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Abstract
Continual learning has gained increasing at-
tention in recent years, thanks to its biologi-
cal interpretation and efficiency in many real-
world applications. As a typical task of con-
tinual learning, continual relation extraction
(CRE) aims to extract relations between enti-
ties from texts, where the samples of differ-
ent relations are delivered into the model con-
tinuously. Some previous works have proved
that storing typical samples of old relations in
memory can help the model keep a stable un-
derstanding of old relations and avoid forget-
ting them. However, most methods heavily
depend on the memory size in that they sim-
ply replay these memorized samples in subse-
quent tasks. To fully utilize memorized sam-
ples, in this paper, we employ relation proto-
type to extract useful information of each re-
lation. Specifically, the prototype embedding
for a specific relation is computed based on
memorized samples of this relation, which is
collected by K-means algorithm. The proto-
types of all observed relations at current learn-
ing stage are used to re-initialize a memory
network to refine subsequent sample embed-
dings, which ensures the model’s stable under-
standing on all observed relations when learn-
ing a new task. Compared with previous CRE
models, our model utilizes the memory infor-
mation sufficiently and efficiently, resulting in
enhanced CRE performance. Our experiments
show that the proposed model outperforms
the state-of-the-art CRE models and has great
advantage in avoiding catastrophic forgetting.
The code and datasets have been released on
https://github.com/fd2014cl/RP-CRE.

1 Introduction

As one of the most important tasks in information
extraction (IE), relation extraction (RE) has been
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widely applied in many downstream tasks, such
as knowledge base construction and completion
(Riedel et al., 2013). The goal of RE is to recognize
a relation predefined in knowledge graphs (KGs)
for an entity pair in texts. For example, given the
entity pair [Christopher Nolan, Interstellar] in the
sentence “Interstellar is an epic science fiction film
directed by Christopher Nolan”, the relation the-
director-of should be recognized by an RE model.

Conventional RE models (Zeng et al., 2014;
Zhou et al., 2016; Zhang et al., 2018a) always as-
sume a fixed pre-defined set of relations and per-
form once-and-for-all training on a fixed dataset.
Therefore, these models can not well handle the
learning of new relations, which often emerge in
many realistic applications given the continuous
and iterative nature of our world (Hadsell et al.,
2020). To adapt to such a situation, the paradigm
of continual relation extraction (CRE) is proposed
(Wang et al., 2019; Han et al., 2020; Wu et al.,
2021). Compared with conventional RE, CRE fo-
cuses more on helping a model keep a stable under-
standing of old relations while learning emerging
relations, which in fact could be precisely modeled
by continual learning.

Continual learning (or lifelong learning) systems
are defined as adaptive algorithms capable of learn-
ing from a continuous stream of information (Parisi
et al., 2019), where the information is progressively
available over time and the number of learning
tasks is not pre-defined. Continual learning remains
a long-standing challenge for machine learning and
deep learning (Hassabis et al., 2017; Thrun and
Mitchell, 1995), as its main obstacle is the tendency
of models to forget existing knowledge when learn-
ing from new observations (French, 1999), which
is called as catastrophic forgetting. Recent works
try to address the problem of catastrophic forget-
ting in three ways, including consolidation-based
methods (Kirkpatrick et al., 2017), dynamic archi-
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tecture (Chen et al., 2015; Fernando et al., 2017)
and memory-based methods (Lopez-Paz and Ran-
zato, 2017; Aljundi et al., 2018; Chaudhry et al.,
2018), in which memory-based methods have been
proven promising in NLP tasks.

In recent years, some memory-based CRE mod-
els have made significant progress in overcom-
ing catastrophic forgetting while learning new re-
lations, such as EA-EMR (Wang et al., 2019),
MLLRE (Obamuyide and Vlachos, 2019), CML
(Wu et al., 2021) and EMAR (Han et al., 2020).
Despite of their effectiveness, there are some chal-
lenges remaining in current CRE. One noticeable
challenge is how to restore the sample embedding
space disrupted by the learning of new tasks, given
that RE models’ performance is very sensitive to
the quality of sample embeddings. Another chal-
lenge is that most existing CRE models have not
fully exploited memorized samples. In order to
enhance RE performance and overcome the over-
fitting problem caused by high replay frequency,
the samples memorized in these models usually
have the same magnitude as the original training
samples (Wu et al., 2021), which is unrealistic in
real-world tasks.

