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Abstract

Many joint entity relation extraction models
setup two separated label spaces for the two
sub-tasks (i.e., entity detection and relation
classification). We argue that this setting may
hinder the information interaction between en-
tities and relations. In this work, we propose
to eliminate the different treatment on the two
sub-tasks’ label spaces. The input of our model
is a table containing all word pairs from a sen-
tence. Entities and relations are represented
by squares and rectangles in the table. We ap-
ply a unified classifier to predict each cell’s la-
bel, which unifies the learning of two sub-tasks.
For testing, an effective (yet fast) approximate
decoder is proposed for finding squares and
rectangles from tables. Experiments on three
benchmarks (ACE04, ACE05, SciERC) show
that, using only half the number of parameters,
our model achieves competitive accuracy with
the best extractor, and is faster.

1 Introduction

Extracting structured information from plain texts
is a long-lasting research topic in NLP. Typically, it
aims to recognize specific entities and relations for
profiling the semantic of sentences. An example is
shown in Figure 1, where a person entity “David
Perkins” and a geography entity “California” have
a physical location relation PHYS.

Methods for detecting entities and relations can
be categorized into pipeline models or joint models.
In the pipeline setting, entity models and relation
models are independent with disentangled feature
spaces and output label spaces. In the joint setting,
on the other hand, some parameter sharing of fea-
ture spaces (Miwa and Bansal, 2016; Katiyar and
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Figure 1: Example of a table for joint entity relation
extraction. Each cell corresponds to a word pair. En-
tities are squares on diagonal, relations are rectangles
off diagonal. Note that PER-SOC is a undirected (sym-
metrical) relation type, while PHYS and ORG-AFF are
directed (asymmetrical) relation types. The table exactly
expresses overlapped relations, e.g., the person entity
“David Perkins” participates in two relations, (“David
Perkins”, “wife”, PER-SOC) and (“David Perkins”,
“California”, PHYS). For every cell, a same biaffine
model predicts its label. The joint decoder is set to find
the best squares and rectangles.

Cardie, 2017) or decoding interactions (Yang and
Cardie, 2013; Sun et al., 2019) are imposed to ex-
plore the common structure of the two tasks. It was
believed that joint models could be better since they
can alleviate error propagations among sub-models,
have more compact parameter sets, and uniformly
encode prior knowledge (e.g., constraints) on both
tasks.

However, Zhong and Chen (2020) recently show
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that with the help of modern pre-training tools (e.g.,
BERT), separating the entity and relation model
(with independent encoders and pipeline decoding)
could surpass existing joint models. They argue
that, since the output label spaces of entity and re-
lation models are different, comparing with shared
encoders, separate encoders could better capture
distinct contextual information, avoid potential con-
flicts among them, and help decoders making a
more accurate prediction, that is, separate label
spaces deserve separate encoders.

In this paper, we pursue a better joint model for
entity relation extraction. After revisiting existing
methods, we find that though entity models and
relation models share encoders, usually their la-
bel spaces are still separate (even in models with
joint decoders). Therefore, parallel to (Zhong and
Chen, 2020), we would ask whether joint encoders
(decoders) deserve joint label spaces?

The challenge of developing a unified entity-
relation label space is that the two sub-tasks are
usually formulated into different learning prob-
lems (e.g., entity detection as sequence labeling,
relation classification as multi-class classification),
and their labels are placed on different things (e.g.,
words v.s. words pairs). One prior attempt (Zheng
et al., 2017) is to handle both sub-tasks with one
sequence labeling model. A compound label set
was devised to encode both entities and relations.
However, the model’s expressiveness is sacrificed:
it can detect neither overlapping relations (i.e., en-
tities participating in multiple relation) nor isolated
entities (i.e., entities not appearing in any relation).

Our key idea of defining a new unified label
space is that, if we think Zheng et al. (2017)’s so-
lution is to perform relation classification during
entity labeling, we could also consider the reverse
direction by seeing entity detection as a special
case of relation classification. Our new input space
is a two-dimensional table with each entry corre-
sponding to a word pair in sentences (Figure 1).
The joint model assign labels to each cell from a
unified label space (union of entity type set and
relation type set). Graphically, entities are squares
on the diagonal, and relations are rectangles off
the diagonal. This formulation retains full model
expressiveness regarding existing entity-relation
extraction scenarios (e.g., overlapped relations, di-
rected relations, undirected relations). It is also
different from the current table filling settings for
entity relation extraction (Miwa and Sasaki, 2014;

Gupta et al., 2016; Zhang et al., 2017; Wang and
Lu, 2020), which still have separate label space
for entities and relations, and treat on/off-diagonal
entries differently.

