE, there is no
available Russian-specific BERT, Flair and ELMo
embeddings and there is no available Turkish-
specific Flair and ELMo embeddings. We use the
corresponding English embeddings instead so that
the search spaces of these datasets are almost iden-
tical to those of the other datasets. All embeddings
are fixed during training except that the character
embeddings are trained over the task. The empiri-
cal results are reported in Section 4.3.1.

Embedding Fine-tuning: A usual approach to
get better accuracy is fine-tuning transformer-based
embeddings. In sequence labeling, most of the
work follows the fine-tuning pipeline of BERT that
connects the BERT model with a linear layer for
word-level classification. However, when multiple
embeddings are concatenated, fine-tuning a specific
group of embeddings becomes difficult because of
complicated hyper-parameter settings and massive
GPU memory consumption. To alleviate this prob-
lem, we first fine-tune the transformer-based em-
beddings over the task and then concatenate these
embeddings together with other embeddings in the
basic setting to apply ACE. The empirical results
are reported in Section 4.3.2.

4.3 Results

We use the following abbreviations in our experi-
ments: UAS: Unlabeled Attachment Score; LAS:
Labeled Attachment Score; ID: In-domain test set;
OOD: Out-of-domain test set. We use language
codes for languages in NER and AE.

3Flair embeddings have two models (forward and back-
ward) for each language.
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4.3.1 Comparison With Baselines

To show the effectiveness of our approach, we com-
pare our approach with two strong baselines. For
the first one, we let the task model learn by itself
the contribution of each embedding candidate that
is helpful to the task. We set a to all-ones (i.e.,
the concatenation of all the embeddings) and train
the task model (A11). The linear layer weight
W in Eq. 2 reflects the contribution of each can-
didate. For the second one, we use the random
search (Random), a strong baseline in NAS (Li
and Talwalkar, 2020). For Random, we run the
same maximum iteration as in ACE. For the exper-
iments, we report the averaged accuracy of 3 runs.
Table 1 shows that ACE outperforms both baselines
in 6 tasks over 23 test sets with only two exceptions.
Comparing Random with A11, Random outper-
forms A11 by 0.4 on average and surpasses the
accuracy of A11 on 14 out of 23 test sets, which
shows that concatenating all embeddings may not
be the best solution to most structured prediction
tasks. In general, searching for the concatenation
for the word representation is essential in most
cases, and our search design can usually lead to
better results compared to both of the baselines.

4.3.2 Comparison With State-of-the-Art
approaches

As we have shown, ACE has an advantage in
searching for better embedding concatenations.
We further show that ACE is competitive or even
stronger than state-of-the-art approaches. We
additionally use XLNet (Yang et al., 2019) and
RoBERTa as the candidates of ACE. In some tasks,
we have several additional settings to better com-
pare with previous work. In NER, we also conduct
a comparison on the revised version of German
datasets in the CoNLL 2006 shared task (Buch-
holz and Marsi, 2006). Recent work such as Yu
et al. (2020) and Yamada et al. (2020) utilizes doc-
ument contexts in the datasets. We follow their
work and extract document embeddings for the
transformer-based embeddings. Specifically, we
follow the fine-tune process of Yamada et al. (2020)
to fine-tune the transformer-based embeddings over
the document except for BERT and M-BERT em-
beddings. For BERT and M-BERT, we follow the
document extraction process of Yu et al. (2020)
because we find that the model with such docu-
ment embeddings is significantly stronger than the
model trained with the fine-tuning process of Ya-
mada et al. (2020). In SDP, the state-of-the-art

approaches used POS tags and lemmas as addi-
tional word features to the network. We add these
two features to the embedding candidates and train
the embeddings together with the task. We use
the fine-tuned transformer-based embeddings on
each task instead of the pretrained version of these
embeddings as the candidates.*

We additionally compare with fine-tuned XLM-
R model for NER, POS tagging, chunking and AE,
and compare with fine-tuned XLNet model for DP
and SDP, which are strong fine-tuned models in
most of the experiments. Results are shown in Ta-
ble 2, 3, 4. Results show that ACE with fine-tuned
embeddings achieves state-of-the-art performance
in all test sets, which shows that finding a good em-
bedding concatenation helps structured prediction
tasks. We also find that ACE is stronger than the
fine-tuned models, which shows the effectiveness
of concatenating the fine-tuned embeddings”.

