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Abstract

Recent research considers few-shot intent de-
tection as a meta-learning problem: the model
is learning to learn from a consecutive set
of small tasks named episodes. In this work,
we propose PROTAUGMENT, a meta-learning
algorithm for short texts classification ap-
plied to the intent detection task. PROTAUG-
MENT is a novel extension of Prototypical Net-
works (Snell et al., 2017) that limits over-fitting
on the bias introduced by the few-shots classi-
fication objective at each episode. It relies on
diverse paraphrasing: a conditional language
model is first fine-tuned for paraphrasing, and
diversity is later introduced at the decoding
stage at each meta-learning episode. The di-
verse paraphrasing is unsupervised as it is ap-
plied to unlabelled data and then fueled to the
Prototypical Network training objective as a
consistency loss. PROTAUGMENT is the state-
of-the-art method for intent detection meta-
learning, at no extra labeling efforts and with-
out the need to fine-tune a conditional language
model on a given application domain.

1 Introduction

Intent detection, a sub-field of text classification,
involves classifying user-generated short-texts into
intent classes, usually for conversational agents
applications (Casanueva et al., 2020). Since con-
versational agent applications are domain-specific,
intent detection is a challenging task because of
labeled data scarcity and the number of classes (in-
tents) it usually involves (Dopierre et al., 2020).
As a consequence, recent research (Snell et al.,
2017; Ren et al., 2018) considers few-shot intent
detection as a meta-learning problem: the model
is trained to classify user utterances from a con-
secutive set of small tasks named episodes. Each
episode contains a limited number of C classes
alongside a limited number of K labeled data for
each of the C classes – this is usually referred to as

a C-way K-shots setup. At test time, the algorithm
is evaluated on classes that were not seen during
training. That is the reason why meta-learning
is sometimes referred to as learning to learn: it
mimics human abilities to learn iteratively from
different and small tasks. Meta-learning has suc-
cessfully been applied to a wide set of NLP tasks:
hypernym detection (Yu et al., 2020), low resource
machine translation (Gu et al., 2018), machine un-
derstanding tasks (Dou et al., 2019) or structured
query generation (Huang et al., 2018). Most meta-
learning algorithms (Section 2) were developed in
the course of the last 5 years. It has recently been
empirically demonstrated that comparative studies
in follow-up papers of (Snell et al., 2017) are debat-
able – for short texts classification – because of the
two following main issues (Dopierre et al., 2021).
First, comparative studies involve simple and lim-
ited datasets in terms of number and separability of
classes (SNIPS (Coucke et al., 2018), a very popu-
lar dataset, includes only 7 classes, with the current
best model performing over 99% accuracy (Cao
et al., 2020)). Second, as we further better under-
stand (Niven and Kao, 2019), fine-tune (Liu et al.,
2019b; Hao et al., 2020) and refine (Khetan and
Karnin, 2020) BERT-derived models, it is not clear
if the different meta-learning frameworks can be
considered state-of-the-art due to their architecture
or due to the improvements of available text en-
coders at the time of conception. (Dopierre et al.,
2021) concludes that Prototypical Networks (Snell
et al., 2017) (that were using LSTM-based text en-
coders when introduced in NLP) are actually the
state-of-the-art for intent detection when equipped
with a fine-tuned BERT text encoder model. Ul-
timately, improving Prototypical Networks have
therefore been proven to be a very challenging task
in reality.

A cornerstone challenge is that meta-learning
models can easily overfit on the biased distribution
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introduced by a few training examples (Yang et al.,
2021). In order to prevent overfitting and inspired
by (Xie et al., 2020), we introduce an unsuper-
vised diverse paraphrasing loss in the Prototypical
Networks framework. A key idea is consistency
learning: by augmenting unlabeled user utterances,
PROTAUGMENT enforce a more robust text repre-
sentation learning. Unfortunately, back-translation
is a poor data augmentation strategy for short-texts:
neural machine translation provides very similar
(if not the same) sentences to the original ones,
which hinders its ability to provide diverse augmen-
tations (Section 5.3). Consequently, in this work,
we transfer a denoising autoencoder pre-trained on
the sequence-to-sequence task (Lewis et al., 2020)
to the paraphrase generation task and then use it to
generate paraphrases. As fine-tuning is very effi-
cient for such a model, it is not easy to optimize
it for diverse paraphrasing. (Goyal and Durrett,
2020) presents an approach for diverse paraphras-
ing that reorders the original sentence to guide the
conditional language model to generate diverse sen-
tences. The diversity in that work is provided by
the reordering of the elements, which surprisingly
affects the attention mechanism. In (Liu et al.,
2020), expression diversity is part of the unsuper-
vised paraphrasing system supported by simulated
annealing. Both approaches imply domain trans-
fer, and consequently, as many diverse paraphras-
ing models to maintain as the number of consid-
ered application domains, which do not scale very
well. In this work, we instead introduce diversity in
the downstream decoding algorithm used for para-
phrase generation. Diverse decoding methods are
mostly extensions to the beam search algorithm,
including noise-based algorithms (Cho, 2016), it-
erative beam search (Kulikov et al., 2019), clus-
tered beam search (Tam, 2020) and diverse beam
search (Vijayakumar et al., 2018). There is no clear
optimal solution, the choice is task-specific and
dependent on one’s tolerance for lower quality out-
puts as a diversity/fluency trade-off (Ippolito et al.,
2019). While diverse beam search allows control-
ling the diversity/fluency trade-off partially, we fur-
ther demonstrate that adding constraints to diverse
beam search in order to generate tokens not seen
in the input sentence (that is, constrained diverse
beam search) is a simple yet powerful strategy to
further improve the diversity of the paraphrases.
Paired with paraphrasing user utterances and its
consistency loss incorporated in Prototypical net-