Based on the tabular formulation, our joint en-
tity relation extractor performs two actions, filling
and decoding. First, filling the table is to predict
each word pair’s label, which is similar to arc pre-
diction task in dependency parsing. We adopt the
biaffine attention mechanism (Dozat and Manning,
2016) to learn interactions between word pairs. We
also impose two structural constraints on the ta-
ble through structural regularizations. Next, given
the table filling with label logits, we devise an ap-
proximate joint decoding algorithm to output the
final extracted entities and relations. Basically, it
efficiently finds split points in the table to iden-
tify squares and rectangles (which is also different
with existing table filling models which still apply
certain sequential decoding and fill tables incre-
mentally).

Experimental results on three benchmarks
(ACE04, ACE05, SciERC) show that the proposed
joint method achieves competitive performances
comparing with the current state-of-the-art extrac-
tors (Zhong and Chen, 2020): it is better on ACE04
and SciERC, and competitive on ACE05.1 Mean-
while, our new joint model is fast on decoding
(10x faster than the exact pipeline implementation,
and comparable to an approximate pipeline, which
attains lower performance). It also has a more com-
pact parameter set: the shared encoder uses only
half the number of parameters comparing with the
separate encoder (Zhong and Chen, 2020).

2 Task Definition

Given an input sentence s = x1, x2, . . . , x|s| (xi is
a word), this task is to extract a set of entities E and
a set of relationsR. An entity e is a span (e.span)
with a pre-defined type e.type ∈ Ye (e.g., PER,
GPE). The span is a continuous sequence of words.
A relation r is a triplet (e1, e2, l), where e1, e2 are
two entities and l ∈ Yr is a pre-defined relation
type describing the semantic relation among two
entities (e.g., the PHYS relation between PER and
GPE mentioned before). Here Ye,Yr denote the
set of possible entity types and relation types re-
spectively.

We formulate the joint entity relation extraction

1Source code and models are available at https://github.
com/Receiling/UniRE.

https://github.com/Receiling/UniRE
https://github.com/Receiling/UniRE
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as a table filling task (multi-class classification be-
tween each word pair in sentence s), as shown in
Figure 1. For the sentence s, we maintain a table
T |s|×|s|. For each cell (i, j) in table T , we assign
a label yi,j ∈ Y , where Y = Ye ∪ Yr ∪ {⊥} (
⊥ denotes no relation). For each entity e, the la-
bel of corresponding cells yi,j(xi ∈ e.span, xj ∈
e.span) should be filled in e.type. For each re-
lation r = (e1, e2, l), the label of corresponding
cells yi,j(xi ∈ e1.span, xj ∈ e2.span) should
be filled in l.2 While others should be filled in ⊥.
In the test phase, decoding entities and relations
becomes a rectangle finding problem. Note that
solving this problem is not trivial, and we propose
a simple but effective joint decoding algorithm to
tackle this challenge.

3 Approach

In this section, we first introduce our biaffine model
for table filling task based on pre-trained language
models (Section 3.1). Then we detail the main
objective function of the table filling task (Section
3.2) and some constraints which are imposed on
the table in training stage (Section 3.3). Finally
we present the joint decoding algorithm to extract
entities and relations (Section 3.4). Figure 2 shows
an overview of our model architecture.3

3.1 Biaffine Model

Given an input sentence s, to obtain the contex-
tual representation hi for each word, we use a
pre-trained language model (PLM) as our sentence
encoder (e.g., BERT). The output of the encoder is

{h1, . . . ,h|s|} = PLM({x1, . . . ,x|s|}),

where xi is the input representation of each word
xi. Taking BERT as an example, xi sums the corre-
sponding token, segment and position embeddings.
To capture long-range dependencies, we also em-
ploy cross-sentence context following (Zhong and
Chen, 2020), which extends the sentence to a fixed
window size W (W = 200 in our default settings).

To better encode direction information of words
in table T , we use the deep biaffine attention mech-
anism (Dozat and Manning, 2016), which achieves
impressive results in the dependency parsing task.
Specifically, we employ two dimension-reducing

2Assuming no overlapping entities in one sentence.
3We only show three labels of Y in Figure 2 for simplicity

and clarity.