Inspired by prototypical networks (Snell et al.,
2017) for few-shot classification, we employ rela-
tion prototypes to represent different relations in
this paper, which help the model understand differ-
ent relations well. Furthermore, these prototypes
are used to refine sample embeddings in CRE. This
process is named as prototypical refining in this
paper. Specifically, the prototype for a specific re-
lation is the average embedding of typical samples
labeled with this relation, which are collected by K-
means and memorized by our model for future use.
The prototypical refining can help our model re-
cover from the disruption of embedding space and
avoid catastrophic forgetting during learning new
relations, thus enhance our model’s CRE perfor-
mance. Another advantage of prototypical refining
is the efficient utilization of memorized samples, re-
sulting in our model’s less dependence on memory
size.

Our contributions in this paper are summarized
as follows:

(1) We propose a novel CRE model which
achieves enhanced performance through refining
sample embeddings with relation prototypes and is
effective in avoiding catastrophic forgetting.

(2) The paradigm we proposed for refining sam-

ple embeddings takes full advantage of the typ-
ical samples stored in memory, and reduces the
model’s dependence on memory size (number of
memorized samples).

(3) Our extensive experiments upon two RE
benchmark datasets justify our model’s remarkable
superiority over the state-of-the-art CRE models
and less dependence on memory size.

2 Related Works

Conventional studies in relation extraction (RE)
mainly focus on designing and utilizing various
deep neural networks to discover the relations be-
tween entities given contexts, including: (1) Con-
volutional neural networks (CNNs) (Zeng et al.,
2014, 2015; Nguyen and Grishman, 2015; Lin et al.,
2016; Ji et al., 2017) can effectively extract local
textual features. (2) Recurrent neural networks
(RNNs) (Zhang and Wang, 2015; Xu et al., 2015;
Zhou et al., 2016; Zhang et al., 2018a) are particu-
larly capable of learning long-distance relation pat-
terns. (3) Graph neural networks (GNNs) (Zhang
et al., 2018b; Fu et al., 2019; Zhu et al., 2019)
build word/entity graphs for cross-sentence reason-
ing. Recently, pre-trained language models (De-
vlin et al., 2019) have also been extensively used
in RE tasks (Wu and He, 2019; Wei et al., 2020;
Baldini Soares et al., 2019), and have achieved
state-of-the-arts performance.

However, most of these models can only extract
a fixed set of pre-defined relations. Hence, con-
tinual relation learning, i.e., CRE, has been pro-
posed to overcome this problem. Existing contin-
ual learning methods can be divided into three cat-
egories: (1) Regularization methods (Kirkpatrick
et al., 2017; Zenke et al., 2017; Liu et al., 2018)
alleviate catastrophic forgetting by imposing con-
straints on updating the neural weights important to
previous tasks. (2) Dynamic architecture methods
(Chen et al., 2015; Fernando et al., 2017) change
architectural properties in response to new informa-
tion by dynamically accommodating novel neural
resources. (3) Memory-based methods (Lopez-Paz
and Ranzato, 2017; Aljundi et al., 2018; Chaudhry
et al., 2018) remember a few examples in previ-
ous tasks and continually replay the memory with
emerging new tasks. For CRE, the memory-based
methods have been proven most promising (Wang
et al., 2019; Han et al., 2020). In addition, in or-
der to accurately represent relations with limited
samples, the idea of prototypical networks is intro-
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duced into RE(Gao et al., 2019; Ding et al., 2021).
There are also many memory networks proposed

to remember information of long periods, such as
LSTM (Hochreiter and Schmidhuber, 1997) and
memory-augmented neural networks (Graves et al.,
2016; Santoro et al., 2016). Besides, a new memory
module (Santoro et al., 2018) has demonstrated
its success in relational reasoning, which employs
multi-head attention to allow memory interaction.

3 Methodology

In this section, we introduce our CRE model in
details. At first, we formalize the problem of CRE
and the memory module used in our model.