5 Analysis

5.1 Efficiency of Search Methods

To show how efficient our approach is compared
with the random search algorithm, we compare the
algorithm in two aspects on CoNLL English NER
dataset. The first aspect is the best development
accuracy during training. The left part of Figure 2
shows that ACE is consistently stronger than the
random search algorithm in this task. The second
aspect is the searched concatenation at each time
step. The right part of Figure 2 shows that the ac-
curacy of ACE gradually increases and gets stable
when more concatenations are sampled.

5.2 Ablation Study on Reward Function
Design

To show the effectiveness of the designed reward
function, we compare our reward function (Eq. 6)
with the reward function without discount factor
(Eq. 5) and the traditional reward function (reward
term in Eq. 4). We sample 2000 training sentences
on CoNLL English NER dataset for faster train-
ing and train the controller for 50 steps. Table 5
shows that both the discount factor and the binary
vector |a! — a'| for the task are helpful in both
development and test datasets.

“Please refer to Appendix for more details about the em-
beddings.

SWe compare ACE with other fine-tuned embeddings in
Appendix.
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NER POS
de deos en es nl Ritter ARK TB-v2

Baevski et al. (2019) - - 93.5 - - Owoputi et al. (2013) 90.4 93.2 94.6
Strakova et al. (2019) | 85.1 - 934 88.8 92.7 || Guietal. (2017) 90.9 - 92.8
Yu et al. (2020) 86.4 90.3 935 903 93.7 || Guietal. (2018) 91.2 92.4 -

Yamada et al. (2020) - - 94.3 - - Nguyen et al. (2020) 90.1 94.1 95.2
XLM-R+Fine-tune 877 914 941 893 953 || XLM-R+Fine-tune 92.3 93.7 95.4
ACE+Fine-tune 88.3 917 94.6 959 95.7 ACE+Fine-tune 93.4 94.4 95.8

Table 2: Comparison with state-of-the-art approaches in NER and POS tagging. T: Models are trained on both

train and development set.

CHUNK AE

CoNLL 2000 14Lap 14Res 15Res 16Res es nl ru tr
Akbik et al. (2018) 96.7 Xu et al. (2018)T 842 846 720 754 - - - -
Clark et al. (2018) 97.0 Xu et al. (2019) 84.3 - - 78.0 - - - -
Liu et al. (2019b) 97.3 Wang et al. (2020a) - - - 72.8 743 729 71.8 593
Chen et al. (2020) 95.5 Wei et al. (2020) 827 871 727 717 - - - -
XLM-R+Fine-tune 97.0 XLM-R+Fine-tune | 859 905 764 789 77.0 77.6 777 74.1
ACE+Fine-tune 97.3 ACE+Fine-tune 874 920 803 813 799 80.5 794 81.9

Table 3: Comparison with state-of-the-art approaches in chunking and aspect extraction. : We report the results

reproduced by Wei et al. (2020).
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Figure 2: Comparing the efficiency of random search (Random) and ACE. The x-axis is the number of time steps.
The left y-axis is the averaged best validation accuracy on CoNLL English NER dataset. The right y-axis is the

averaged validation accuracy of the current selection.

5.3 Comparison with Embedding Weighting
& Ensemble Approaches

We compare ACE with two more approaches to
further show the effectiveness of ACE. One is a
variant of A11, which uses a weighting param-
eter b = [by, - ,b;,---,br] passing through a
sigmoid function to weight each embedding can-
didate. Such an approach can explicitly learn the
weight of each embedding in training instead of a
binary mask. We call this approach A11+Weight.
Another one is model ensemble, which trains the
task model with each embedding candidate indi-
vidually and uses the trained models to make joint
prediction on the test set. We use voting for ensem-
ble as it is simple and fast. For sequence labeling
tasks, the models vote for the predicted label at
each position. For DP, the models vote for the
tree of each sentence. For SDP, the models vote
for each potential labeled arc. We use the confi-

dence of model predictions to break ties if there
are more than one agreement with the same counts.
We call this approach Ensemble. One of the ben-
efits of voting is that it combines the predictions
of the task models efficiently without any training
process. We can search all possible 2—1 model
ensembles in a short period of time through caching
the outputs of the models. Therefore, we search
for the best ensemble of models on the develop-
ment set and then evaluate the best ensemble on
the test set (Ensemblegey). Moreover, we addi-
tionally search for the best ensemble on the test set
for reference (Ensembleqst ), which is the upper
bound of the approach. We use the same setting as
in Section 4.3.1 and select one of the datasets from
each task. For NER, POS tagging, AE, and SDP,
we use CoNLL 2003 English, Ritter, 16Res, and
DM datasets, respectively. The results are shown
in Table 6. Empirical results show that ACE out-
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DP SDP
PTB DM PAS PSD

