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Abstract

Targeted syntactic evaluations have demon-
strated the ability of language models to per-
form subject-verb agreement given difficult
contexts. To elucidate the mechanisms by
which the models accomplish this behavior,
this study applies causal mediation analysis to
pre-trained neural language models. We inves-
tigate the magnitude of models’ preferences
for grammatical inflections, as well as whether
neurons process subject-verb agreement simi-
larly across sentences with different syntactic
structures. We uncover similarities and differ-
ences across architectures and model sizes—
notably, that larger models do not necessar-
ily learn stronger preferences. We also ob-
serve two distinct mechanisms for producing
subject-verb agreement depending on the syn-
tactic structure of the input sentence. Finally,
we find that language models rely on similar
sets of neurons when given sentences with sim-
ilar syntactic structure.

1 Introduction

Targeted syntactic evaluations have shown that neu-
ral language models (LMs) are able to predict the
correct token from a set of grammatically mini-
mally different continuations with high accuracy,
even in difficult contexts (Linzen et al., 2016; Gu-
lordava et al., 2018), for constructions such as
subject-verb agreement (van Schijndel et al., 2019),
filler-gap dependencies (Wilcox et al., 2018), and
reflexive anaphora (Marvin and Linzen, 2018).

As an illustration of the targeted syntactic eval-
uation paradigm, consider the following example,
which demonstrates subject-verb agreement across
an agreement attractor. Here, a model using a linear
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analysis (i.e., inflecting based on the most recent
noun) would choose the ungrammatical inflection,
while a model using a hierarchical analysis would
choose the grammatical inflection:

(1) The key to the cabinets is/*are next to the coins.

While we have a reasonable understanding of the
generally correct behavior of LMs in such con-
texts, the mechanisms that underlie models’ sensi-
tivity to syntactic agreement are still not well under-
stood. Recent work has performed causal analyses
of syntactic agreement units in LSTM (Hochre-
iter and Schmidhuber, 1997)-based LMs (Lakretz
etal., 2019; Lu et al., 2020) or causal analyses of
LSTM hidden representations’ impact on syntactic
agreement (Giulianelli et al., 2018), but the agree-
ment mechanisms of Transformer-based LMs have
not been as extensively investigated. Transformer-
based LMs’ syntactic generalization abilities are
superior to those of LSTMs (Hu et al., 2020), which
makes Transformer-based models enticing candi-
dates for further analysis.

We apply the behavioral-structural method of
causal mediation analysis (Pearl, 2001) to investi-
gate syntactic agreement in Transformers, follow-
ing the approach used by Vig et al. (2020a) for in-
terpreting gender bias in pre-trained English LMs.
This method allows us to implicate specific model
components in the observed behavior of a model. If
we view a neural LM as a causal graph proceeding
from inputs to outputs, we can view each model
component (e.g., a neuron) as a mediator. We mea-
sure the contribution of a mediator to the observed
output behavior by performing controlled interven-
tions on input sentences and observing how they
change the probabilities of continuation pairs. We
focus primarily on GPT-2 (Radford et al., 2019), al-
though we also analyze TransformerXL (Dai et al.,
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2019) and XLNet (Yang et al., 2019).

We find that both GPT-2 and Transformer-XL
use two distinct mechanisms to accomplish subject-
verb agreement, one of which is active only when
the subject and verb are adjacent. Conversely,
XLNet uses one unified mechanism across syn-
tactic structures. Even though larger models as-
sign a higher probability to the correct inflection
more often, this does not necessarily translate to a
larger margin between the probability of the cor-
rect and incorrect options. Additionally, in larger
models, agreement mechanisms are similar to those
in smaller models, but are more distributed across
layers. Finally, we find that the most important
neurons for agreement are shared across different
structures to various extents, and that the degree of
neuron overlap matches well with human intuitions
of syntactic similarity between structures.

2 Related Work

2.1 Targeted Syntactic Evaluation

Many recent studies have treated neural LMs and
contextualized word prediction models—primarily
LSTM LMs (Sundermeyer et al., 2012), GPT-
2 (Radford et al., 2019), and BERT (Devlin et al.,
2019)—as psycholinguistic subjects to be studied
behaviorally (Linzen et al., 2016; Gulordava et al.,
2018; Goldberg, 2019). Some have studied whether
models prefer grammatical completions in subject-
verb agreement contexts (Marvin and Linzen, 2018;
van Schijndel et al., 2019; Goldberg, 2019; Mueller
et al., 2020; Lakretz et al., 2021; Futrell et al.,
2019), as well as in filler-gap dependencies (Wilcox
etal., 2018, 2019). These are based on the approach
of Linzen et al. (2016), where a model’s ability to
syntactically generalize is measured by its ability to
choose the correct inflection in difficult structural
contexts instantiated by tokens that the model has
not seen together during training. In other words,
this approach tests whether the model assigns the
correct inflection a higher probability than an in-
correct inflection given the same context. This
approach investigates the output behavior of the
model, but does not inform one of how the model
does this or which components are responsible for
the observed behavior.

2.2 Probing

A separate line of analysis work has investigated
representations associated with syntactic depen-
dencies by defining a family of functions (probes)

that map from model representations to some phe-
nomenon that those representations are expected to
encode. For instance, several studies have mapped
LM representations to either independent syntac-
tic dependencies (Belinkov, 2018; Liu et al., 2019;
Tenney et al., 2019b) or full dependency parses
(Hewitt and Manning, 2019; Chi et al., 2020) as a
proxy for discovering latent syntactic knowledge
within the model. Most related, Giulianelli et al.
(2018) use probes to investigate how LSTMs han-
dle agreement.

Probing is more difficult to interpret than behav-
ioral approaches because the addition of a trained
classifier introduces confounds (Hewitt and Liang,
2019): most notably, whether the probe maps from
model representations to the desired output, or
learns the task itself. Probes also only give cor-
relational evidence, rather than causal evidence
(Belinkov and Glass, 2019). See Belinkov (2021)
for a review of the shortcomings of probes.