MLPs (multi-layer perceptron), i.e., a head MLP
and a tail MLP, on each hi as

hhead
i = MLPhead(hi), htail

i = MLPtail(hi),

where hhead
i ∈ Rd and htail

i ∈ Rd are projection
representations, allowing the model to identify the
head or tail role of each word. Next, we calculate
the scoring vector gi,j ∈ R|Y| of each word pair
with biaffine model,

gi,j = Biaff(hhead
i ,htail

j ),

Biaff(h1,h2) = hT
1 U1h2 +U2(h1 ⊕ h2) + b,

where U1 ∈ R|Y|×d×d and U2 ∈ R|Y|×2d are
weight parameters, b ∈ R|Y| is the bias, ⊕ denotes
concatenation.

3.2 Table Filling
After obtaining the scoring vector gi,j , we feed gi,j
into the softmax function to predict corresponding
label, yielding a categorical probability distribution
over the label space Y as

P (yi,j |s) = Softmax(dropout(gi,j)).

In our experiments, we observe that apply-
ing dropout in gi,j , similar to de-noising auto-
encoding, can further improve the performance. 4.
We refer this trick to logit dropout And the training
objective is to minimize

Lentry=−
1

|s|2

|s|∑
i=1

|s|∑
j=1

logP (yi,j = yi,j |s), (1)

where the gold label yi,j can be read from annota-
tions, as shown in Figure 1.

3.3 Constraints
In fact, Equation 1 is based on the assumption that
each label is independent. This assumption sim-
plifies the training procedure, but ignores some
structural constraints. For example, entities and
relations correspond to squares and rectangles in
the table. Equation 1 does not encode this con-
straint explicitly. To enhance our model, we pro-
pose two intuitive constraints, symmetry and im-
plication, which are detailed in this section. Here
we introduce a new notation P ∈ R|s|×|s|×|Y|, de-
noting the stack of P (yi,j |s) for all word pairs in
sentence s.5

4We set dropout rate p = 0.2 by default.
5P without logit dropout mentioned in Section 3.2 to pre-

serve learned structure.
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Figure 2: Overview of our model architecture. One main objective (Lentry) and two additional objectives
(Lsym,Limp) are imposed on probability tensor P and optimized jointly.

Dataset Ysym

Ent Rel

ACE04/
ACE05

PER,ORG,LOC,
FAC,WEA,VEH,GPE PER-SOC

SciERC
Task,Method,Metric,
Material,Generic,

OtherScientificTerm

COMPAREP,
CONJUNCTION

Table 1: Symmetrical label set Ysym for used datasets.

Symmetry We have several observations from
the table in the tag level. Firstly, the squares corre-
sponding to entities must be symmetrical about the
diagonal. Secondly, for symmetrical relations, the
relation triples (e1, e2, l) and (e2, e1, l) are equiva-
lent, thus the rectangles corresponding to two coun-
terpart relation triples are also symmetrical about
the diagonal. As shown in Figure 1, the rectangles
corresponding to (“his”, “wife”, PER-SOC) and
(“wife”, “his”, PER-SOC) are symmetrical about
the diagonal. We divide the set of labels Y into a
symmetrical label set Ysym and an asymmetrical
label set Yasym. The matrix P:,:,t should be sym-
metrical about the diagonal for each label t ∈ Ysym.
We formulate this tag-level constraint as symmetri-
cal loss,

Lsym =
1

|s|2

|s|∑
i=1

|s|∑
j=1

∑
t∈Ysym

|Pi,j,t − Pj,i,t|.

We list all Ysym in Table 1 for our adopted datasets.

Implication A key intuition is that if a relation
exists, then its two argument entities must also ex-
ist. In other words, it is impossible for a relation to
exist without two corresponding entities. From the

perspective of probability, it implies that the proba-
bility of relation is not greater than the probability
of each argument entity. Since we model entity
and relation labels in a unified probability space,
this idea can be easily used in our model as the
implication constraint. We impose this constraint
on P: for each word in the diagonal, its maximum
possibility over the entity type space Ye must not
be lower than the maximum possibility for other
words in the same row or column over the rela-
tion type space Yr. We formulate this table-level
constraint as implication loss,

Limp=
1

|s|

|s|∑
i=1

[
max
l∈Yr
{Pi,:,l,P:,i,l} −max

t∈Ye
{Pi,i,t}

]
∗

where [u]∗ = max(u, 0) is the hinge loss. It is
worth noting that we do not add margin in this loss
function. Since the value of each item is a probabil-
ity and might be relatively small, it is meaningless
to set a large margin.

Finally, we jointly optimize the three objectives
in the training stage as Lentry + Lsym + Limp.6

3.4 Decoding
In the testing stage, given the probability tensor
P ∈ R|s|×|s|×|Y| of the sentence s, 7 how to decode
all rectangles (including squares) corresponding to
entities or relations remains a non-trivial problem.
Since brute force enumeration of all rectangles is in-
tractable, a new joint decoding algorithm is needed.
We expect our decoder to have,

6We directly sum the three losses to avoid introducing
more hyper-parameters.