works, our model is the best method for intent de-
tection meta-learning on 4 public datasets, with
neither extra labeling efforts nor domain-specific
conditional language model fine-tuning. We also
show that PROTAUGMENT, having access to only
10 samples of each class of the training data, still
significantly outperforms a Prototypical Network
which is given access to all samples of the same
training data.

2 Neural architectures for meta-learning

Past works on meta-learning for classification tasks
investigate how to best predict a query point’s class
at an episode scale. This process is bounded to the
set of the C classes considered in a given episode.
Matching Networks (Vinyals et al., 2016) predict
the class of a query point as the average cosine dis-
tance between the query vector and all support vec-
tors for each class. Prototypical Networks (Snell
et al., 2017) extend Matching Networks: after ob-
taining support vectors from the encoder, a class
prototype is produced via a class-wise vector aver-
aging operation. All query points are then predicted
with respect to their distance (cosine or euclidean)
to all prototypes. Like Prototypical Networks, Re-
lation Networks (Sung et al., 2018) emerged from
Computer Vision application and were later suc-
cessfully applied to NLP (Zhang et al., 2018). They
introduce a relation module, which captures the re-
lationship between data points: instead of using a
pre-defined distance (euclidean or cosine most of
the time), this approach allows such networks to
learn this metric by themselves. This is achieved
using either a shallow feed-forward sub-network
or a Neural Tensor Layer relation module (Socher
et al., 2013) (intermediate learnable matrices). An-
other extension to Prototypical Networks is pro-
vided in (Ren et al., 2018). Unlabeled data are
incorporated using two distinct approaches: i) tak-
ing unlabeled data from the same classes as the
episode or ii) using any unlabeled data and incorpo-
rating both a distractor cluster and masking strategy
to minimize the impact of distant unlabeled points.
The first approach is unrealistic for meta-learning,
as it implies knowing the unlabeled data class. The
second method assumes that all the noise is cen-
tered around a single distractor cluster and intro-
duces an additional hyperparameter for masking
– which is hardly fine-tuneable for small few-shot
datasets.
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3 Background

3.1 Notations

Meta-learning algorithms are trained using a spe-
cific procedure made of consecutive episodes. Let
Cep be the set of C classes sampled for the cur-
rent training episode, such as Cep ⊂ Ctrain, where
Ctrain is the set of all classes available for train-
ing. We note Ctest, the set of classes used for
testing, with Ctrain ∩ Ctest = ∅. Each class
c ∈ Cep comes with K labeled samples, used
as support. The set of C × K samples are usu-
ally referred to as S, the support set, so that S =
{(x1, y1), . . . , (xC×K , yC×K)}. We denote Sc the
set of support examples labeled with class c. Each
episode comes with a query set Q, which serves
as the episode-scale optimization – the model pa-
rameters are updated based on the prediction loss
on Q, given S as an input. Qc is the set of query
examples labeled with class c.

3.2 Prototypical networks

In prototypical networks, each class is mapped to a
representative point, called prototype. Each sample
is first encoded into a vector using an embedding
function fφ with learnable parameters φ – this is
the function we want to optimize. Using these
embeddings, we compute each prototype pc, c ∈
Cep as the mean vector of embedded support points
belonging to the class c, as described in Equation 1.

pc =
1

K

∑
(xi,yi)∈Sc

fφ(xi) (1)

Given those prototypes and a distance function d,
prototypical networks assign a label to a query
point by computing the softmax over distances be-
tween this point’s embedding and the prototypes,
as in Equation 2. In the original paper, (Snell et al.,
2017) use the euclidean distance and we also ob-
served consistent slightly worse results with the
cosine distance.