2.3 Causal Mediation Analysis

Causal inference methods study the change in a
response variable following an intervention; for
example, how do health outcomes change after a
patient stops consuming nicotine products? Causal
mediation analysis (Robins and Greenland, 1992;
Pearl, 2001; Robins, 2003) focuses on the role of a
mediator in explaining the effect of a treatment on
outcomes. For example, if a patient stops using to-
bacco, are health outcomes mediated by the initial
method of nicotine delivery (e.g., smoking tobacco
vs. patches vs. nicotine gum)?

This approach lends itself well to interpreting
NLP models, as we can view a deep neural net-
work as a graphical model from input to output
via mediators, where mediators can be individual
components (e.g., neurons). For LMs, the inter-
vention is a change to the input sentence, and the
outcome is a function of the probabilities of a set
of continuations.

This approach for interpreting NLP models was
introduced by Vig et al. (2020a), who implicate
specific neurons and attention heads in mediating
gender bias in various pre-trained LMs. While
one ideally expects equal preferences for male and
female completions given gender-ambiguous con-
texts (for example, given the prompt v “The nurse
said that”, we want p(she|u) ~ p(he|u)), this is
not the case for subject-verb agreement, where we
expect very strong preferences for grammatically
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Simple Agreement:
The athlete confuses/*confuse

Within Object Relative Clause:
The friend (that) the lawyers *likes/like

Across One Distractor:
The kids gently *admires/admire

Across Two Distractors:
The father openly and deliberately avoids/*avoid

Across Prepositional Phrase:
The mother behind the cars approves/*approve

Across Object Relative Clause:
The farmer (that) the parents love
confuses/*confuse

Figure 1: Syntactic structures used in this study. Un-
grammatical forms are marked with asterisks. Target
subjects and their agreeing verb inflections are shown
in blue, while attractors and their agreeing inflections
are shown in red.

correct completions over incorrect completions.

3 Experimental Setup

3.1 Data

First, we define prompts u. These prompts are a
set of left contexts (beginnings of sentences), gen-
erated from a vocabulary and a set of templates
developed by Lakretz et al. (2019). We expand the
vocabulary with additional tokens, and add relative
clause (RC) templates. We opt to synthetically gen-
erate prompts rather than sample from a corpus to
control for the potential confound of token collo-
cations in the training set. We use prompts from
six syntactic structures; an example of each may be
found in Figure 1. For each structure, we randomly
sample 300 prompts from all possible noun-verb
combinations. Our dataset, code, and random seeds
are available on Github.!

In the ‘simple agreement’ and ‘within RC’ con-
structions, there is no separation between the target
subject and verb. The ‘across one distractor’ and
‘across two distractors’ structures test the effect of
placing one or two adverbs between the subject
and verb. Finally, the ‘across PP’ and ‘across RC’
structures test the effect of adding a noun (and verb
in the latter structure) between the main subject

"https://github.com/mattfin/lm-intervention

Size Layers Embedding size Heads
Distil 6 768 12
Small 12 768 12
Medium 24 1024 16
Large 36 1280 20
XL 48 1600 25

Table 1: GPT-2 sizes used in this study. “Embedding
size” and “heads” refer to the number of neurons and
attention heads per layer, respectively.

and the main verb. In the ‘across RC’ and ‘within
RC’ structures, we measure effects both with and
without the complementizer that.”

In each of these constructions, we define a cor-
rect and an incorrect continuation. Here, we focus
on the third-person singular/plural distinction.

3.2 Models

We focus primarily on GPT-2 (Radford et al., 2019),
an autoregressive Transformer-based (Vaswani
et al., 2017) English LM. We use several GPT-2
sizes, including DistilGPT-2 (Sanh et al., 2020), a
very small distilled version. Table 1 gives model
details for the different sizes of GPT-2.

To investigate how differences in training across
Transformer-based architectures manifest them-
selves in syntactic agreement mechanisms, we also
investigate Transformer-XL (Dai et al., 2019) and
XLNet (Yang et al., 2019). Transformer-XL is an
autoregressive English LM whose training objec-
tive is similar conceptually to GPT-2’s; however,
it has a much longer effective context. XLNet is
an English LM which proceeds through various
word order permutations of the input tokens during
training, and which uses a distinct attention mask-
ing mechanism as well; during testing, it proceeds
autoregressively through the input similar to the
other two models.

4 Total Effect: How strongly do models
prefer correct forms?

We use the relative probabilities of the correct and
incorrect tokens as a measure of the preference
of a model (parameterized by 6) for the correct
inflection of a verb v € v given prompt u € u with
number feature sg:

p@(vpl | usg)
Y(Ugg, V) = ——%
( 8 ) p@(vsg | usg)

)

%A comparison of total and indirect effects when including
or excluding the complementizer may be found in Appendix C.
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where y < 1 indicates a preference for the correct
inflection, and y > 1 indicates a preference for the
incorrect inflection.’

To obtain counterfactual inputs, we now define a
class of interventions x that modify the prompts in
u in a systematic way. As we are concerned with
the ability of models to choose correct inflections
despite the presence of distractors and attractors,
we define the intervention swap-number, which re-
places the target subject with the same lexeme of
the opposite number inflection (e.g., change “au-
thor” to “authors” or vice versa). We also define
the null intervention, which leaves wu as-is (as in
Vig et al. 2020a).

Now we define y, (u, v), which is the value of y
under intervention x on prompt u. Because the in-
tervention swap—-number entails swapping the sub-
ject for a noun of the opposite number, we now
expect y > 1 in Equation 1 if the model prefers
the grammatically correct form, since the verb that
was originally the correct inflection is now incor-
rect and vice versa. Note that under this definition,
yswap—number(usg7 U) = 1/ynull (Uph U)-

The total effect (TE) for the intervention
swap-number (illustrated in Figure 2) is the rel-
ative change between the probability ratio y under
the swap-number intervention and the ratio under
the null intervention:

TE(swap-number, null;y, u,v) =

yswap—number(usga U) - ynull(usg7 U) .
Ynu11 (tsg, V) (2)

yswap—number(“sg» U)/ynull(usga U) —-1=

1/ (Ynu11 (tsgs 0) - Ynur1 (upr, v)) — 1

We interpret this quantity as the overall prefer-
ence of a model for the correct inflection of v in
context u. Observe that this definition remains the
same when sg and pl are swapped in Equation 2,
therefore we do not specify whether « is plural or
singular in TE(swap-number, null;y, u,v).