7For the symmetrical label t ∈ Ysym, we set Pi,j,t =
Pj,i,t = (Pi,j,t + Pj,i,t)/2.
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Figure 3: Overview of our joint decoding algorithm.
It consists of three steps: span decoding, entity type
decoding, and relation type decoding.

• Simple implementation and fast decoding.
We permit slight decoding accuracy drops for
scalability.

• Strong interactions between entities and re-
lations. When decoding entities, it should take
the relation information into account, and vice
versa.

Inspired by the procedures of (Sun et al., 2019),
We propose a three-steps decoding algorithm: de-
code span first (entity spans or spans between enti-
ties), and then decode entity type of each span, and
at last decode relation type of each entity pair (Fig-
ure 3). We consider each cell’s probability scores
on all labels (including entity labels and relation
labels) and predict spans according to a threshold.
Then, we predict entities and relations with the
highest score. Our heuristic decoding algorithm
could be very efficient. Next we will detail the en-
tire decoding process, and give a formal description
in the Appendix A.

Span Decoding One crucial observation of a
ground-truth table is that, for an arbitrary entity,
its corresponding rows (or columns) are exactly
the same in the table (e.g., row 1 and row 2 of Fig-
ure 1 are identical), not only for the diagonal entries
(entities are squares), but also for the off-diagonal
entries (if it participates in a relation with another
entity, all its rows (columns) will spot that relation
label in the same way). In other words, if the adja-
cent rows/columns are different, there must be an
entity boundary (i.e., one belonging to the entity
and the other not belonging to the entity). There-
fore, if our biaffine model is reasonably trained,
given a model predicted table, we could use this
property to find split positions of entity boundary.
As expected, experiments (Figure 4) verify our as-
sumption. We adapt this idea to the 3-dimensional
probability tensor P .

Dataset #sents #ents(#types) #rels(#types)

ACE04 8,683 22,519(7) 4,417(6)
ACE05 14,525 38,287(7) 7,691(6)
SciERC 2,687 8,094(6) 5,463(7)

Table 2: The statistics of the adopted datasets.

Specifically, we flatten P ∈ R|s|×|s|×|Y| as a ma-
trix Prow ∈ R|s|×(|s|·|Y|) from row perspective, and
then calculate the Euclidean distances (l2 distances)
of adjacent rows. Similarly, we calculate the other
Euclidean distances of adjacent columns accord-
ing to a matrix Pcol ∈ R(|s|·|Y|)×|s| from column
perspective, and then average the two distances as
the final distance. If the distance is larger than the
threshold α (α = 1.4 in our default settings), this
position is a split position. In this way, we can
decode all the spans in O(|s|) time complexity.

Entity Type Decoding Given a span (i, j) by
span decoding,8 we decode the entity type t̂ accord-
ing to the corresponding square symmetric about
the diagonal: t̂ = argmaxt∈Ye∪{⊥}Avg(Pi:j,i:j,t).
If t̂ ∈ Ye, we decode an entity. If t̂ = ⊥, the span
(i, j) is not an entity.

Relation Type Decoding After entity type de-
coding, given an entity e1 with the span (i, j)
and another entity e2 with the span (m,n), we
decode the relation type l̂ between e1 and e2 ac-
cording to the corresponding rectangle. Formally,
l̂ = argmaxl∈Yr∪{⊥}Avg(Pi:j,m:n,l). If l̂ ∈ Yr,
we decode a relation (e1, e2, l̂). If l̂ = ⊥, e1 and
e2 have no relation.

4 Experiments

Datasets We conduct experiments on three entity
relation extraction benchmarks: ACE04 (Dodding-
ton et al., 2004),9 ACE05 (Walker et al., 2006),10

and SciERC (Luan et al., 2018).11 Table 2 shows
the dataset statistics. Besides, we provide detailed
dataset specifications in the Appendix B.