3.1 Task Formalization

In general, a single relation extraction (RE) task
is to identify (classify) the relation between two
entities expressed in a sentence. Formally, the
objective of CRE is to accomplish a sequence
of K RE tasks {T1, T2, . . . , TK}, where the k-
th task Tk has its own training set Dk and re-
lation set Rk. Suppose Dk contains N training
samples {(x1, t1, y1), . . . , (xN , tN , yN )}where in-
stance (xi, ti, yi), 1 ≤ i ≤ N indicates that the
relation of entity pair ti in sentence xi is yi ∈ Rk.
In fact, each task Tk is an independent multi-
classification task to identify various relations in
Rk. A CRE model should perform well on extract-
ing the relations in all K tasks after being trained
with the samples of these tasks. In other words, the
model should be capable of identifying the relation
of a given entity pair into R̃k, where R̃k = ∪ki=1Ri

is the relation set already observed till the k-th task.
Inspired by current CRE models (Wu and He,

2019; Han et al., 2020), we adopt an episodic mem-
ory module to store typical samples of relations that
the model has learned in former tasks. The memory
module for relation r is represented as a memorized
sample set Mr = {(x1, t1, r), . . . , (xO, tO, r)},
where each sample is labeled with r and O is
the memory size (sample number). Therefore,
the episodic memory for the observed relations
in T1 ∼ Tk is M̃k = ∪r∈R̃k

Mr.

3.2 Model Learning Pipeline

The learning procedure of our model for a current
task Tk is shown in Algorithm 1. The procedure
contains four major steps:

Prototype Generation (line 2 ∼ 13): We first
obtain the prototype pr of each old relation r in

Algorithm 1: Training procedure for Tk
Input: Dk, Rk, R̃k−1, M̃k−1
Output: R̃k, M̃k

1 P k ← ∅;
2 for each r ∈ R̃k−1 do
3 get Mr from M̃k−1;
4 Hr ← ∅;
5 for each (xi, ti, r) ∈Mr do
6 //get xi’s embedding hi through E;
7 hi ← E(xi, ti);
8 Hr ←Hr ∪ hi;
9 end

10 //compute r’s prototype as the average
of Hr’s embeddings;

11 pr ← Avg(Hr);
12 P k ← P k ∪ pr;
13 end
14 R̃k ← R̃k−1 ∪Rk;
15 M̃k ← M̃k−1;
16 for i = 1 to epochs1 do
17 update E and C according to L1 on Dk;
18 end
19 for each r ∈ Rk do
20 Hr ← ∅;
21 for each (xi, ti, yi) ∈ Dk do
22 if yi = r then
23 hi ← E(xi, ti);
24 Hr ←Hr ∪ hi;
25 end
26 end
27 generate Mr by K-means on Hr;
28 M̃k ← M̃k ∪Mr;
29 pr ← Avg(Hr);
30 P k ← P k ∪ pr;
31 end
32 feed P k into M;
33 for i = 1 to epochs2 do
34 update E, M and C according to L2 on

M̃k with the prototypical refining
conducted by M;

35 end

R̃k−1 by averaging the embeddings of memorized
samples in Mr with sample encoder E (Section
3.3). These prototypes constitute a prototype set
P k, which is used to memorize model’s embed-
ding space before training on Tk. Note that the
encoder E is continuously changing with tasks, the
prototypes of relations need to be regenerated at



235

BERT

[CLS] [E11] [E12]w1 w2 … wp … [E21] [E22]wq …… wn…

Entity 1 Entity 2

concat.

fully connected layer + layer normalization

Encoder Output

Encoder Input

h11 h21

h

Figure 1: The structure of sample encoder E.

the beginning of each task.
Initial Training (line 16 ∼ 18): The parameters

in sample encoder E and relation classifier C are
tuned with the training samples inDk (Section 3.4).

Sample Selection (line 19 ∼ 31): For each re-
lation r in Rk, which is unobserved in the former
tasks, we retrieve all samples labeled with r from
Dk. Then we use K-means algorithm to cluster
these samples. In each cluster, we take the sample
closest to the centroid as the memorized typical
sample of r, to constitute Mr (Section 3.5). Then,
we generate r’s prototype pr based on Mr to ex-
pand the prototype set P k.

Prototypical Refining (line 32 ∼ 35): To re-
cover the disruption of sample embedding space,
which is caused by training on Tk, we use rela-
tion prototype set P k to refine sample embeddings.
Specifically, P k is used to initialize our attention-
based memory network M (Section 3.6). The sam-
ples in M̃k are encoded into embeddings by E, and
then refined by M before being fed to C, to compute
the loss function and update model parameters.

In general, the parameter update of our model
for Tk includes two stages: (1) Initial training on
Dk, where samples are encoded by encoder E. (2)
Prototypical refining on M̃k, where sample embed-
dings are generated by encoder E and then refined
by memory network M.