We are interested in the average total effect
across prompts and verbs:

TE(swap-number, null;y) =
yswap—number(uy U) 1 3)
Ynu11 (U, v)

Eu,v

We calculate the average total effect for each
syntactic construction for different sizes of GPT-2
3We arbitrarily choose to start with sg; we can swap sg and

plin Eq. 1 without loss of generality since we do not directly
observe y. This is clarified after Eq. 2.

Total Effect

Response

Variable p(are)/p(is) Low

p(are)/p(is) High

Of

The authors behind
the cars

=

swap-number

Tt

The author behind
the cars

Control
Variable

Figure 2: Total effects are measured by performing an
intervention on the prompt (here, changing the gram-
matical number of the main subject), and measuring
the relative change in the response variable (the ratio of
probabilities of the originally incorrect verb form over
the originally correct verb form).

and consider other models later on. As a control,
we also calculate total effects for models with ran-
dom weights. Unlike in Linzen et al. (2016), we
do not measure accuracies by checking whether
one probability is higher than another. Rather, the
total effect quantifies the margin between the prob-
abilities of correct and incorrect continuations with
some intervention.

Because larger models tend to exhibit correct
subject-verb agreement more often than smaller
ones (Hu et al., 2020; van Schijndel et al., 2019),
we hypothesize that larger models will generally
have larger TEs for the same structure (i.e., we
predict that higher accuracy is indicative of larger
margin between probabilities).

4.1 Results

Figure 3 presents total effects by structure for var-
ious sizes of GPT-2. For models with random
weights, TEs are always near-zero, and as such
are not shown in the figure.

In ‘simple agreement’ and ‘within RC’, where
there is no separation of subject and verb, TEs vary
between 1,000 and 5,000, depending on model size.
This is far higher than the TEs below 250 reported
for gender bias in Vig et al. (2020a), which is to be
expected: GPT-2’s training objective explicitly opti-
mizes for predicting (ideally grammatically correct)
tokens given a context. Unlike Vig et al. (2020a),
we do not observe larger TEs for larger models.

Adverbial distractors increase total effects.
TEs are even higher for structures where distractors
are present, with DistilGPT-2 and GPT-2 Small at-
taining the highest TEs in such contexts. This is
surprising, as one might expect subject-verb agree-
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Figure 3: Total effects for each structure by model size for GPT-2. Adverbial distractors increase total effects,

while attractor phrases decrease them.

ment accuracy to decline as the distance between
the subject and the verb increases. We suspect that
adverbs are acting as cues that a verb will soon
appear, thus increasing the probability of both the
correct and incorrect verb, but increasing that of
the correct verb more (for similar findings in hu-
man sentence processing, see (Vasishth and Lewis,
2006)). Additional analysis supports this hypothe-
sis; see Appendix B.

Attractors decrease total effects. When PPs or
RCs separate the subject and verb, TEs decrease.
The number of the attractor does not significantly
change TEs across PPs, but does have a more no-
table effect across RCs: GPT-2 is more certain of
its choices across singular RCs than across plural
RCs, as evidenced by higher TEs for the former.
Notably, GPT-2 Medium tends to achieve the high-
est TEs in attractor structures, except in the ‘across
plural RC’ structure.

5 Grammaticality Margin: Is agreement
easier for singular or plural subjects?

Total effect measures the effect of swapping the
number of the subject, but does not distinguish the
case where the original subject (before swapping)
was singular from the case where it was plural. To
investigate the effect of the original subject num-
ber on the model’s preference for the correct (or
incorrect) inflection, we define the metric grammat-
icality margin (referred to hereafter as grammati-
cality) as the reciprocal of y given prompt © with a

specific number feature sg or pl:

G(Usg7 U) = l/y(usga U) 4)
G(upb U) = l/y(upla 1})
Recalling the definition of y, this measure is the
probability ratio between the model correctly and
incorrectly resolving subject-verb agreement. We
define G as the reciprocal of y so that when the
model has a high preference for the correct inflec-
tion over the incorrect inflection, G is large.
Differences in grammaticality values for plural
and singular subjects can indicate systematic biases
toward a certain grammatical number. We expect
this quantity to be lower if there is an attractor of
a different number from the subject, whereas we
expect it to increase if the attractor is of the same
number as the subject.

5.1 Results

Figure 4 presents grammaticality values separately
for singular and plural subjects, as well as singu-
lar and plural attractors when applicable. While
we expect higher grammaticality values when the
subject number matches the attractor number, we
instead observe that plural subjects always have
higher grammaticality values regardless of the
structure or attractor number. In other words,
it is always easier for GPT-2 to form agreement
dependencies between verbs and plural subjects
than singular subjects. This may be due to plural
verbs being encoded as “defaults” in GPT-2, as was
found for LSTM LMs in Jumelet et al. (2019). This
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Figure 4: Grammaticality for each structure for GPT-2
Medium. The subject number (indicated by bar color)
refers to the grammatical number of the subject with
which the target verb agrees; the number in the struc-
ture name refers to the grammatical number of the at-
tractor (in structures where attractors are present).

would make intuitive sense, because singular third
person verbs are marked in English present-tense.

Attractors that separate subjects and verbs
decrease grammaticality, regardless of plural-
ity. The same is not true of distractors: placing
adverbs between the subject and verb tends to have
little effect, even though the ‘across two distractors’
structure places the same token distance between
subject and verb as ‘across a PP’. This means that
distance between subject and verb is less important
than the type of the structure separating them.

As expected, when holding the subject number
constant (i.e., looking only at blue bars or only at
orange bars in Figure 4), grammaticality values are
higher when the attractor has the same number as
the subject.