Pφ(y = c|x) = softmax (−d(fφ(x), pc)) (2)

The supervised loss function L̄ is the average nega-
tive log-probability of the correct class assignments
for all query points. At test time, episodes are
created using classes from Ctest, and accuracy is
measured as the query points assignments, given
prototypes derived from the support points.

4 PROTAUGMENT

In this section, we present our semi-supervised ap-
proach PROTAUGMENT. Along with the labeled
data randomly chosen at each episode, this ap-
proach uses U unlabeled data randomly drawn
from the whole dataset – that is, data from train-
ing, validation, and test labels. We first do a data
augmentation step from this unlabeled data, where
we obtain M paraphrases for each unlabeled sen-
tence. Themth paraphrase of xwill be denoted x̃m.
Then, given unlabeled data and their paraphrases,
we compute a fully unsupervised loss. Finally, we
combine both the supervised loss L̄ (the Prototypi-
cal Network loss using labeled data) and unsuper-
vised loss (denoted L̃) and run back-propagation to
update the model’s parameters.

4.1 Generating augmentations through
paraphrasing

The BART (Lewis et al., 2020) model is a
Transformer-based neural machine translation ar-
chitecture that is trained to remove artificially cor-
rupted text from the input thanks to an autoencoder
architecture. While it is trained to reconstruct the
original noised input, it can be fine-tuned for task-
specific conditional generation by minimizing the
cross-entropy loss on new training input-output
pairs (Bevilacqua et al., 2020). In PROTAUGMENT,
we fine-tune a pre-trained BART model on the para-
phrasing task. The paraphrase sentence pairs we
use for this task are taken from 3 different para-
phrase detection datasets1: Quora (Sharma et al.,
2019), MSR (Zhao and Wang, 2010), and Google
PAWS-Wiki (Yang et al., 2019; Zhang et al., 2019).
Those datasets have different sizes, and the largest
one – Quora – consist of 149,263 pairs of du-
plicate questions. To balance turns of sentences
(questions/non questions paraphrases), 50% of our
fine-tuning paraphrase datasets is made of Quora,
5.6% of MSR and 44.4% PAWS-Wiki. This yields
94,702 sentence pairs to train the model on the
paraphrasing task. We include both code and data
on our github repository 2.

Using this fine-trained paraphrasing model, we
can generate paraphrases of unlabeled sentences,
hopefully having paraphrases representing the
same intents as the original sentences. To add some
diversity in the generated paraphrases, we use Di-

1we take only pairs that are paraphrases of each other since
these are paraphrase detection datasets

2https://github.com/tdopierre/ProtAugment
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Figure 1: PROTAUGMENT illustrated on a 3-way 2-shot short text classification meta-learning task (C = 3, K = 2).
BART is pre-trained for the paraphrasing task on three datasets: Quora (Sharma et al., 2019), MSR (Zhao and Wang,
2010) and Google PAWS-Wiki (Yang et al., 2019; Zhang et al., 2019). The paraphrase model is used to paraphrase
unlabeled samples but equipped with diversity strategies (back translation being proposed as a baseline). The final
loss is computed using a loss annealing scheduler, which is expected to smooth the supervised (given shots) and
unsupervised (augmented unlabeled sentences) prediction errors to yield parameter gradients. A new episode means
sampling other classes along with their support and query points.

verse Beam Search (DBS) instead of the regular
Beam Search. As Vijayakumar et al. (2018) has
shown in the original paper, adding a dissimilarity
term during the decoding step helps the model pro-
duce sequences that are quite far from each other
while still retaining the same meaning. The next
section describes how we constrained this decoding
to enforce even more diversity among generated
paraphrases in PROTAUGMENT.

4.2 Constrained user utterances generation
While DBS enforces diversity between the gen-
erated sentences, it does not ensure diversity be-
tween the generated paraphrases and the original
sentences. It was formerly designed for tasks that
do not need this diversity with the original sen-
tence (translation, image captioning, question gen-
eration). To enforce that our generated paraphrases
are diverse enough, we further constraint DBS by
forbidding using parts of the original sentences. In
the following paragraphs, we introduce two forbid-
ding strategies.

Unigram Masking. In this strategy, we randomly
select tokens from the input sentence which will be

forbidden at the generation step. The goal here
is to force the model to use different words in
the generated sentences than it saw in the origi-
nal sentences. Each word of the input sentence is
randomly masked using a probability pmask. The
underlying assumption is that forbidding tokens at
the beginning of a sentence with a higher probabil-
ity than the end of the sentence may have a greater
impact on the beam search algorithm. Indeed, as
the decoding is a conditional task based on prior
generated tokens, masking the first tokens may sig-
nificantly impact diversity. We therefore introduce
two additional variants: one where we put more
probability on the first tokens and the reverse where
there is more weight in the last tokens. To ensure
that all three variants mask the same amount of
tokens on average, we ensure the area under the
curve of the three probability functions are equal
to a fixed value noted pmask.