Evaluation Following suggestions in (Taillé
et al., 2020), we evaluate Precision (P), Recall (R),
and F1 scores with micro-averaging and adopt the
Strict Evaluation criterion. Specifically, a pre-
dicted entity is correct if its type and boundaries
are correct, and a predicted relation is correct if its

8i and j denote start and end indices of the span.
9https://catalog.ldc.upenn.edu/LDC2005T09

10https://catalog.ldc.upenn.edu/LDC2006T06
11http://nlp.cs.washington.edu/sciIE/

https://catalog.ldc.upenn.edu/LDC2005T09
https://catalog.ldc.upenn.edu/LDC2006T06
http://nlp.cs.washington.edu/sciIE/
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Dataset Model Encoder Entity Relation
P R F1 P R F1

ACE04

Li and Ji (2014) - 83.5 76.2 79.7 60.8 36.1 45.3
Miwa and Bansal (2016) LSTM 80.8 82.9 81.8 48.7 48.1 48.4
Katiyar and Cardie (2017) LSTM 81.2 78.1 79.6 46.4 45.3 45.7
Li et al. (2019) BERTLARGE 84.4 82.9 83.6 50.1 48.7 49.4
Wang and Lu (2020) ALBERTXXLARGE - - 88.6 - - 59.6
Zhong and Chen (2020)� BERTBASE - - 89.2 - - 60.1
Zhong and Chen (2020)� ALBERTXXLARGE - - 90.3 - - 62.2

UNIRE� BERTBASE 87.4 88.0 87.7 62.1 58.0 60.0
UNIRE� ALBERTXXLARGE 88.9 90.0 89.5 67.3 59.3 63.0

ACE05

Li and Ji (2014) - 85.2 76.9 80.8 65.4 39.8 49.5
Miwa and Bansal (2016) LSTM 82.9 83.9 83.4 57.2 54.0 55.6
Katiyar and Cardie (2017) LSTM 84.0 81.3 82.6 55.5 51.8 53.6
Sun et al. (2019) LSTM 86.1 82.4 84.2 68.1 52.3 59.1
Li et al. (2019) BERTLARGE 84.7 84.9 84.8 64.8 56.2 60.2
Wang et al. (2020) BERTBASE - - 87.2 - - 63.2
Wang and Lu (2020) ALBERTXXLARGE - - 89.5 - - 64.3
Zhong and Chen (2020)� BERTBASE - - 90.2 - - 64.6
Zhong and Chen (2020)� ALBERTXXLARGE - - 90.9 - - 67.8

UNIRE� BERTBASE 88.8 88.9 88.8 67.1 61.8 64.3
UNIRE� ALBERTXXLARGE 89.9 90.5 90.2 72.3 60.7 66.0

SciERC
Wang et al. (2020) SciBERT - - 68.0 - - 34.6
Zhong and Chen (2020)� SciBERT - - 68.2 - - 36.7

UNIRE� SciBERT 65.8 71.1 68.4 37.3 36.6 36.9

Table 3: Overall evaluation. � means that the model leverages cross-sentence context information.

relation type is correct, as well as the boundaries
and types of two argument entities are correct.

Implementation Details We tune all hyper-
parameters based on the averaged entity F1
and relation F1 on ACE05 development set,
then keep the same settings on ACE04 and
SciERC. For fair comparison with previous
works, we use three pre-trained language mod-
els: bert-base-uncased (Devlin et al.,
2019), albert-xxlarge-v1 (Lan et al., 2019)
and scibert-scivocab-uncased (Beltagy
et al., 2019) as the sentence encoder and fine-tune
them in training stage.12

For the MLP layer, we set the hidden size as
d = 150 and use GELU as the activation function.
We use AdamW optimizer (Loshchilov and Hutter,
2017) with β1 = 0.9 and β2 = 0.9, and observe a
phenomenon similar to (Dozat and Manning, 2016)
in that setting β2 from 0.9 to 0.999 causes a sig-
nificant drop on final performance. The batch size
is 32, and the learning rate is 5e-5 with weight de-
cay 1e-5. We apply a linear warm-up learning rate
scheduler with a warm-up ratio of 0.2. We train our
model with a maximum of 200 epochs (300 epochs
for SciERC) and employ an early stop strategy. We

12The first two are for ACE04 and ACE05, and the last one
is for SciERC.

perform all experiments on an Intel(R) Xeon(R)
W-3175X CPU and a NVIDIA Quadro RTX 8000
GPU.