Attractors that precede subjects have
number-dependent impacts on grammaticality.
In the ‘within singular RC’ structure, grammati-
cality is only slightly reduced for both singular
and plural subjects compared to the ‘simple
agreement’ structure. However, ‘within plural
RC’ has a polarizing effect: grammaticality is
greatly reduced for singular subjects, but greatly
increased for plural subjects. This is the only
attractor structure with higher grammaticality than
the simple case.

6 Natural Indirect Effect: Which
components mediate syntactic
agreement?

The natural indirect effect (NIE), illustrated in Fig-
ure 5, is the relative change in the ratio ¥ when the
prompt u is not changed, but a model component

Indirect Effect

Response

Variable p(are)/p(is) p(are)/plis)
Control LI Tt
V:rri|a:)°Ie The author behind The author behind

the cars the cars

Figure 5: Indirect effects are measured by setting an
individual neuron to the value it would have taken had
the intervention occurred, then measuring the relative
change in the response variable.

z (e.g., aneuron) is set to the value it would have
taken if the intervention had occurred.

NIE(swap-number, null;y,z) =
ynU]-lvzswap-number(uv'U) (u’ U) _ (5)
ynull(ua U)

u,v

This allows us to evaluate the contribution of spe-
cific parts or regions of a model to the syntactic
preferences we observe. More specifically, we can
measure to what extent the total effect of swap-
ping the subject on inflection preferences can be
attributed to specific neurons.

Here, we independently analyze the individ-
ual neuron NIEs for GPT-2, Transformer-XL, and
XLNet (future work could also investigate inter-
vening on sets of neurons simultaneously). We
also attempt to analyze attention heads for GPT-
2, though we find that they do not present con-
sistent interpretable results with the swap-number
intervention (see Appendix A). This is consistent
with the findings of Htut et al. (2019) who do not
find a straightforward connection between attention
weights and the model’s syntactic behavior.

Based on the findings of prior probing work on
dependency parsing (Hewitt and Manning, 2019),
we hypothesize that NIEs will peak in the upper-
middle layers for all models. Because XLNet
is exposed to all word order permutations of its
input sentences during training, we hypothesize
that it will display similar indirect effect results
across syntactic structures. Conversely, GPT-2 and
Transformer-XL always process input left-to-right,
so we expect that for these two models, differing
syntactic structures will yield unique indirect effect
results.
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Figure 6: Natural indirect effects of the top 5% of neurons in each layer of various GPT-2 sizes. Each figure
focuses on a single structure and compares across GPT-2 sizes.
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Figure 7: Natural indirect effects of the top 5% of neu-
rons in each layer of GPT-2 Medium.

6.1 Results

For each model and structure, we select the 5% of
neurons with the highest NIE in each layer; Fig-
ure 6 compares NIEs across model sizes, and Fig-
ure 7 compares NIEs across structures for GPT-2
Medium.* We observe two distinct layer-wise con-
tour patterns. In structures where the target verb
directly follows the subject (‘simple agreement’
and ‘within RC’, the top 3 plots in Figure 6), NIEs
continually increase in higher layers.

Conversely, for structures with subject-verb sep-
aration (‘across one/two distractor(s)’, ‘across PP’,
and ‘across RC’, the bottom 3 figures in Figure 6),
NIEs peak at layer O and (more notably) in the

*We also produced figures using all neurons. When doing
so, the contour of the graph across layers did not change,
but the magnitudes were lower since we average over more
neurons.

upper-middle layers. This is in line with the prob-
ing results of Hewitt and Manning (2019) and Ten-
ney et al. (2019a), who find that the highest amount
of syntactic information is encoded in the upper-
middle layers. In the final layers of the model, the
effect decreases sharply, reaching O in the upper-
most layers. The peak NIE is lower here than for
structures where there is no separation, perhaps
indicating that syntactic agreement information is
localized in fewer neurons when separation occurs.

Even a single token between subject and verb
brings about this second indirect effect contour,
indicating that distance is a less important fac-
tor than the presence of any separation in invok-
ing this second syntactic agreement mechanism.
The distinct indirect effect contours for the adja-
cent and non-adjacent cases may indicate distinct
subject-verb agreement mechanisms for short- and
long-distance agreement, consistent with similar
findings for LSTMs (Lakretz et al., 2019).

As a control, we repeated the experiment for
GPT-2 with randomized weights. We find that for
all structures, when weights are randomized, indi-
rect effects peak at layer O—albeit at values perhaps
too small to be meaningful—and then remain close
to 0 in higher layers. This indicates that the vast
majority of the indirect effect observed for trained
models is an outcome of learning from the training
data rather than of the architecture.

For each structure, the maximum NIE per layer
is always lower for larger models. Peaks in
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0.07 Within singular RC
Within plural RC
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Figure 8: Natural indirect effects of the top 5% of neu-
rons in each layer of Transformer-XL.

0.0175
Simple
Within singular RC
Within plural RC
2 distractors
1 distractor
Singular PP

Plural PP
£0.0075 e - > | Singular RC
= = ~ N\ Plural RC

0.0150

0.0125

0.0100

Indirect effect
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Figure 9: Natural indirect effects of the top 5% of neu-
rons in each layer of XLNet.

NIEs are also more distributed across layers for
larger models. This suggests that structural
knowledge is concentrated in fewer neurons
with stronger inflectional preferences in smaller
models, and is more distributed across neurons
in larger models. Nonetheless, the overall contour
of NIEs is similar across model sizes for a given
structure, indicating that mechanisms of agree-
ment are similar across model sizes.

6.1.1 Comparing GPT-2 to Other
Architectures

We also investigate the neuron NIEs of
Transformer-XL (Figure 8) and XLNet (Fig-
ure 9) to observe whether syntax is represented in
a similar manner across models (for total effects
across architectures, see Appendix E).