Bi-gram Masking Another strategy we consider
is to prevent the paraphrasing model from generat-
ing the same bi-grams as in the original sentence.
This time, we are not masking any single word but
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forcing the model to change the sentence’s struc-
ture, which will, hopefully, increase the diversity
of the generated paraphrases.

4.3 Unsupervised diverse paraphrasing loss
After generating paraphrases for each unlabeled
sentence, we create unlabeled prototypes. For each
unlabeled sentence xu ∈ U , we derive the unla-
beled prototype pxu as the average embedding of
the paraphrases of xu (Equation 3).

pxu =
1

M

M∑
m=1

fφ(x̃mu ) (3)

After obtaining the unlabeled prototypes, we
compute the distances between all unlabeled sam-
ples and all unlabeled prototypes. Given such dis-
tances, we model the probability of each unlabeled
sample being assigned to each unlabeled prototype
(Equation 4), as in the supervised part of the Pro-
totypical Networks – except this time, it is fully
unsupervised. This probability should be close to
1 between an unlabeled sample and its associated
unlabeled prototype and close to 0 otherwise.

Pφ(u = v|xu) = softmax (−d(fφ(xu), pxv)) (4)

Given assign probabilities between unlabeled
samples and unlabeled prototypes, we can compute
a fully unsupervised cross-entropy loss L̃, train-
ing the model to bring each sentence closer to its
augmentations’ prototype and further from the pro-
totypes of other unlabeled sentences. Recall that
fφ is the embedding function with φ as learnable
parameters (Section 3.2).

After obtaining both supervised loss L̄ and unsu-
pervised loss L̃, we combine them into the final loss
L using a loss annealing scheduler (see Equation 5),
which will gradually incorporate the unsupervised
loss as training progresses.

L = tα × L̃+ (1− tα)× L̄ ; t ∈ (0, 1) (5)

The goal here is to mainly use the supervised
loss first so that the model gets a sense of the clas-
sification task. Then, incorporating more and more
knowledge from unlabeled samples will make the
model more robust to noise, which is essential
as it is constantly tested on classes it has never
seen before. We explore three different strategies
for gradually increasing the unsupervised contribu-
tion: a linear approach (α = 1), an aggressive one
(α = 0.25), and a conservative one (α = 4).

5 Experiments

5.1 Datasets

We consider the DialoGLUE benchmark (Mehri
et al., 2020), a set of natural language under-
standing benchmark for task-oriented dialogue,
which contains three datasets for intent detec-
tion: Banking77, HWU64 and Clinic150 –
the three datasets were already available prior the
release of DialoGLUE. Additionally, we also con-
sider the Liu57 intent detection dataset, as it con-
tains the same order of magnitude of intent classes
and is user-generated as well. All datasets are pub-
lic and in English.

Banking77 The Banking77 dataset
(Casanueva et al., 2020) classifies 13, 083
user utterances related to into 77 different
intents. This dataset i) is specific to a single
domain (banking) and ii) requires a fine-grained
understanding to classify due to intents being
very similar. Following (Mehri et al., 2020) and
contrary to (Casanueva et al., 2020), we designate
a validation set along a training and a testing set
for that dataset (Table 1).

HWU64 HWU64 (Xingkun Liu and Rieser, 2019)
classifies 25, 716 user utterances with 64 user in-
tents. It features intents spanning across 21 do-
mains (alarm, audio, audiobook, calendar, cooking,
datetime, . . . ). When separating training, valida-
tion, and test labels, we ensure each domain is rep-

Dataset #sentences #classes
train/valid/test (total)

Available
sentences/class #tokens/sentence

Banking77 13, 083 25/25/27(77) 170± 33 11.7± 7.6
HWU64 11, 036 23/16.4/24.6(64) 172± 40 6.6± 2.9

Clinic150 22, 500 50/50/50(150) 150± 0 8.5± 3.3
Liu 25, 478 18/18/18(54) 472± 831 7.5± 3.4

Table 1: Main statistics of intent detection evaluation datasets. For HWU64, each split’s number of classes varies at
each run to ensure there is no cross-split domain, hence the decimal number.
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resented only in one set of labels. This ensures the
model learns to discriminate between both intents
and domains.

Clinic150 This dataset (Larson et al., 2019)
classifies 150 user intents in perfectly equally-
distributed classes. This chatbot-like style dataset
was initially designed to detect out-of-scope
queries, though, in our experiments, we discard the
out-of-scope class and only keep the 150 labeled
classes to work with, as in (Mehri et al., 2020).