Next, we introduce this procedure in detail.

3.3 Sample Encoder

The structure of this sample encoder is displayed in
Figure 1, which is used to obtain the embedding of
each sample. In our model, the encoder E is built
upon BERT (Devlin et al., 2019; Wolf et al., 2020),
given its excellent performance on text encoding as
a representative pre-trained language model. In ad-
dition, entity information has been proven effective

in sample encoding for RE tasks (Wu and He, 2019;
Baldini Soares et al., 2019). Thus, we highlight the
existence of entities in the sentence to augment E,
through adding special tokens to mark the start and
end position of entities. Specifically, we use [E11],
[E12], [E21] and [E22] to denote the start and end
position of head and tail entity, respectively.

Next, a sample’s hidden representation is the
concatenation of token embeddings of [E11] and
[E21], which has been proven effective in previous
works (Baldini Soares et al., 2019). By feeding this
concatenation into a fully connected layer along
with layer normalization, a sample’s final embed-
ding h is generated as follows

h = LN

(
W
(
concat[h11,h21]

)
+ b

)
, (1)

where h11,h21 ∈ Rh (h is the dimension of BERT
hidden representation) are the hidden representa-
tions of [E11] and [E21], W ∈ Rd×2h (d is sample
embedding dimension) and b ∈ Rd are trainable
parameters, and LN(·) is the operation of layer
normalization.

3.4 Initial Training for New Task
According to the general assumption of CRE, all
relations in Rk are unobserved in former tasks
T1 ∼ Tk−1. We first introduce the model’s ini-
tial training on a simple multi-classification task.

Specifically, classifier C in our model is a linear
softmax classifier. For training set Dk, the loss
function is defined as

L1(θ) =
|Dk|∑
i=1

−logP (yi|xi, ti), (2)

where P (yi|xi, ti) is calculated by classifier C
based on sample (xi, ti, yi)’s embedding output
by sample encoder E.
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Figure 2: Attention-based memory network M. (a) The overall work flow of memory network, where input is the
sample embedding generated by E. (b) Basic structure of attention heads in attention module.

3.5 Selecting Typical Samples to Memorize
Relations

For each relation r in Rk, we select several typical
samples into Mr after the initial training with DK .
As the budget of memory is relatively smaller, it is
important to select informative and diverse samples
to represent r. Inspired by (Han et al., 2020), we ap-
ply K-means algorithm upon the embeddings of r’s
samples, which are generated by sample encoder E.
Suppose the number of clusters is O, which is also
the number of typical samples that we will store
to represent r. Then, in each cluster we choose
the sample closest to the centroid to represent the
cluster and add it into the memory. Such operation
ensures that the samples stored in the memory are
diverse enough and representative for the relation.

3.6 Refining Sample Embeddings with
Relation Prototypes

We propose this module to refine the sample em-
beddings.

After the initial training for the new task Tk, old
relations’ embedding space is likely to be disrupted
because the model is tuned towards fitting Tk’s
learning objective (Section 3.4). Instead of just re-
playing memorized samples for recovery, which is
a common practice in continual learning, we refine
sample embeddings based on relation prototypes.

Before applying our prototypical refining, we
first obtain the prototype embedding pr for each
old relation r in R̃k−1 to constitute the prototype
set P k. This step (Prototype Generation) is con-
ducted before the initial training for Tk (Initial
Training) to memorize the former state of our
model. Then, we construct an attention-based mem-

ory network M based on P k for prototypical refin-
ing, as shown in Figure 2. This network’s input is
the sample embedding generated by E, and its out-
put is fed into C for relation classification. Based
on prototypical refining conducted by memory net-
work M, our model’s embedding space is restored.

Given a sample (x, t, y), its embedding h ∈ Rd

is generated by E and will be fed to memory net-
work M. We also denote the head number of our
memory network as N and the hidden dimension
of each head as d1. The output of the i-th attention
head is hi ∈ Rd1 , which is computed as

hi = ATN(qi,Ki,V i)

= softmax

(
qiK

T
i√

d1

)
V i,

(3)

where qi ∈ Rd1 is the linear transformation of
input h, and Ki,V i ∈ RL×d1 (L is the current size
of R̃k) is the linear transformation of P k. Then,
we concatenate each head’s output into the output
of multi-head attention layer as

h̃ = LN

(
W1

(
concat[h1,h2, . . . ,hN ]

)
+ h

)
,

(4)
where W 1 ∈ Rd×Nd1 is a trainable matrix.