4.1 Performance Comparison

Table 3 summarizes previous works and our
UNIRE on three datasets.13 In general, UNIRE
achieves the best performance on ACE04 and Sci-
ERC and a comparable result on ACE05. Com-
paring with the previous best joint model (Wang
and Lu, 2020), our model significantly advances
both entity and relation performances, i.e., an abso-
lute F1 of +0.9 and +0.7 for entity as well as +3.4
and +1.7 for relation, on ACE04 and ACE05 re-
spectively. For the best pipeline model (Zhong and
Chen, 2020) (current SOTA), our model achieves
superior performance on ACE04 and SciERC and
comparable performance on ACE05. Comparing
with ACE04/ACE05, SciERC is much smaller, so
entity performance on SciERC drops sharply. Since
(Zhong and Chen, 2020) is a pipeline method,
its relation performance is severely influenced
by the poor entity performance. Nevertheless,
our model is less influenced in this case and

13Since (Luan et al., 2019a; Wadden et al., 2019) neglect the
argument entity type in relation evaluation and underperform
our baseline (Zhang et al., 2020), we do not compare their
results here.
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Settings ACE05 SciERC
Ent Rel Ent Rel

Default 88.8 64.3 68.4 36.9

w/o symmetry loss 88.9 64.0 67.3 35.5
w/o implication loss 89.0 63.3 68.0 37.1
w/o logit dropout 88.8 61.8 66.9 34.7
w/o cross-sentence context 87.9 62.7 65.3 32.1

hard decoding 74.0 34.6 46.1 17.8

Table 4: Results (F1 score) with different settings
on ACE05 and SciERC test sets. Note that we use
BERTBASE on ACE05.

achieves better performance. Besides, our model
can achieve better relation performance even with
worse entity results on ACE04. Actually, our base
model (BERTBASE) has achieved competitive rela-
tion performance, which even exceeds prior mod-
els based on BERTLARGE (Li et al., 2019) and
ALBERTXXLARGE (Wang and Lu, 2020). These
results confirm the proposed unified label space
is effective for exploring the interaction between
entities and relations. Note that all subsequent ex-
periment results on ACE04 and ACE05 are based
on BERTBASE for efficiency.

4.2 Ablation Study
In this section, we analyze the effects of compo-
nents in UNIRE with different settings (Table 4).
Particularly, we implement a naive decoding al-
gorithm for comparison, namely “hard decoding”,
which takes the “intermediate table” as input. The
“intermediate table” is the hard form of probability
tensor P output by the biaffine model, i.e., choos-
ing the class with the highest probability as the
label of each cell. To find entity squares on the
diagonal, it first tries to judge whether the largest
square (|s| × |s|) is an entity. The criterion is sim-
ply counting the number of different entity labels
appearing in the square and choosing the most fre-
quent one. If the most frequent label is ⊥, we
shrink the size of square by 1 and do the same
work on two (|s| − 1) × (|s| − 1) squares and so
on. To avoid entity overlapping, an entity will be
discarded if it overlaps with identified entities. To
find relations, each entity pair is labeled by the
most frequent relation label in the corresponding
rectangle.

From the ablation study, we get the following
observations.

• When one of the additional losses is removed,
the performance will decline with varying de-

Model Parameters W ACE05 SciERC
Rel
(F1)

Speed
(sent/s)

Rel
(F1)

Speed
(sent/s)

Z&C(2020) 219M 100 64.6 14.7 36.7 19.9
Z&C(2020)† 219M 100 - 237.6 - 194.7

UNIRE 110M 100 63.6 340.6 34.0 314.8
UNIRE 110M 200 64.3 194.2 36.9 200.1

hard decoding 110M 200 34.6 139.1 17.8 113.0

Table 5: Comparison of accuracy and efficiency on
ACE05 and SciERC test sets with different context win-
dow sizes. † denotes the approximation version with a
faster speed and a worse performance.

grees (line 2-3). Specifically, the symmetrical
loss has a significant impact on SciERC (de-
crease 1.1 points and 1.4 points for entity and
relation performance). While removing the im-
plication loss will obviously harm the relation
performance on ACE05 (1.0 point). It demon-
strates that the structural information incorpo-
rated by both losses is useful for this task.

• Comparing with the “Default”, the perfor-
mance of “w/o logit dropout” and “w/o cross-
sentence context” drop more sharply (line 4-5).
Logit dropout prevents the model from overfit-
ting, and cross-sentence context provides more
contextual information for this task, especially
for small datasets like SciERC.

• The “hard decoding” has the worst perfor-
mance (its relation performance is almost half
of the “Default”) (line 6). The major reason is
that “hard decoding” separately decodes entities
and relations. It shows the proposed decoding
algorithm jointly considers entities and relations,
which is important for decoding.

4.3 Inference Speed

Following (Zhong and Chen, 2020), we evalu-
ate the inference speed of our model (Table 5)
on ACE05 and SciERC with the same batch size
and pre-trained encoders (BERTBASE for ACE05
and SciBERT for SciERC). Comparing with the
pipeline method (Zhong and Chen, 2020), we ob-
tain a more than 10× speedup and achieve a com-
parable or even better relation performance with
W = 200. As for their approximate version, our
inference speed is still competitive but with better
performance. If the context window size is set the
same as (Zhong and Chen, 2020) (W = 100), we
can further accelerate model inference with slight
performance drops. Besides, “hard decoding” is
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Figure 4: Distributions of adjacent rows’ distances for
two categories with respect to the threshold α on ACE05
dev set.
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Figure 5: Performances with respect to the threshold α
on ACE05 dev set.

much slower than UNIRE, which demonstrates the
efficiency of the proposed decoding algorithm.