Liu57 Introduced by Liu et al. (2019a), this in-
tent detection dataset is composed of 54 classes. It
was collected on Amazon Mechanical Turk, where
workers were asked to formulate queries for a given
intent with their own words. It is highly imbal-
anced: the most (resp. least) common class holds
5, 920 (resp. 24) samples

5.2 Experimental settings

Conditional language model and language
model. For the BART fine-tuning process, we used
the defaults hyper-parameters reported in (Lewis
et al., 2020), and we fine-tuned the BART model for
a single epoch (two hours on a Titan RTX GPU).
Increasing the number of epochs for fine-tuning
BART degrades performances on the intent detec-
tion task: the downstream diverse beam search
struggles to find diverse enough beam groups since
the model perplexity has been lower with further
fine-tuning (this is also hinted in (Bevilacqua et al.,
2020)). Our text encoder fφ is a bert-base
model, and the embedding of a given sentence is the
last layer hidden state of the first token of this sen-
tence. For each dataset, this model is fine-tuned on
the masked language modeling task for 20 epochs.
Then, the encoder of our meta learner is initialized
using the weights of this fine-tuned model.

Datasets From a dataset point-of-view, we cre-
ate two data profiles: full (all the training dataset
is available, the usual meta-learning scenario) and
low (only 10 samples are available for each train-
ing class, an even more challenging meta-learning
scenario in which a model meta-learns on very few
samples per training class). All experimental se-
tups are run 5 times. For each run, we randomly
select training, validation, and testing classes, as
well as the samples for the low setting. We train
the few-shot models for a maximum of 10, 000
C-way K-shots episodes, evaluating and testing ev-
ery 100 episodes, stopping early if the evaluation

accuracy has not progressed for at least 20 evalua-
tions. We evaluate and test using 600 episodes, as
in other few-shot works (Snell et al., 2017; Chen
et al., 2019). We compare the systems in the follow-
ing standard few-shot evaluation scenarios: 5-way
1-shot, and 5-way 5-shots.

Paraphrasing. At each episode, we draw U = 5
unlabeled samples to generate paraphrases from.
For the back-translation baseline, we use the
publicly available3 translation models from the
Helsinki-NLP team. We use the following
pivot languages: fr, es, it, de, nl, which yields
5 augmentations for each unlabeled sentence. For
our experiments with Diverse Beam Search, we
generate sentences using 15 beams, group them
into 5 groups of 3 beams. In each group, we select
the generated sentence which is the most different
from the input sentence using BLEU as a metric
for diversity. This yields M = 5 paraphrases for
each unlabeled sentence, as in the back-translation
baseline. DBS uses a diversity penalty parameter
to penalize words that have already been generated
by other beams to enforce diversity. As advised in
the original DBS paper (Vijayakumar et al., 2018),
we set the diversity penalty to 0.5 in our exper-
iments, which provides diversity while limiting
model hallucinations. Our Unigram Masking strat-
egy’s masking probability is set to pmask = 0.7
found by linear search from 0 to 1 with steps of
0.1.

orig: How long will my transfer be pending for?
back: How long will my transfer be on hold?
dbs 0: How long will my transfer be pending? I am in first year.
dsb 1: When are all transfers coming up and how many days are they expected?
dbs 2: If I have a transfer for a while, how long should I wait for it?

orig: I am not sure where my phone is.
back: I don’t know where my phone is.
dbs 0: I am not really sure where my phone is located
dsb 1: How can I find the location of any Android mobile
dbs 2: I don’t know where is my cell phone

orig: can you play m3 file
back: can you read m3 file
dbs 0: M3 files: can I play the entire M3 file?
dsb 1: Is there any way to play 3M files on Earth without downloading it
dbs 2: Is there any way to play M3 files on Windows?

Table 2: Examples of sentences (orig) paraphrased using
back translation (back), vanilla diverse beam search –
DBS (dbs 0), DBS with unigram masking (dbs 1) and
DBS with bigram masking (dbs 2)..

5.3 Evaluation of paraphrase diversity
We evaluate the diversity of paraphrases for each
method, and report results for two representative
datasets in Table 3 (due to space limitations, the

3https://huggingface.co/models?search=helsinki-nlp
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report for all datasets is given in appendix B). For
each paraphrasing method and each dataset, met-
rics are computed over unlabeled sentences and
their paraphrases. To assess the diversity of para-
phrases generated by the different methods, the
popular BLEU metric in Neural Machine Transla-
tion is a poor choice (Bawden et al., 2020). We
use the bi-gram diversity (dist-2) metric as pro-
posed by (Ippolito et al., 2019), which computes
the number of distinct 2-grams divided by the total
amount of tokens. We also report the average simi-
larity (denoted use) within each sentence set, using
the Universal Sentence Encoder as an independent
sentence encoder. Results show that paraphrases
obtained with back-translation are too close to each
other, resulting in a high sentence similarity and
low bi-gram diversity. On the other hand, DBS
generates more diverse sentences with a lower sim-
ilarity. Our masking strategies strengthen this effect
and yield even more diversity. The measured diver-
sity strongly correlates with the average accuracy
of the intent detection task (Table 4).