Local and non-local agreement diverges in
a similar way in GPT-2 and Transformer-XL.
The layer-wise contour is similar for ‘simple agree-
ment’ and ‘within RC’ across the two architectures,
and differs significantly from the cases where sub-
ject and verb are separated, which is again similar
across architectures. This supports our hypothesis
that GPT-2 and Transformer-XL encode syntax in
a similar manner.

Indirect effects in XLNet are different to

those seen in GPT-2. In XLNet, we do not observe
the same dichotomous behavior between subject-
verb adjacent and subject-verb non-adjacent struc-
tures; rather, the overall contours are all similar.
All of the indirect effects approach O in the final
layer. This resembles the contours from GPT-2
and Transformer-XL for structures where subject
and verb are not adjacent. We conjecture that this
pattern arises because XLNet observes many word
order permutations of the same inputs during train-
ing; this acts as a form of regularization that pre-
vents it from evolving bifurcating mechanisms for
local and non-local dependencies.

While Sinha et al. (2021) found that natural word
order during pre-training matters little for down-
stream performance on tasks in benchmarks like
GLUE (Wang et al., 2018), they also found that ran-
domizing word order greatly reduced model prefer-
ences for correct inflections in syntactic evaluation
stimuli. This finding—coupled with the distinct
word-order-dependent agreement mechanisms that
we discover—suggests that models do make use
of word order information, rather than just higher-
order word collocation statistics.

6.1.2 Neuron Overlap Across Structures

The layer-wise NIE contours in Section 6.1 show
the NIE of the top neurons in each layer, but do not
show which neurons make it into the top 5%. To in-
vestigate whether the same neurons are implicated
in subject-verb agreement across structures, we se-
lect the top 5% of neurons per layer by NIE and
calculate the proportion of these high-NIE neurons
that overlap between each pair of structures.

Does the extent of neuron sharing across struc-
tures correlate with human intuitions of syntactic
similarity? To address this question, we compute
hypothesized syntactic similarities between struc-
tures based on the following linguistic features:
distance between subject and verb; presence of ad-
verbial distractors, a relative clause, prepositional
phrase, and/or a noun attractor; and the number
of the noun attractor when present. Appendix D.1
provides additional details on the calculation of
ground-truth similarity.

To quantify the similarity of the hypothesis ma-
trix and a neuron overlap matrix, we calculate the £;
norm° of the element-wise difference between the
lower-left triangle of both matrices, as the matrices
are symmetric. We exclude the diagonal.

5Using the ¢ norm does not change which layer in each
model has the lowest difference norm.
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Figure 10: Hypothesized syntactic similarity across structures (left), as well as the overlap of the top 5% of neurons
per-structure by indirect effect for GPT-2 (center-left), Transformer-XL (center-right), and XLNet (right); the layer
displayed is the one that shows the highest similarity to the hypothesized (ground-truth) matrix.

For each model, we present neuron overlaps for
the layer with the lowest difference norm to the
hypothesis (Figure 10; for an analysis of layer-by-
layer overlap change for GPT-2, see Appendix D.2).
The lowest difference norms are 443 (GPT-2),
510 (Transformer-XL), and 486 (XLNet). GPT-2
Medium’s overlap across structures at layer 21
(of 24) is visually similar to the hypothesis, in-
dicating that this layer in GPT-2 shares neurons
for subject-verb agreement across structures in
a way that aligns with human intuitions about
syntactic similarity. Interestingly, it learns to do
this without receiving explicit syntactic supervision
during training.

Layer 15 (of 18) of Transformer-XL displays
similar trends to GPT-2, though the extent of over-
lap is higher across structures in general here.
There is more significant overlap between the ad-
verbial distractor structures and the structures that
contain attractors. ‘Simple agreement’ also has
more overlap with structures containing attractors
than ‘within RC’, which is contrary to our hypoth-
esis matrix. We also note that ‘across singular RC’
has more overlap with ‘across PP’ than ‘across plu-
ral RC’ (and vice versa for ‘across plural RC’), in-
dicating that the number of the attractor is more
salient to Transformer-XL than the structure of
the phrase containing the attractor.

Layer 8 (of 12) of XLNet gives rise to a nois-
ier similarity matrix. There is slightly more over-
lap between structures across noun attractors, but
the extent of overlap is smaller compared to other
models. This suggests that more of the neurons
are specialized to processing specific structures.
However, the indirect effect findings for XIL.Net
suggest a more unified mechanism for syntactic
agreement across all structures; if this were the

case, we would expect neuron overlap to be high,
and for the extent of overlap to be similar across all
structures, rather than being higher between more
similar structures. We observe the latter, but not
the former. Regardless, both observations further
support our hypothesis that XLLNet uses different
mechanisms to resolve number agreement than the
other two architectures.

7 Conclusions

This study applied causal mediation analysis to dis-
cover and interpret the mechanisms behind syntac-
tic agreement in pre-trained neural language mod-
els. Our results reveal the location and importance
of various neurons within various models, and pro-
vide insights into the inner workings of these LMs.

For future work, we suggest intervening on
groups of neurons and attention heads to see how
these components work together, and extending the
analysis to phenomena such as filler-gap depen-
dencies and negative polarity items. Further work
should also explore the impact of specific verbs on
syntactic agreement mechanisms (Newman et al.,
2021). Lastly, we suggest examining examples
where the model makes incorrect predictions to de-
termine how models misuse the mechanisms from
Section 6.1.
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Impact Statement

In this paper, we apply causal mediation analysis
in order to study the subject-verb agreement mech-
anisms in language models. While the focus of
this work is on the analysis itself, our insights may
influence the training strategies for new models.
Specifically, our findings on the relationship be-
tween model size and syntactic agreement and the
comparison of different model architectures may
help researchers decide which model to use. In
doing so, others may try to extrapolate our find-
ings, which are limited to the domain of specific
syntactic structures and subject-verb agreement in
English language models, to other tasks and lan-
guages for which we cannot make these claims.
The focus on English of this study additionally fur-
thers the discrepancy compared to other languages
which continue to be studied much less.