UAS LAS ID OOD ID O0O0OD ID OOD
Zhou and Zhao (2019)7 | 97.2 957 || He and Choi (2020)7 | 94.6 90.8 96.1 944 868 795
Mrini et al. (2020)" 97.4 963 || D& M (2018) 937 889 939 906 810 794
Li et al. (2020) 96.6 94.8 || Wang etal. (2019) 940 897 941 913 814 796
Zhang et al. (2020) 96.1 94.5 || Jiaetal. (2020) 93.6  89.1 - - - -
Wang and Tu (2020) 96.9 953 || F& G (2020) 944 910 951 934 826 820
XLNET+Fine-tune 97.0 95.6 || XLNet+Fine-tune 942 906 948 934 827 818
ACE+Fine-tune 97.2 958 || ACE+Fine-tune 95.6 92.6 958 946 838 834

Table 4: Comparison with state-of-the-art approaches in DP and SDP. : For reference, they additionally used
constituency dependencies in training. We also find that the PTB dataset used by Mrini et al. (2020) is not identical
to the dataset in previous work such as Zhang et al. (2020) and Wang and Tu (2020). ¥: For reference, we confirmed
with the authors of He and Choi (2020) that they used a different data pre-processing script with previous work.

DEV TEST
ACE 93.18 90.00
No discount (Eq. 5) 9298 89.90
Simple (Eq. 4) 92.89 89.82

Table 5: Comparison of reward functions.

DP SDP
NER POS AE CHK UAS LAS ID OOD
All 92.4 90.6 73.2 96.7 96.7 95.1 94.3 90.8
Random 92.6 91.3 74.7 96.7 96.8 95.2 94.4 90.8
ACE 93.0 91.7 75.6 96.8 96.9 95.3 94.5 90.9

All+Weight || 92.7 90.4 73.7 96.7 96.7 95.1 94.3 90.7
Ensemble 92.2 90.6 68.1 96.5 96.1 94.3 94.1 90.3
Ensemblegey || 92.2 90.8 70.2 96.7 96.8 95.2 94.3 90.7
Ensemble || 92.7 91.4 73.9 96.7 96.8 95.2 94.4 90.8

Table 6: A comparison among A11, Random, ACE,
All+Weight and Ensemble. CHK: chunking.

performs all the settings of these approaches and
even Ensemblet s, Which shows the effective-
ness of ACE and the limitation of ensemble mod-
els. A11, Al1+Weight and Ensemblegyey are
competitive in most of the cases and there is no
clear winner of these approaches on all the datasets.
These results show the strength of embedding con-
catenation. Concatenating the embeddings incor-
porates information from all the embeddings and
forms stronger word representations for the task
model, while in model ensemble, it is difficult for
the individual task models to affect each other.

6 Discussion: Practical Usability of ACE

Concatenating multiple embeddings is a commonly
used approach to improve accuracy of structured
prediction. However, such approaches can be com-
putationally costly as multiple language models
are used as input. ACE is more practical than con-
catenating all embeddings as it can remove those

embeddings that are not very useful in the con-
catenation. Moreover, ACE models can be used
to guide the training of weaker models through
techniques such as knowledge distillation in struc-
tured prediction (Kim and Rush, 2016; Kuncoro
et al., 2016; Wang et al., 2020a, 2021b), leading to
models that are both stronger and faster.

7 Conclusion

In this paper, we propose Automated Concatena-
tion of Embeddings, which automatically searches
for better embedding concatenation for structured
prediction tasks. We design a simple search space
and use the reinforcement learning with a novel
reward function to efficiently guide the controller
to search for better embedding concatenations. We
take the change of embedding concatenations into
the reward function design and show that our new
reward function is stronger than the simpler ones.
Results show that ACE outperforms strong base-
lines. Together with fine-tuned embeddings, ACE
achieves state-of-the-art performance in 6 tasks
over 21 datasets.
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A Detailed Configurations

Evaluation To evaluate our models, We use F1
score to evaluate NER, Chunking and AE, use ac-
curacy to evaluate POS Tagging, use unlabeled
attachment score (UAS) and labeled attachment
score (LAS) to evaluate DP, and use labeled F1
score to evaluate SDP.