4.4 Impact of Different Threshold α

In Figure 4, the distance between adjacent rows
not at entity boundary (“Non-Ent-Bound”) mainly
concentrates at 0, while that at entity boundary
(“Ent-Bound”) is usually greater than 1. This phe-
nomenon verifies the correctness of our span decod-
ing method. Then we evaluate the performances,
with regard to the threshold α in Figure 5.14 Both
span and entity performances sharply decrease
when α increases from 1.4 to 1.5, while the re-
lation performance starts to decline slowly from
α = 1.5. The major reason is that relations are so
sparse that many entities do not participate in any
relation, so the threshold of relation is much higher
than that of entity. Moreover, we observe a similar
phenomenon on ACE04 and SciERC, and α = 1.4
is a general best setting on three datasets. It shows
the stability and generalization of our model.

14We use an additional metric to evaluate span performance,
“Span F1”, is Micro-F1 of predicted split positions.

Value ACE05 SciERC
Ent Rel Ent Rel

W
100 87.4 62.4 69.0 36.7
200 87.9 62.1 70.6 38.3
300 87.2 60.8 69.4 35.4

p

0.1 87.4 61.8 71.1 37.8
0.2 87.9 62.1 70.6 38.3
0.3 87.2 62.1 67.8 33.5
0.4 87.4 62.0 70.6 35.8

Table 6: Results (F1 scores) with respect to the context
window size and the logit dropout rate on ACE05 and
SciERC dev sets.

4.5 Context Window and Logit Dropout Rate

In Table 4, both cross-sentence context and logit
dropout can improve the entity and relation perfor-
mance. Table 6 shows the effect of different con-
text window size W and logit dropout rate p. The
entity and relation performances are significantly
improved from W = 100 to W = 200, and drop
sharply fromW = 200 toW = 300. Similarly, we
achieve the best entity and relation performances
when p = 0.2. So we use W = 200 and p = 0.2
in our final model.

4.6 Error Analysis

We further analyze the remaining errors for relation
extraction and present the distribution of five errors:
span splitting error (SSE), entity not found (ENF),
entity type error (ETE), relation not found (RNF),
and relation type error (RTE) in Figure 6. The pro-
portion of “SSE” is relatively small, which proves
the effectiveness of our span decoding method.
Moreover, the proportion of “not found error” is
significantly larger than that of “type error” for
both entity and relation. The primary reason is that
the table filling suffers from the class imbalance
issue, i.e., the number of ⊥ is much larger than
that of other classes. We reserve this imbalanced
classification problem in the future.

Finally, we give some concrete examples in Fig-
ure 7 to verify the robustness of our decoding algo-
rithm. There are some errors in the biaffine model’s
prediction, such as cells in the upper left corner
(first example) and upper right corner (second ex-
ample) in the intermediate table. However, these
errors are corrected after decoding, which demon-
strates that our decoding algorithm not only recover
all entities and relations but also corrects errors
leveraging table structure and neighbor cells’ infor-
mation.
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Figure 6: Distribution of five relation extraction errors
on ACE05 and SciERC test data.

5 Related Work

Entity relation extraction has been extensively stud-
ied over the decades. Existing methods can be
roughly divided into two categories according to
the adopted label space.

Separate Label Spaces This category study this
task as two separate sub-tasks: entity recognition
and relation classification, which are defined in two
separate label spaces. One early paradigm is the
pipeline method (Zelenko et al., 2003; Miwa et al.,
2009) that uses two independent models for two
sub-tasks respectively. Then joint method handles
this task with an end-to-end model to explore more
interaction between entities and relations. The most
basic joint paradigm, parameter sharing (Miwa and
Bansal, 2016; Katiyar and Cardie, 2017), adopts
two independent decoders based on a shared en-
coder. Recent span-based models (Luan et al.,
2019b; Wadden et al., 2019) also use this paradigm.
To enhance the connection of two decoders, many
joint decoding algorithms are proposed, such as
ILP-based joint decoder (Yang and Cardie, 2013),
joint MRT (Sun et al., 2018), GCN-based joint in-
ference (Sun et al., 2019). Actually, table filling
method (Miwa and Sasaki, 2014; Gupta et al., 2016;
Zhang et al., 2017; Wang et al., 2020) is a special
case of parameter sharing in table structure. These
joint models all focus on various joint algorithms
but ignore the fact that they are essentially based
on separate label spaces.