Moreover, we do not study mitigation mecha-
nisms for our findings and thus do not know the
consequences of modifying the training procedures
of language models beyond the three examples we
studied. One concrete example for a case where our
findings could have wider impact regards our find-
ing that models have higher grammaticality for plu-
ral subjects. Others may find that this is undesired
behavior and thus try to augment their training data
to increase the number of subjects in singular form,
which could have unanticipated consequences on
model performance and mechanisms.

Beyond the concrete findings in this paper, there
are also broader considerations in the populariza-
tion of causal mediation analysis. Specifically, as
pointed out by Vig et al. (2020a), it is a challeng-
ing problem to extend the effect measures beyond
binary cases. While subject-verb agreement is by
nature a binary problem, there are many others that
benefit from a more nuanced view, specifically in
topics related to fairness and bias. Thus, by pop-
ularizing an approach that is easier to apply in a
binary case, we may have the unintended effect
of complicating analyses conducted by others who
want to follow our approach. As an active miti-
gation, we direct readers to the extended version
of Vig et al. (2020b), which discusses effect mea-
sures beyond the binary case.

References

Yonatan Belinkov. 2018. On Internal Language Rep-
resentations in Deep Learning: An Analysis of Ma-

chine Translation and Speech Recognition. Ph.D.

thesis, Massachusetts Institute of Technology.

Yonatan Belinkov. 2021. Probing classifiers: Promises,
shortcomings, and alternatives.  arXiv preprint,
abs/2102.12452.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49-72.

Ethan A. Chi, John Hewitt, and Christopher D. Man-
ning. 2020. Finding universal grammatical rela-
tions in multilingual BERT. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5564-5577, Online. As-
sociation for Computational Linguistics.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 2978-2988, Florence, Italy.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Richard Futrell, Ethan Wilcox, Takashi Morita, Peng
Qian, Miguel Ballesteros, and Roger Levy. 2019.
Neural language models as psycholinguistic sub-
jects: Representations of syntactic state. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 32-42, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Mario Giulianelli, Jack Harding, Florian Mohnert,
Dieuwke Hupkes, and Willem Zuidema. 2018. Un-
der the hood: Using diagnostic classifiers to in-
vestigate and improve how language models track
agreement information. In Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing and In-
terpreting Neural Networks for NLP, pages 240—
248.

Yoav Goldberg. 2019. Assessing BERT’s syntactic
abilities. arXiv preprint 1901.05287.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Colorless
green recurrent networks dream hierarchically. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,

1837


https://arxiv.org/abs/2102.12452
https://arxiv.org/abs/2102.12452
https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.18653/v1/2020.acl-main.493
https://doi.org/10.18653/v1/2020.acl-main.493
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/N19-1004/
https://www.aclweb.org/anthology/N19-1004/
http://arxiv.org/abs/1901.05287
http://arxiv.org/abs/1901.05287
https://doi.org/10.18653/v1/N18-1108
https://doi.org/10.18653/v1/N18-1108

Volume 1 (Long Papers), pages 1195-1205, New
Orleans, Louisiana. Association for Computational
Linguistics.

John Hewitt and Percy Liang. 2019. Designing and
interpreting probes with control tasks. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2733-2743, Hong
Kong, China. Association for Computational Lin-
guistics.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129-4138.

Sepp Hochreiter and Jirgen Schmidhuber. 1997.
Long short-term memory.  Neural computation,
9(8):1735-1780.

Phu Mon Htut, Jason Phang, Shikha Bordia, and
Samuel R. Bowman. 2019. Do attention heads in
BERT track syntactic dependencies? arXiv preprint,
abs/1911.12246.

Jennifer Hu, Jon Gauthier, Peng Qian, Ethan Wilcox,
and Roger Levy. 2020. A systematic assessment
of syntactic generalization in neural language mod-
els. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 1725-1744, Online. Association for Compu-
tational Linguistics.

Jaap Jumelet, Willem Zuidema, and Dieuwke Hupkes.
2019. Analysing neural language models: Con-
textual decomposition reveals default reasoning in
number and gender assignment. In Proceedings of
the 23rd Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 1-11, Hong Kong,
China. Association for Computational Linguistics.

Yair Lakretz, Dieuwke Hupkes, Alessandra Vergallito,
Marco Marelli, Marco Baroni, and Stanislas De-
haene. 2021. Mechanisms for handling nested de-
pendencies in neural-network language models and
humans. Cognition, page 104699.

Yair Lakretz, German Kruszewski, Theo Desbordes,
Dieuwke Hupkes, Stanislas Dehaene, and Marco Ba-
roni. 2019. The emergence of number and syn-
tax units in LSTM language models. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 11-20, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn

syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics), 4:521—
535.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1073-1094, Minneapolis, Minnesota.
Association for Computational Linguistics.

Kaiji Lu, Piotr Mardziel, Klas Leino, Matt Fredrikson,
and Anupam Datta. 2020. Influence paths for char-
acterizing subject-verb number agreement in LSTM
language models. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 4748—4757, Online. Association
for Computational Linguistics.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1192—-1202,
Brussels, Belgium. Association for Computational
Linguistics.

Aaron Mueller, Garrett Nicolai, Panayiota Petrou-
Zeniou, Natalia Talmina, and Tal Linzen. 2020.
Cross-linguistic syntactic evaluation of word predic-
tion models. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5523-5539, Online. Association for
Computational Linguistics.

Benjamin Newman, Kai-Siang Ang, Julia Gong, and
John Hewitt. 2021. Refining targeted syntactic eval-
uation of language models. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 3710-3723, On-
line. Association for Computational Linguistics.

Judea Pearl. 2001. Direct and indirect effects. In Pro-
ceedings of the Seventeenth Conference on Uncer-
tainty in Artificial Intelligence, pages 411-420.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
Blog.

James M. Robins. 2003. Semantics of causal DAG
models and the identification of direct and indirect

effects. Oxford Statistical Science Series, pages 70—
82.

James M. Robins and Sander Greenland. 1992. Identi-
fiability and exchangeability for direct and indirect
effects. Epidemiology, pages 143—155.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2020. DistilBERT, a distilled version
of BERT: Smaller, faster, cheaper and lighter. arXiv
preprint, abs/1910.01108.