At last, the final output of M is a residual output
computed as

h̃
′
= LN

(
W 2h̃+ h̃

)
, (5)

where W 2 ∈ Rd×d is also a trainable matrix. h̃
′

is the refined embedding of (x, t, y), which incor-
porating the information of prototypes P k through
Equation 3 and is fed to the classifier C.
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We take M̃k as the training set in this stage and
the loss function is

L2(θ) =
|M̃k|∑
i=1

−logP (yi|xi, ti), (6)

where (xi, ti, yi) is a sample in M̃k, and
P (yi|xi, ti) is calculated by C based on its em-
bedding, which is first generated by E and refined
by M.

Based on the typicality and diversity of mem-
orized samples (samples that can well represent
most samples in this relation), training on M̃k can
restore the disrupted embedding space of our model
with a relatively small computational cost, which
allows our model to regain a stable understanding
of old relations.

3.7 Prediction

In order to maintain the consistency of training and
prediction, our model uses the embeddings refined
by M for prediction after training on a new task.

4 Experiments

4.1 Datasets

Our experiments were conducted upon the follow-
ing two widely used datasets. The training-test-
validation split ratio is 3:1:1.

FewRel (Han et al., 2018) It is an RE benchmark
dataset originally proposed for few-shot learning,
which is annotated by crowd workers and contains
100 relations and 70,000 samples in total. In our
experiments, we used the version of 80 relations
that has been used (as the training and valid set) for
CRE.

TACRED (Zhang et al., 2017) It is a large-scale
RE dataset with 42 relations (including no relation)
and 106,264 samples built over newswire and web
documents. Based on the open relation assumption
of CRE, we removed no relation in our experi-
ments. At the same time, in order to limit the sam-
ple imbalance of TACRED, we limited the number
of training samples of each relation to 320 and the
number of test samples of each relation to 40.

4.2 Compared Models

We introduce the following state-of-the-art CRE
baselines to be compared with our model in our
experiments.

EA-EMR (Wang et al., 2019) maintains a mem-
ory to alleviate the problem of catastrophic forget-
ting.

EMAR (Han et al., 2020) introduces memory
activation and reconsolidation for continual relation
learning.

CML (Wu et al., 2021) proposes a curriculum-
meta learning method to tackle the order-sensitivity
and catastrophic forgetting in CRE.

As we adopt pre-trained language model for sam-
ple encoding, we replace the encoder (Bi-LSTM)
in EMAR with BERT for a fair comparison. This
EMAR’s variant is denoted as EMAR+BERT. Be-
sides, we denote our CRE model with relation pro-
totypes as RP-CRE in result display. Since our
model only uses the information of memorized
samples in attention-based memory network, we
further proposed a variant of our model denoted as
RP-CRE+Memory Activation, by adding a mem-
ory activation (Han et al., 2020) step before atten-
tion operation, to verify whether more memory
replay is needed.

4.3 Experimental Settings

In previous CRE experiments (Wang et al., 2019;
Han et al., 2020), relations are first divided into
10 clusters to simulate 10 tasks. However, there
are two drawbacks of this setting: (1) Recogniz-
ing all relations before training is unrealistic and
contrary to the setting of lifelong learning. (2) The
relations in one cluster generally have more seman-
tic relevance. Therefore, we adopted a completely
random sampling strategy on relation-level in our
experiments, which is more diverse and realistic.
In addition, the task order of all models is exactly
the same.

In the context of continual learning, we pay more
attention to the variation trend of models’ perfor-
mance while learning new tasks. Therefore, after
training for each new task, we will evaluate the
classification accuracy of the models on the test
set, which is composed of the test samples of all
observed relations.

Given that most recent CRE models are evalu-
ated by distinguishing true relation labels from a
small number of sampled negative labels (Wang
et al., 2019), which is too simple and rigid for
realistic applications. Therefore, we take a rigor-
ous multi-classification task on all observed rela-
tions as the evaluation of our model. It is also
the reason that the baselines’ performance is much
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Table 1: Accuracy (%) on all observed relations (which will continue to accumulate over time) at the stage of learn-
ing current task, indicating that our model (RP-CRE) significantly surpasses other models and has an advantage in
comparison with EMAR+BERT.