BANKING77 HWU64

dist-2 use dist-2 use

back-translation 0.183 0.896 0.307 0.888
DBS 0.200 0.807 0.340 0.769
DBS+bigram 0.228 0.702 0.350 0.692
DBS+unigram 0.343 0.613 0.407 0.628

Table 3: Paraphrase diversity measures. For dist-2 (resp.
use) higher values (resp. lower) indicates more diversity.

5.4 Intent detection results
In this section, we discuss the accuracy results for
the different meta-learners, for the standard 5-way
and {1, 5}-shots meta-learning scenarios, as pro-
vided in Table 4. The reported metric is the accu-
racy on the test set at the iteration where the valida-
tion set’s accuracy is maximal. Our DBS+unigram
strategy row corresponds to the flat masking
strategy, with pmask = 0.7. First, all methods
augmented with unsupervised diverse paraphrasing
outperform prototypical networks. However, back
translation demonstrates only a limited improve-
ment over the vanilla prototypical network due to
their narrow diversity for short texts. Using para-
phrases from DBS yields better results – about 0.5
points over BT, on average –, hinting that using di-
verse paraphrases in the unsupervised consistency
loss allows the few-shot model to build more robust

sentence representations and therefore provides im-
proved generalization capacities. Those results are
consistent across the different datasets, except for
Clinic for which accuracies are all very high, mak-
ing all methods hardly separable. The dataset is
not challenging enough, or in other words, meta-
learning is robust to unbalanced short text classifi-
cation problems given the nature of that dataset.

These results illustrate the need for unsuper-
vised paraphrasing and show that using diverse
paraphrases provide a significant performance leap.
In the 1-shot (resp. 5-shot) scenario, our best
meta-learner improves prototypical networks by
5.27 (resp. 2.85) points on average. Remember
that these improvements are made in an unsuper-
vised manner hence at no additional cost. Slightly
different from to (Xie et al., 2020), we do not
find statistical differences depending on the rate
at which L̃ is annealed in PROTAUGMENT loss
(α ∈ {0.25, 1, 4}), which makes it easier to tune –
our unsupervised loss serves as a consistency regu-
larization. Due to space limitations, this analysis is
available in appendix D.

Adding our masking strategies on top of DBS
has a significant impact on all datasets, with the
unigram variant being up about 2 points over the
vanilla DBS on average. On all datasets except
Clinic, given only 10 labeled samples per class
(low profile), it even outperforms the supervised
baseline which is given the full training data (full
profile). This means that PROTAUGMENT does bet-
ter than prototypical networks with much less – 15
times, and up to 47 times, depending on the dataset
– labeled sentences per class. Those results indicate
that our method more than compensates for the
lack of labeled data and that no matter the amount
of data available for the training class, there is a
performance ceiling you cannot overcome without
adding unsupervised knowledge from the valida-
tion and test classes. In the full profile, when given
all the training data, our method greatly surpasses
the Prototypical Network – 3.58 points given 1 shot,
on average. Moreover, PROTAUGMENT is not only
suited for the case where very little training data is
available (low profile): when sampling shots from
the entire training dataset (full profile), it outper-
forms a fully supervised baseline. Furthermore,
note that our method is consistently more stable
than the supervised baselines, as its average stan-
dard deviation over the different runs is much lower
than the vanilla Prototypical Network.
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Datasets Accuracy stats

Data
Profile Method

Banking HWU Liu Clinic (AV G± STD)

K = 1 K = 5 K = 1 K = 5 K = 1 K = 5 K = 1 K = 5 K = 1 K = 5

low
profile

Prototypical Network 82.20 91.57 74.37 86.48 80.06 89.62 94.29 98.10 82.73 ± 2.32 91.44 ± 1.92
ours w/ BT 83.83 92.16 78.70 89.36 80.84 90.87 94.06 97.62 84.36 ± 1.15 92 .50 ± 0.94
ours w/ DBS 83.10 92.56 80.06 90.21 82.31 91.64 93.70 97.83 84.80 ± 1.26 93.06 ± 0.99
ours w/ DBS+bigram 86.04 93.55 82.09 91.57 83.60 92.71 95.11 98.23 86.71 ± 1.14 94.01 ± 1.05
ours w/ DBS+unigram 87.23 94.29 83.70 91.29 85.16 93.00 95.92 98.56 88.00 ± 1.22 94.29 ± 0.76