Task Models and Controller For sequence-
structured tasks (i.e., NER, POS tagging, chunking,
aspect extraction), we use a batch size of 32 sen-
tences and an SGD optimizer with a learning rate of
0.1. We anneal the learning rate by 0.5 when there
is no accuracy improvement on the development
set for 5 epochs. We set the maximum training
epoch to 150. For graph-structured tasks (i.e., DP
and SDP), we use Adam (Kingma and Ba, 2015)
to optimize the model with a learning rate of 0.002.
We anneal the learning rate by 0.75 for every 5000
iterations following Dozat and Manning (2017).
We set the maximum training epoch to 300. For
DP, we run the maximum spanning tree (McDon-
ald et al., 2005) algorithm to output valid trees in
testing. We fix the hyper-parameters of the task
models.

We tune the learning rate for the controller
among {0.1,0.2,0.3,0.4,0.5} and the discount
factor among {0.1,0.3,0.5,0.7,0.9} on the same
dataset in Section 5.2. We search for the hyper-
parameter through grid search and find a learning
rate of 0.1 and a discount factor of 0.5 performs
the best on the development set. The controller’s
parameters are initialized to all O so that each can-
didate is selected evenly in the first two time steps.

We use Stochastic Gradient Descent (SGD) to opti-
mize the controller. The training time depends on
the task and dataset size. Take the CoNLL English
NER dataset as an example. It takes 45 GPU hours
to train the controller for 30 steps on a single Tesla
P100 GPU, which is an acceptable training time in
practice.

Sources of Embeddings The sources of the em-
beddings that we used are listed in Table 7.

B Additional Analysis

B.1 Document-Level and Sentence-Level
Representations

Recently, models with document-level word repre-
sentations extracted from transformer-based em-
beddings significantly outperform models with
sentence-level word representations in NER (De-
vlin et al., 2019; Yu et al., 2020; Yamada et al.,
2020). However, there are a lot of application sce-
narios that document contexts are unavailable. We
replace the document-level word representations
from transformer-based embeddings (i.e., XLM-
R and BERT embeddings) with the sentence-level
word representations. Results are shown in Table
8. We report the test results of A11 to show how
the gap between ACE and A11 changes with dif-
ferent kinds of representations. We report the test
accuracy of the models with the highest develop-
ment accuracy following Yamada et al. (2020) for
a fair comparison. Empirical results show that the
document-level representations can significantly
improve the accuracy of ACE. Comparing with
models with sentence-level representations, the av-
eraged accuracy gap between ACE and A11 is en-
hanced from 0.7 to 1.7 with document-level repre-
sentations, which shows that the advantage of ACE
becomes stronger with document-level representa-
tions.

B.2 Fine-tuned Models Versus ACE

To fine-tune the embeddings, we use AdamW
(Loshchilov and Hutter, 2018) optimizer with a
learning rate of 5 x 10~ and trained the contex-
tualized embeddings with the task for 10 epochs.
We use a batch size of 32 for BERT, M-BERT and
use a batch size of 4 for XLM-R, RoBERTa and
XLNet. A comparison between ACE and the fine-
tuned embeddings that we used in ACE is shown
in Table 9, 10. Results show that ACE can further
improve the accuracy of fine-tuned models.
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EMBEDDING RESOURCE URL

GloVe

fastText

ELMo

ELMo (Other languages)

Pennington et al. (2014)
Bojanowski et al. (2017)
Peters et al. (2018)
Schuster et al. (2019)

nlp.stanford.edu/projects/glove
github.com/facebookresearch/fastText
github.com/allenai/allennlp
github.com/TalSchuster/CrossLingualContextualEmb

BERT

M-BERT

BERT (Dutch)
BERT (German)
BERT (Spanish)
BERT (Turkish)
XLM-R
RoBERTa
XLNet

Devlin et al. (2019)
Devlin et al. (2019)
wietsedv

dbmdz

dccuchile

dbmdz

Conneau et al. (2020)