Unified Label Space This family of methods
aims to unify two sub-tasks and tackle this task
in a unified label space. Entity relation extraction
has been converted into a tagging problem (Zheng
et al., 2017), a transition-based parsing problem
(Wang et al., 2018), and a generation problem with
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Figure 7: Examples showing the robustness of our de-
coding algorithm. “Gold Table” presents the gold label.
“Intermediate Table” presents the biaffine model’s pre-
diction (choosing the label with the highest probability
for each cell). “Decoded Table” presents the final results
after decoding.

Seq2Seq framework (Zeng et al., 2018; Nayak and
Ng, 2020). We follow this trend and propose a new
unified label space. We introduce a 2D table to
tackle the overlapping relation problem in (Zheng
et al., 2017). Also, our model is more versatile as
not relying on complex expertise like (Wang et al.,
2018), which requires external expert knowledge
to design a complex transition system.

6 Conclusion

In this work, we extract entities and relations in a
unified label space to better mine the interaction
between both sub-tasks. We propose a novel ta-
ble that presents entities and relations as squares
and rectangles. Then this task can be performed
in two simple steps: filling the table with our bi-
affine model and decoding entities and relations
with our joint decoding algorithm. Experiments
on three benchmarks show the proposed method
achieves not only state-of-the-art performance but
also promising efficiency.
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Algorithm 1 Decoding Algorithm

Input: Probability tensor P ∈ R|s|×|s|×|Y| of sentence s
Output: A set of entities E and a set of relationsR
1: Esplit = [], E = set(),R = set()
2: Prow ← P.view(n, n ∗ |Y|)
3: Pcol ← P.transpose(0, 1).view(n, n ∗ |Y|)
4: i← 1
5: while i<|s| do

6: d← ||Prow
i −Prow

i+1||
2
2+||P

col
i −P

col
i+1||

2
2

2
7: if d>α then
8: Esplit.append(i)
9: end if

10: i← i+ 1
11: end while
12: Esplit.append(|s|)
13: i← 1
14: for j ∈ Esplit do
15: t̂ = argmaxt∈Ye∪{⊥}Avg(Pi:j,i:j,t)

16: if t̂ 6= ⊥ then
17: new e: e.span = (i, j) and e.type = t̂
18: E .add(e)
19: end if
20: i← j + 1
21: end for
22: for e1, e2 ∈ E , e1 6= e2 do
23: (i, j) = e1.span
24: (m,n) = e2.span

25: l̂ = argmaxl∈Yr∪{⊥}Avg(Pi:j,m:n,l)

26: if l̂ 6= ⊥ then
27: R.add((e1, e2, l̂))
28: end if
29: end for

A Decoding Algorithm

A formal description are shown in Algorithm 1.

B Datasets

The ACE04 and ACE05 corpora are collected from
various domains, such as newswire and online fo-
rums. Both corpora annotate 7 entity types and 6
relation types. we use the same data splits and pre-
processing as (Li and Ji, 2014; Miwa and Bansal,
2016), i.e., 5-fold cross-validation for ACE04, and
351 training, 80 validating, and 80 testing for
ACE05.15 Besides, we randomly sample 10% of
training set as the development set for ACE04.

The SciERC corpus collects 500 scientific ab-
stracts taken from AI conference/workshop pro-
ceedings. This dataset annotates 6 entity types
and 7 relation types. We adopt the same data split
protocol as in (Luan et al., 2019b) (350 training,
50 validating, and 100 testing). Detailed dataset
specifications are shown in Table 2.

15We use the pre-processing scripts provided by
(Wang and Lu, 2020) at https://github.com/LorrinWWW/
two-are-better-than-one/tree/master/datasets.

Moreover, we correct the annotations of undi-
rected relations for three datasets, regarding each
undirected relation as two directed relation in-
stances, e.g., for the undirected relation PER-SOC,
only one relation triplet (“his”, wife”, PER-SOC)
is annotated in the original dataset, we will add
another relation triplet (“wife”, “his”, PER-SOC)
in our corrected datasets for symmetry. In this case,
each undirected relation corresponds to two rectan-
gles, which are symmetrical about the diagonal.

https://github.com/LorrinWWW/two-are-better-than-one/tree/master/datasets
https://github.com/LorrinWWW/two-are-better-than-one/tree/master/datasets