full
profile

Prototypical Network 86.28 93.94 77.09 89.02 82.76 91.37 96.05 98.61 85.55 ± 2.20 93.24 ± 1.22
ours w/ BT 87.46 94.47 81.31 91.44 84.14 92.67 95.19 98.36 87.02 ± 1.36 94.23 ± 0.82
ours w/ DBS 86.94 94.50 82.35 91.68 84.42 92.62 94.85 98.41 87.14 ± 1.36 94.30 ± 0.60
ours w/ DBS+bigram 88.14 94.70 84.05 92.14 85.29 93.23 95.77 98.50 88.31 ± 1.43 94.64 ± 0.59
ours w/ DBS+unigram 89.56 94.71 84.34 92.55 86.11 93.70 96.49 98.74 89.13 ± 1.13 94.92 ± 0.57

Table 4: 5-way 1-shots and 5-way 5-shots accuracy on the test sets for each dataset. The ours method is PROTAUG-
MENT (unsupervised consistency loss using diverse paraphrases) equipped with different paraphrasing strategies.
For each dataset × C-way K-shot setting, we compute the average and the standard deviation over the 5 runs (see
Section 5.2), so that the last two columns contains average accuracy and ± the average standard deviations. For
each data profile, we highlight the best method in bold. We underline the methods on the low profile which perform
better than the Prototypical Networks on the full profile. We trained 400 different meta-learners – 5 methods, 2 data
profiles, 4 datasets, 2 meta-learning setup (K = 1, 5) and 5 runs for each configuration.

5.5 Masking strategies
We experimented with three variants of the unigram
strategy (Section 4.2), each assigning a different
drop chance to each token depending on its posi-
tion in the input sentence. In our experiments, we
did not observe any significant difference in perfor-
mance when putting more weight on the first tokens
(down), or last tokens (up), or the same weight on
all tokens (flat) (Detailed results in appendix C).
We also conducted experiments where we tune the
value pmask, from 0 to 1, selecting 0.7 as the best
trade-off (Figure 2). This figure also clearly shows
that the Clinic dataset is one order of magnitude
easier to solve than the other datasets.

6 Conclusion

In this work, we proposed PROTAUGMENT, an
architecture for meta-learning for the problem of
classifying user-generated short-texts (intents). We
first introduced an unsupervised paraphrasing con-
sistency loss in the prototypical network’s frame-
work to improve its representational power. Then,
while the recent diverse beam search algorithm was
designed to enforce diversity between the gener-
ated paraphrases, it does not ensure diversity be-
tween the generated paraphrases and the original
sentences. To make up for the latter, we introduce
constraints in the diverse beam search generation,
further increasing the diversity. Our thorough eval-
uation demonstrates that PROTAUGMENT offers a
significant leap in accuracy for the most recent and
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Figure 2: 5-way 1-shot accuracy of DBS-unigram-flat
method using different values of pmask. Setting this value
to 0 corresponds to the vanilla DBS without masking
strategies.

challenging datasets. PROTAUGMENT vastly out-
performs prototypical networks, which was found
to be the best meta-learning framework for short-
texts (Dopierre et al., 2021) against unsupervised-
extended Prototypical Networks (Ren et al., 2018),
Matching Networks (Vinyals et al., 2016), Rela-
tion Networks (Sung et al., 2018), and Induction
Networks (Geng et al., 2019), thereby making PRO-
TAUGMENT the new state-of-the-art for this task.
We provide the source code of PROTAUGMENT as
well as code for evaluations reported in this paper
on a public repository 4

4https://github.com/tdopierre/ProtAugment
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A Diverse paraphrase samples

orig: Are you considered a bot?
back: Do you consider yourself a bot?
dbs 0: Is there any way to be considered a bot?
dsb 1: Is there any way to know if someone is bot?
dbs 2: Is there any way to know if a person is bot?

orig: what is the square root of 31
back: what is the square root of 31
dbs 0: How can I find square roots of 31 in mathematics?
dsb 1: How can I find quadratic roots of 31?
dbs 2: What is square roots and what is its effect on 31

orig: How long will my transfer be pending for?
back: How long will my transfer be on hold?
dbs 0: How long will my transfer be pending? I am in first year.
dsb 1: When are all transfers coming up and how many days are they expected?
dbs 2: If I have a transfer for a while, how long should I wait for it?

orig: How to cancel a transaction
back: How to cancel a transaction
dbs 0: What are some ways to cancel a transaction (in any way)?
dsb 1: What are some ways of cancelling an account (in some cases also involving transaction ).
dbs 2: Is there any way in which I can cancel an existing transaction?