Liu et al. (2019¢)
Yang et al. (2019)

huggingface.
huggingface.
huggingface.
huggingface.
huggingface.
huggingface.
huggingface.
huggingface.
huggingface.

co/bert-base-cased
co/bert-base-multilingual-cased
co/wietsedv/bert-base-dutch-cased
co/bert-base-german—-dbmdz-cased
co/dccuchile/bert-base-spanish-wwm-cased
co/dbmdz/bert-base-turkish-cased
co/xlm-roberta-large

co/roberta-large

co/xlnet-large—cased

Table 7: The embeddings we used in our experiments. The URL is where we downloaded the embeddings.

| de des en es ml
All+sent 86.8 90.1 93.3 90.0 944
ACE+sent 87.1 90.5 93.6 924 94.6
BERT (2019) - - 928 - -
Akbik et al. (2019) - 883 932 - 904
Yu et al. (2020) 86.4 90.3 93.5 90.3 94.7
Yamada et al. (2020) - - 943 - -
Luoma and Pyysalo (2020) | 87.3 - 93.7 88.3 935
Wang et al. (2021a) - - 939 - -
All+doc 87.5 90.8 94.0 90.7 93.7
ACE+doc 88.3 91.7 94.6 959 95.7

Table 8: Comparison of models with and without doc-
ument contexts on NER. +sent/+doc: models with
sentence-/document-level embeddings.

B.3 Retraining

Most of the work (Zoph and Le, 2017; Zoph et al.,
2018; Pham et al., 2018b; So et al., 2019; Zhu et al.,
2020) in NAS retrains the searched neural archi-
tecture from scratch so that the hyper-parameters
of the searched model can be modified or trained
on larger datasets. To show whether our searched
embedding concatenation is helpful to the task, we
retrain the task model with the embedding concate-
nations on the same dataset from scratch. For the
experiment, we use the same dataset settings as in
Section 4.3.1. We train the searched embedding
concatenation of each run from ACE 3 times (there-
fore, 9 runs for each dataset).

Table 12 shows the comparison between re-
trained models with the searched embedding con-
catenation from ACE and A11. The results show
that the retrained models are competitive with ACE
in SDP and in chunking. However, in another three
tasks, the retrained models perform inferior to ACE.
The possible reason is that the model at each step
is initialized by the trained model of previous step.
The retrained models outperform A11 in all tasks,
which shows the effectiveness of the searched em-
bedding concatenations.

B.4 Effect of Embeddings in the Searched
Embedding Concatenations

There is no clear conclusion on what concate-
nation of embeddings is helpful to most of the
tasks. We analyze the best searched embedding
concatenations by ACE over different structured
outputs, semantic/syntactic type, and monolin-
gual/multilingual tasks. The percentage of each em-
bedding selected by the best concatenations from
all experiments of ACE are shown in Table 13.
The best embedding concatenation varies over the
output structure, syntactic/semantic level of under-
standing, and the language. The experimental re-
sults show that it is essential to select embeddings
for each kind of task separately. However, we also
find that the embeddings are strong in specific set-
tings. In comparison to the sequence-structured and
graph-structured tasks, we find that M-BERT and
ELMo are only frequently selected in sequence-
structured tasks while XLM-R embeddings are
always selected in graph-structured tasks. For
Flair embeddings, the forward and backward model
are evenly selected. We suspect one direction of
Flair embeddings is strong enough. Therefore con-
catenating the embeddings from two directions to-
gether cannot further improve the accuracy. For
non-contextualized embeddings, pretrained word
embeddings are frequently selected in sequence-
structured tasks, and character embeddings are not.
When we dig deeper into the semantic and syntactic
type of these two structured outputs, we find that
in all best concatenations, BERT embeddings are
selected in all syntactic sequence-structured tasks,
and Flair, M-Flair, word, and XLM-R embeddings
are selected in syntactic graph-structured tasks. In
multilingual tasks, all best concatenations in mul-
tilingual NER tasks select M-BERT embeddings
while M-BERT is rarely selected in multilingual
AE tasks. The monolingual Flair embeddings are
always selected in NER tasks, and XLM-R is more
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frequently selected in multilingual tasks than mono-
lingual sequence-structured tasks (SS).
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NER POS
de de (Revised) en es nl Ritter ARK TB-v2