FewRel
Model T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
EA-EMR 89.0 69.0 59.1 54.2 47.8 46.1 43.1 40.7 38.6 35.2
EMAR 88.5 73.2 66.6 63.8 55.8 54.3 52.9 50.9 48.8 46.3
CML 91.2 74.8 68.2 58.2 53.7 50.4 47.8 44.4 43.1 39.7
EMAR+BERT 98.8 89.1 89.5 85.7 83.6 84.8 79.3 80.0 77.1 73.8
RP-CRE+Memory Activation 98.0 91.4 91.8 86.8 87.6 86.9 83.7 81.9 80.1 79.5
RP-CRE (Ours) 97.9 92.7 91.6 89.2 88.4 86.8 85.1 84.1 82.2 81.5

TACRED
Model T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
EA-EMR 47.5 40.1 38.3 29.9 28.4 27.3 26.9 25.8 22.9 19.8
EMAR 73.6 57.0 48.3 42.3 37.7 34.0 32.6 30.0 27.6 25.1
CML 57.2 51.4 41.3 39.3 35.9 28.9 27.3 26.9 24.8 23.4
EMAR+BERT 96.6 85.7 81.0 78.6 73.9 72.3 71.7 72.2 72.6 71.0
RP-CRE+Memory Activation 97.1 91.4 87.4 82.1 78.3 77.8 74.9 73.5 73.6 72.3
RP-CRE (Ours) 97.6 90.6 86.1 82.4 79.8 77.2 75.1 73.7 72.4 72.4

worse than their reported results in the original pa-
pers. The method of choosing hyper-parameter
for our model is manual tuning. For reproducing
our experiment results conveniently, our model’s
source code, detailed hyper-parameter configu-
rations and processed samples are provided on
https://github.com/fd2014cl/RP-CRE.

4.4 Overall Performance Comparison

The performance of our model and baselines are
shown in Table 1, where the reported scores are the
average of 5 rounds of training. Hyper-parameter
configurations of baselines are the same as that
reported in original papers. Result of each task is
the accuracy on test data of all observed relations.

Based on the results, we find that:
(1) Our strict test and sampling strategy actu-

ally increase the difficulties of CRE, causing great
difficulties to the compared CRE models. This phe-
nomenon is especially obvious in TACRED that
has class-imbalance, even if we have made some
restrictions to the number of samples for each rela-
tion.

(2) Pre-trained language models, such as BERT,
can gain outstanding performance in CRE. Take
EMAR for example, replacing Bi-LSTM in it with
BERT brings more than 50% of improvement for
the last task in FewRel (46.3% to 73.8%), and more
than 150% of improvement in TACRED (25.1% to
71.0%). We think this is mainly due to BERT’s

capability of making rapid migration to new tasks.
The remarkable advantage of the BERT-based mod-
els in Table 1 in TACRED further justifies BERT’s
insensitivity to sample imbalance.

(3) Compared with EMAR+BERT, our model
also has great advantage, proving that our model
can take full advantage of memorized samples and
maintain relatively stable performance in continual
learning.

(4) Adding memory activation to our models did
not significantly improve performance, indicating
that it is sufficient to adopt relation prototypes in
CRE.

(5) Note that all models have similar perfor-
mance on the former tasks, but our model obtains
more stable performance towards the emergence
of new tasks. It implies our model’s advantage in
long-term memory, which will be proven in Section
4.5.

The average time consumption (on the machine
with a single RTX3090) of training RP-CRE is
1h28min, EMAR is 37min and EMAR+BERT is
3h21min. Our model’s time consumption is mainly
due to the massive parameters of BERT. Given
our model’s apparent performance improvement
with respect to EMAR, such time consumption is
relatively acceptable.

https://github.com/fd2014cl/RP-CRE
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Table 2: Accuracy (%) on the test sets from every previous task at the stage of learning the last task (with the same
size of memory), indicating that our model has better performance on previous tasks.

Model T1 T2 T3 T4 T4 T6 T7 T8 T9 T10
RP-CRE (Ours) 82.8 68.4 89.0 78.8 75.7 88.1 77.3 82.9 92.3 90.8
EMAR+BERT 75.2 59.6 77.6 65.8 65.9 80.5 58.9 60.0 87.6 98.0

Figure 3: Visualized process of alleviating the disruption of sample embedding space after learning a new task. (a)
Recovery result of EMAR+BERT. (b) Recovery result of RP-CRE.