1838


https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/D19-1275
https://www.aclweb.org/anthology/N19-1419/
https://www.aclweb.org/anthology/N19-1419/
https://www.aclweb.org/anthology/N19-1419/
http://arxiv.org/abs/1911.12246
http://arxiv.org/abs/1911.12246
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/K19-1001
https://doi.org/10.18653/v1/K19-1001
https://doi.org/10.18653/v1/K19-1001
https://doi.org/https://doi.org/10.1016/j.cognition.2021.104699
https://doi.org/https://doi.org/10.1016/j.cognition.2021.104699
https://doi.org/https://doi.org/10.1016/j.cognition.2021.104699
https://doi.org/10.18653/v1/N19-1002
https://doi.org/10.18653/v1/N19-1002
https://transacl.org/ojs/index.php/tacl/article/view/972
https://transacl.org/ojs/index.php/tacl/article/view/972
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/2020.acl-main.430
https://doi.org/10.18653/v1/2020.acl-main.430
https://doi.org/10.18653/v1/2020.acl-main.430
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/2020.acl-main.490
https://doi.org/10.18653/v1/2020.acl-main.490
https://www.aclweb.org/anthology/2021.naacl-main.290
https://www.aclweb.org/anthology/2021.naacl-main.290
https://github.com/openai/gpt-2
https://github.com/openai/gpt-2
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108

Marten van Schijndel, Aaron Mueller, and Tal Linzen.
2019. Quantity doesn’t buy quality syntax with
neural language models. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5835-5841, Hong Kong,
China. Association for Computational Linguistics.

Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle
Pineau, Adina Williams, and Douwe Kiela. 2021.
Masked language modeling and the distributional
hypothesis: Order word matters pre-training for lit-
tle. arXiv preprint, abs/2104.06644.

Martin Sundermeyer, Ralf Schliiter, and Hermann Ney.
2012. LSTM neural networks for language model-
ing. In Thirteenth annual conference of the interna-
tional speech communication association.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019a.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593—
4601, Florence, Italy. Association for Computational
Linguistics.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Sam Bowman, Dipanjan Das,
and Ellie Pavlick. 2019b. What do you learn from
context? probing for sentence structure in contextu-
alized word representations. In International Con-
ference on Learning Representations.

Shravan Vasishth and Richard L Lewis. 2006.
Argument-head distance and processing complex-
ity: Explaining both locality and antilocality effects.
Language, pages 767-794.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998-6008.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stu-
art Shieber. 2020a. Investigating gender bias in lan-
guage models using causal mediation analysis. In
Advances in Neural Information Processing Systems,
volume 33, pages 12388-12401. Curran Associates,
Inc.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stu-
art M. Shieber. 2020b. Causal mediation analysis
for interpreting neural NLP: the case of gender bias.
arXiv preprint, abs/2004.12265.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-

boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353-355, Brussels, Belgium.
Association for Computational Linguistics.

Ethan Wilcox, Roger Levy, Takashi Morita, and
Richard Futrell. 2018. What do RNN language
models learn about filler-gap dependencies? In
Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 211-221, Brussels, Belgium.
Association for Computational Linguistics.

Ethan Wilcox, Peng Qian, Richard Futrell, Miguel
Ballesteros, and Roger Levy. 2019. Structural super-
vision improves learning of non-local grammatical
dependencies. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3302-3312, Minneapolis, Minnesota.
Association for Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
XLNet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural In-
formation Processing Systems, volume 32. Curran
Associates, Inc.

1839


https://doi.org/10.18653/v1/D19-1592
https://doi.org/10.18653/v1/D19-1592
http://arxiv.org/abs/2104.06644
http://arxiv.org/abs/2104.06644
http://arxiv.org/abs/2104.06644
https://www.aclweb.org/anthology/P19-1452/
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
http://arxiv.org/abs/2004.12265
http://arxiv.org/abs/2004.12265
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5423
https://doi.org/10.18653/v1/W18-5423
https://doi.org/10.18653/v1/N19-1334
https://doi.org/10.18653/v1/N19-1334
https://doi.org/10.18653/v1/N19-1334
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf

A Attention Head Indirect Effects

Here, we present mean indirect effects across
prompts for a sample of structures of each attention
head in GPT-2 Small (which has 12 layers) under
both the swap-number intervention (Figure 11) and
zero intervention (Figure 12; defined below).

For the swap-number intervention, we do not ob-
serve any consistent trends across structures, except
that attention heads in upper-middle layers seem
to account for most of the positive and negative
NIEs. Head 10-9 (layer 10, head 9) has negative
indirect effects for most structures where there is a
separation between subject and verb, except ‘across
plural RC’. However, we do not observe strong in-
direct effects for head 10-9 when subject and verb
are adjacent. Head 11-11 has the most consistently
positive indirect effects across structures, though
its magnitude is typically low.

Indirect effects are largely positive for ‘within
plural RC’, but otherwise, indirect effects are fairly
evenly split between positive and negative. The
sum of indirect effects across heads for most struc-
tures is close to 0, with many sums being a low-
magnitude negative number. This indicates that
these attention indirect effects may simply be noise.

Because attention heads seem robust to swap-
ping the number of the subject, we also define the
zero intervention. Here, we do not change u, but
set the attention head’s value equal to O and ob-
serve how this changes the effect; this has an in-
terpretation as the controlled indirect effect from
Pearl (2001). Here, trends are more consistent
across structures, attractor numbers, and types of
distractors. Head 0-10 is always strongly impli-
cated; since this is in the bottom layer, this suggests
that attention’s contribution to syntax is based on
lexical (perhaps collocational) information and not
structural information. This would align with Htut
et al. (2019), who found that attention tends to
capture lexical grammatical features but not inter-
word structural information. Qualitative analysis
reveals that head 0-10 and head 2-8 always focus on
the 2nd and 5th words in the prompt, respectively.
Thus, attention’s contribution to subject-verb agree-
ment in lower layers may largely be based on where
important tokens appear in the input, rather than
any abstract structural information that would be
composed in the upper layers.