orig: I am not sure where my phone is.
back: I don’t know where my phone is.
dbs 0: I am not really sure where my phone is located
dsb 1: How can I find the location of any Android mobile
dbs 2: I don’t know where is my cell phone

orig: What do I need to do for a refund?
back: What do I need to do to get a refund?
dbs 0: What should I do now that I am not getting a refund?
dsb 1: What are things that should be done before resumption of service ( reimbursed)?
dbs 2: What should you do if you want to refund your period of data?

orig: does pizza hut have my order ready
back: Does Pizza Hut has my order ready
dbs 0: Does the pizza Hut have all your orders ready?
dsb 1: Does pizza Hut have all your orders made up?
dbs 2: Does the pizza Hut have all your orders ready for delivery?

orig: go silent for a day
back: Quiet for a day.
dbs 0: Do you stay silent for a day or go silent for another day
dsb 1: To the rest of the day, stay peaceful and collected.
dbs 2: So, to the rest of the day, go silent only.

orig: what’s the recipe for fish soup
back: What is the recipe for fish soup
dbs 0: How do you make fish soup? How is the recipe determined?
dsb 1: How can you recipe for fish-sugary food?
dbs 2: What are the recipes for Fish soup and how is it prepared?

orig: Find easy recipe for almond milk
back: Find an easy recipe for almond milk
dbs 0: What are some good recipe for Almond milk?
dsb 1: What are some good ways of making Almond milk?
dbs 2: How do I make Almond milk for a beginner?

orig: Will I need to wear a coat today?
back: Should I wear a coat today?
dbs 0: Today, do I need to put on a coat
dsb 1: Should I wear a coat and what kind of coat
dbs 2: What should I wear to work today, and why

orig: can you play m3 file
back: can you read m3 file
dbs 0: M3 files: can I play the entire M3 file?
dsb 1: Is there any way to play 3M files on Earth without downloading it
dbs 2: Is there any way to play M3 files on Windows?

Table 5: Additional paraphrases samples.
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B Paraphrase Diversity Evaluation

BANKING77 HWU64 Liu Clinic

BLEU dist-2 use BLEU dist-2 use BLEU dist-2 use BLEU dist-2 use

back-translation 56.0 0.183 0.896 40.2 0.307 0.888 47.7 0.268 0.892 43.9 0.205 0.903
DBS 34.2 0.200 0.807 19.5 0.340 0.769 19.7 0.293 0.750 22.3 0.236 0.805
DBS+bigram 0.1 0.228 0.702 0.1 0.350 0.692 0.4 0.293 0.664 0.2 0.257 0.717
DBS+unigram 0.2 0.343 0.613 0.5 0.407 0.628 0.5 0.351 0.596 0.3 0.323 0.644

Table 6: Paraphrase evaluation on all 4 datasets. The unigram variant exposed here is using the flat masking strategy
with pmask = 0.7.

C Masking tokens depending on their position

Datasets Accuracy stats

Method Banking HWU Liu Clinic (AV G± STD)

K = 1 K = 5 K = 1 K = 5 K = 1 K = 5 K = 1 K = 5 K = 1 K = 5

DBS+unigram-flat 87.23 94.29 83.70 91.29 85.16 93.00 95.92 98.56 88.00 ± 1.22 94.29 ± 0.76
DBS+unigram-down 87.43 94.14 83.06 92.14 84.87 93.33 95.93 98.61 87.82 ± 0.84 94.55 ± 0.71
DBS+unigram-up 86.18 94.12 83.30 91.21 85.14 93.15 95.84 98.30 87.62 ± 1.23 94.20 ± 0.70

Table 7: Performances of DBS+unigram strategies putting either more chance to mask first tokens (down), last
tokens (up), or the same chance to all tokens (flat). All strategies use pmask = 0.7. Overall, there is no significant
difference between the three strategies.

D Loss annealing strategy

Datasets Accuracy stats

Method Banking HWU Liu Clinic (AV G± STD)

α K = 1 K = 5 K = 1 K = 5 K = 1 K = 5 K = 1 K = 5 K = 1 K = 5

DBS+unigram-flat
1 87.23 94.29 83.70 91.29 85.16 93.00 95.92 98.56 88.00 ± 1.22 94.29 ± 0.76

0.25 86.71 94.17 82.71 91.19 85.52 93.11 95.99 98.44 87.73 ± 1.09 94.23 ± 0.85
4 86.90 94.14 83.26 92.35 84.48 93.17 95.69 98.49 87.58 ± 1.64 94.54 ± 0.81

Table 8: Performances of DBS+unigram strategies with different values of the loss annealing parameter α. All
strategies use pmask = 0.7. Overall, there is no significant difference when changing the value of α.