4.5 Long-term Effectiveness of Episodic
Memory

To explore long-term effectiveness of episodic
memory in our model, we compared our model
with EMAR+BERT on FewRel, which is similar to
our model in selecting memorized samples. Results
are shown in Table 2, where each score is the classi-
fication accuracy for all relations on test set of each
former task. We conclude that after training on 10
sequential tasks, our model performs better on the
former tasks. It indicates that our model has a much
stable understanding of old relations in old tasks. In
both models, memorized samples of old relations
are used to restore the model’s performance on old
relations (memory reconsolidation in EMAR, pro-
totypical refining in our model). In order to find the
reason of EMAR’s inferior performance on the for-
mer tasks, we display the visualization the varying
of sample embedding space during model training.

Concretely, we used t-SNE (Van der Maaten and
Hinton, 2008) for dimension reduction and chose
memorized samples from relation participant for
visualization, which were fed into the two models
on the same task. Figure 3 shows the sample posi-
tions in the embedding space, where the blue dots

represent the memorized samples and the red dot
represents the relation’s prototype (the centroid of
memorized samples before learning the new task).
Left two sub-figures display how sample embed-
ding space is disrupted by the learning of new tasks.
Right two sub-figures display how the model re-
covers.

From Figure 3, we notice that although EMAR’s
sample embeddings are getting closer to the former
centroid (relation prototype) after memory recon-
solidation, they converge in fact. Comparatively,
our model restores the embedding space while re-
taining the diversity between samples. In terms of
typicality and diversity of memorized samples, it is
not our purpose to encode all memorized samples
into exactly the same point in the embedding space,
since it may damage the diversity of these sam-
ples and reduce the information provided by the
samples, during model’s recovery from disrupted
condition.

This result is mainly due to that the loss function
selected in EMAR’s memory reconsolidation is too
radical, focusing only on reducing the absolute dis-
tance between a memorized sample and the relation
prototype. Therefore, our strategy of refining sam-
ple embeddings with relation prototypes (Section
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Figure 4: Comparison of model’s dependence on memory size, indicating that our model has a weaker dependence
on memory size. The X-axis is the serial ID of current task, and Y-axis represents the model’s classification
accuracy on test set from all observed relations at current stage.

3.6) better preserves the diversity of memorized
samples, as it takes into account various features
of samples rather than the true labels. It eventually
retains more information of memorized samples.

4.6 Model Dependence on Memory Size

In most memory-based CRE models, memory size
(number of memorized samples) is a key factor
affecting model performance. However, most of
previous models do not fully utilize the informa-
tion provided by memorized samples, resulting in
their dependence on memory size. Even worse, the
memorized samples have the same magnitude as
the original samples. In Section 3.6, we have em-
phasized the advantages of our model in retaining
and full utilization of memory information. We
verified whether our model relies less on memory
size through comparison experiments, of which the
results are shown in Figure 4.

We chose EMAR+BERT as the main competitor,
in which the configuration and task sequence re-
mained unchanged. The only variable we adjusted
is memory size. Based on the results we conclude
that, as memory size decreases, our model obtains
less decreased performance than EMAR+BERT
(performance degradation is inevitable). Even
though EMAR showed a relatively stable per-
formance in the first two tasks, its performance
dropped significantly in the subsequent tasks. This
is consistent with the long-term effectiveness of
memory we have analyzed in Section 4.5. The
diversity of samples in EMAR would gradually
disappear, making it highly dependent on mem-
ory size. Comparatively, our model’s dependence

on memory size is weak because it preserves the
diversity of samples.

5 Conclusion
In this paper, we propose a novel CRE model
obtaining enhanced performance through refining
sample embeddings. In our model, the sample
embeddings are refined by an attention-based mem-
ory network fed with relation prototypes, that are
generated from memorized samples. The compari-
son experiments show that our model significantly
outperforms current state-of-the-art CRE models.
As most current CRE models are memory-based,
we further explore the long-term effectiveness of
episodic memory. The results show that our model
has great advantages in maintaining diversity of
memorized samples and performs well in avoid-
ing catastrophic forgetting of old relations (tasks).
Because of the efficiency in memory mechanism,
our model depends less on memory size. In future
work, we will explore whether the mechanism of
refining sample embeddings with prototypes can be
used in other classification-based continual learn-
ing tasks.
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