However, for all structures except where we have
adverbial distractors, we see consistent positive in-
direct effects in the uppermost layers as well. No

single attention head is strongly implicated, but the
layer effect is consistently positive and sometimes
nears the magnitude of that in the lower layers.
This indicates that more abstract structural infor-
mation may be present, but that this information is
also quite distributed across attention heads in the
uppermost layers. Future work should investigate
other interventions to better understand attention’s
role in syntactic agreement.

B Adverbs Increase the Probability of
Correct Verbs More Than Incorrect
Verbs

Here, we show that separating the subject and verb
with adverbs tends to increase the probability of
the verb (Figure 13). Regardless of whether the
subject and verb agree, adding adverbs does always
increase the probability of verbs. Note the log
scale: we observe visually similar increases in log
probabilities after adding 1 or 2 adverb distractors,
but visually similar differences at higher points in
the graph are actually much larger increases. This
supports our hypothesis that adverbs increase the
probablity of all verbs, but increase the probability
of the correct inflection probabilities more than that
of the incorrect one.

C The (Non-)Impact of Complementizers

Here, we investigate the effect of including or ex-
cluding the complementizer that for the ‘across RC’
and ‘within RC’ structures, observing both TEs
(Figure 14) and neuron indirect effects (Figure 15).
While we expect lower TEs when the complemen-
tizer is absent, we observe only minor reductions in
total effects in ‘across RC’; this holds across model
sizes. For ‘within RC’, however, trends are size-
dependent. DistilGPT-2, GPT-2 Small, and GPT-2
Large appear mostly robust to the presence or ab-
sence of the complementizer, though GPT-2 Small
does have lower total effects in the ‘across plural
RC’ structure when that is absent. Meanwhile,
GPT-2 Medium more strongly prefers correct in-
flections when that is absent. It is not immediately
clear why this is the case, because deleting the
complementizer introduces more ambiguity.
There does not appear to be any significant dif-
ference in magnitude or contour of the indirect
effects across layers when including or excluding
the complementizer. Thus, while excluding the
complementizer can make subject-verb agreement
slightly more difficult for LMs (Marvin and Linzen,
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Figure 13: The distribution of target verb probabili-
ties for ‘simple agreement’, ‘across one distractor’, and
‘across two distractors’. Note that the y-axis uses a log
scale.

2018), it does not appear to change the mechanisms
through which subject-verb agreement happens in
the model.

D Additional Neuron Overlap Details

D.1 Hypothesizing Syntactic Similarity

To generate the hypothesis similarity matrix be-
tween structures, we choose a set of features given
in Table 2 that capture important syntactic infor-
mation. Most of the features are binary; however,
we also include a ternary feature and a numerical
feature. The ternary feature, “attractor number”,
can take on values SG, PL, and O when there is no
attractor.

To compute the similarity of two structures, we
first sum the differences for each feature. For the
binary and ternary features, the difference is O if
the features have the same value, otherwise 1. For
the numerical feature, we take the absolute value of
the difference between distances, scaled to a value
between 0 and 2. We scale the similarity to reduce
the impact of the numerical feature on the total
similarity.® Finally, we take the maximum possible
difference across all pairs of structures, and sub-

SWe initially scaled this to be within the range [0, 1] like
the other features, but this caused “within relative clause” to
have high similarity to “across PP” and “across a relative
clause”. Thus, we increase its impact for more human-like
hypotheses.
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Figure 14: Total effects for ‘across relative clause’ and
‘within relative clause’ structures, with and without the
complementizer that.
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Figure 15: Indirect effects for ‘across relative clause’
and ‘within relative clause’ structures, with (solid lines)
and without (dashed lines) the complementizer that.

tract each pairwise distance from the maximum to
obtain similarity scores. We normalize the similari-
ties to the range [0, 100] by dividing similarities by
the maximum possible similarity score; this is to
make them more comparable to the neuron overlap
matrices.

D.2 Neuron Overlap Across Layers

Here, we present neuron overlaps across all lay-
ers of DistilGPT-2, the smallest model we analyze
(Figure 16). We first note that the overall extent of
neuron overlap across structures tends to increase
up to the upper-middle layers, before sharply de-
creasing in the highest layer to near-zero values.
We find that this trend holds for all other sizes of
GPT-2, as well as Transformer-XL; generally, over-
laps continue to increase until the upper-middle lay-
ers, decreases slightly in the second-highest layer,
and decreases sharply to zero in the highest layer.
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Figure 16: Overlap between structures of the top 5% of neurons in each of layer of DistilGPT-2 by indirect effect.

Feature Type
Subject and verb separated binary
Tokens between subject, verb  numerical
Has adverbial distractor(s) binary
Has noun attractor binary
Attractor number ternary
Has relative clause binary
Has prepositional phrase binary

Table 2: Features (and their types) used in calculating
hypothesized syntactic similarity.

Layer-by-layer difference (¢1) norms are presented
in Table 3.

Layer No. Diff. Norm  Layer No. Diff. Norm
0 677 4 627
1 652 5 510
2 565 6 1301
3 583

Table 3: Difference ¢; norms between the hypothesis
matrix and each layer of DistilGPT-2.

E Total Effects Across Architectures

Figure 17 presents total effects for all structures
across architectures. The magnitude of total effect
is generally similar for XLNet and GPT-2 (except
when dealing with relative clauses), whereas total
effects are much smaller for Transformer-XL. It
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Figure 17: Total effects across structures by architec-
ture (ordered by increasing number of layers/increasing
parameterization).

seems that parametrization and model depth do not
correlate well with total effects.

Perhaps the effects for Transformer-XL are
smaller due to the longer effective contexts it has,
which could make it prone to assigning smaller
probabilities to a larger set of tokens than GPT-2
while still behaviorally performing well. It is
harder to explain the similarity between GPT-2 and
XLNet, given the great differences between them
in training and the divergence in their behavior as
revealed by the indirect effect results in §6.1.1.
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