BERT+Fine-tune 76.9 79.4 89.2 833 83.8 | 912 91.7 94.4
MBERT+Fine-tune 81.6 86.7 92.0 87.1 87.2 | 90.8 91.5 93.9
XLM-R+Fine-tune 87.7 914 94.1 893 953 | 923 93.7 95.4
RoBERTa+Fine-tune - - 93.9 - - 92.0 93.9 954
XLNET+Fine-tune - - 93.6 - - 88.4 924 94.4
ACE+Fine-tune 88.3 91.7 946 959 95.7 | 934 94.4 95.8

Table 9: A comparison between ACE and the fine-tuned embeddings that are used in ACE for NER and POS
tagging.

Chunk AE

CoNLL 2000 | 14Lap 14Res 15Res 16Res es nl ru tr
BERT+Fine-tune 96.7 812 877 71.8 739 769 73.1 643 75.6
MBERT+Fine-tune 96.6 835 85.0 695 736 745 726 71.6 588
XLM-R+Fine-tune 97.0 89 905 764 789 77.0 71.6 717 74.1
RoBERTa+Fine-tune 972 839 902 785 807 - - - -
XLNET+Fine-tune 97.1 845 889 728 734 - - - -
ACE+Fine-tune 97.3 874 920 803 813 799 805 794 81.9

Table 10: A comparison between ACE and the fine-tuned embeddings we used in ACE for chunking and AE.

DP SDP
PTB DM PAS PSD
UAS LAS| ID OOD ID OOD ID OOD
BERT+Fine-tune 96.6 951 | 944 914 944 93.0 820 813

MBERT+Fine-tune 965 949 | 939 904 939 921 812 800
XLM-R+Fine-tune 96.7 954 | 94.2 90.4 94.6 93.2 82.9 81.7
RoBERTa+Fine-tune || 96.9 956 | 93.0 89.3 943 928 820 80.6
XLNET+Fine-tune 97.0 956 | 94.2 90.6 94.8 93.4 82.7 81.8
ACE+Fine-tune 972 957 | 956 926 958 946 838 834

Table 11: A comparison between ACE and the fine-tuned embeddings that are used in ACE for DP and SDP.

|| NER POS Chunk AE DP-UAS DP-LAS SDP-ID SDP-OOD

All 924  90.6 96.7 73.2 96.7 95.1 94.3 90.8
Retrain || 92.6  90.8 96.8 73.6 96.8 95.2 94.5 90.9
ACE 93.0 917 96.8  75.6 96.9 95.3 94.5 90.9

Table 12: A comparison among retrained models, All and ACE. We use the one dataset for each task.

HBERT M-BERT Char ELMo F F-bw F-fw MF MF-bw MF-fw Word XLM-R

SS 0.81 0.74 037 0.85 0.70 048 0.59 0.78 059 041 081 0.70
GS 0.75 0.17 050 0.25 0.83 0.75 0.42 0.83 0.58 0.58 0.50 1.00
Sem. SS || 0.67 0.73 040 0.80 0.60 0.40 0.53 0.87 0.60 0.53 0.80 0.60
Syn. SS || 1.00 075 033 092 0.83 0.58 0.67 0.67 058 025 083 0.83
Sem. GS|| 0.78 022 0.67 033 0.78 0.67 056 0.78 056 0.67 033 1.00
Syn. GS || 0.67 0.00 0.00 0.00 1.00 1.00 0.00 1.00 0.67 033 1.00 1.00
M-NER || 0.67 1.00 056 0.83 1.00 0.78 1.00 0.89 0.78 0.44 0.78 0.89
M-AE 1.00 033 075 033 0.58 042 042 075 025 0.75 050 092

Table 13: The percentage of each embedding candidate selected in the best concatenations from ACE. F and MF
are monolingual and multilingual Flair embeddings. We count these two embeddings are selected if one of the
forward/backward (fw/bw) direction of Flair is selected in the concatenation. We count the Word embedding is
selected if one of the fastText/GloVe embeddings is selected. SS: sequence-structured tasks. GS: graph-structured
tasks. Sem.: Semantic-level tasks. Syn.: Syntactic-level tasks. M-NER: Multilingual NER tasks. M-AE: Mul-
tilingual AE tasks. We only use English datasets in SS and GS. English datasets are removed for M-NER and
M-AE.

2660



