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Abstract
In conversation, uptake happens when a
speaker builds on the contribution of their in-
terlocutor by, for example, acknowledging, re-
peating or reformulating what they have said.
In education, teachers’ uptake of student con-
tributions has been linked to higher student
achievement. Yet measuring and improving
teachers’ uptake at scale is challenging, as ex-
isting methods require expensive annotation
by experts. We propose a framework for com-
putationally measuring uptake, by (1) releas-
ing a dataset of student-teacher exchanges ex-
tracted from US math classroom transcripts
annotated for uptake by experts; (2) formal-
izing uptake as pointwise Jensen-Shannon Di-
vergence (PJSD), estimated via next utterance
classification; (3) conducting a linguistically-
motivated comparison of different unsuper-
vised measures and (4) correlating these mea-
sures with educational outcomes. We find
that although repetition captures a significant
part of uptake, PJSD outperforms repetition-
based baselines, as it is capable of identifying
a wider range of uptake phenomena like ques-
tion answering and reformulation. We apply
our uptake measure to three different educa-
tional datasets with outcome indicators. Un-
like baseline measures, PJSD correlates signifi-
cantly with instruction quality in all three, pro-
viding evidence for its generalizability and for
its potential to serve as an automated profes-
sional development tool for teachers.1

1 Introduction

Building on the interlocutor’s contribution via, for
example, acknowledgment, repetition or elabora-
tion (Figure 1), is known as uptake and is key to
a successful conversation. Uptake makes an inter-
locutor feel heard and fosters a collaborative inter-
action (Collins, 1982; Clark and Schaefer, 1989),

1Code and annotated data: https://github.com/
ddemszky/conversational-uptake

I added 30 to 70…

Okay.

Good, you did the first step.

Okay, you added 30 to 70.

And you got what?

acknowledgment

collaborative completion

t1

t2

t3

t4

repetition

reformulation

s

Where did the 70 come from?t5 elaboration

Figure 1: Example student utterance s and possible
teacher replies t, illustrating different uptake strategies.

which is especially important in contexts like edu-
cation. Teachers’ uptake of student ideas promotes
dialogic instruction by amplifying student voices
and giving them agency in the learning process, un-
like monologic instruction where teachers lecture
at students (Bakhtin, 1981; Wells, 1999; Nystrand
et al., 1997). Despite extensive research showing
the positive impact of uptake on student learning
and achievement (Brophy, 1984; O’Connor and
Michaels, 1993; Nystrand et al., 2003), measuring
and improving teachers’ uptake at scale is challeng-
ing as existing methods require manual annotation
by experts and are prohibitively resource-intensive.

We introduce a framework for computationally
measuring uptake. First, we create and release
a dataset of 2246 student-teacher exchanges ex-
tracted from US elementary math classroom tran-
scripts, each annotated by three domain experts for
teachers’ uptake of student contributions.

We take an unsupervised approach to measure
uptake in order to encourage domain-transferability
and account for the fact that large amounts of la-
beled data are not possible in many contexts due
to data privacy reasons and/or limited resources.

https://github.com/ddemszky/conversational-uptake
https://github.com/ddemszky/conversational-uptake
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We conduct a careful analysis of the role of repeti-
tion in uptake by measuring utterance overlap and
similarity. We find that the proportion of student
words repeated by the teacher (%-IN-T) captures
a large part of uptake, and that surprisingly, word-
level similarity measures consistently outperform
sentence-level similarity measures, including ones
involving sophisticated neural models.

To capture uptake phenomena beyond repetition
and in particular those relevant to teaching (e.g.
question answering), we formalize uptake as a
measure of the reply’s dependence on the source
utterance. We quantify dependence via pointwise
Jensen-Shannon divergence (PJSD), which cap-
tures how easily someone (e.g., a student) can
distinguish the true reply from randomly sampled
replies. We show that PJSD can be estimated via
cross-entropy loss obtained from next utterance
classification (NUC).

We train a model by fine-tuning BERT-base
(Devlin et al., 2019) via NUC on a large, combined
dataset of student-teacher interactions and Switch-
board (Godfrey and Holliman, 1997). We show that
scores obtained from this model significantly out-
perform our baseline measures. Using dialog act
annotations on Switchboard, we demonstrate that
PJSD is indeed better at capturing phenomena such
as reformulation, question answering and collabora-
tive completion than %-IN-T, our best-performing
baseline. Our manual analysis also shows qualita-
tive differences between the models: the examples
where PJSD outperforms %-IN-T are enriched by
teacher prompts for elaboration, an exemplar for
dialogic instruction (Nystrand et al., 1997).

Finally, we find that our PJSD measure shows
a significant linear correlation with outcomes
such as student satisfaction and instruction quality
across three different datasets of student-teacher
interactions: the NCTE dataset (Kane et al., 2015),
a one-on-one online tutoring dataset, and the
SimTeacher dataset (Cohen et al., 2020). These
results provide evidence for the generalizability of
our PJSD measure and for its potential to serve as
an automated tool to give feedback to teachers.

2 Background on Uptake

Uptake has several linguistic and social func-
tions. (1) It creates coherence between two utter-
ances, helping structure the discourse (Halliday and
Hasan, 1976; Grosz et al., 1977; Hobbs, 1979). (2)
It is a mechanism for grounding, i.e. demonstrat-

ing understanding of the interlocutor’s contribu-
tion by accepting it as part of the common ground
(shared set of beliefs among interlocutors) (Clark
and Schaefer, 1989). (3) It promotes collaboration
with the interlocutor by sharing the floor with them
and indicating what they have said is important
(Bakhtin, 1981; Nystrand et al., 1997).

There are multiple linguistic strategies for up-
take, such as acknowledgment, collaborative com-
pletion, repetition, and question answering — see
Figure 1 for a non-exhaustive list. A speaker can
use multiple strategies at the same time, for exam-
ple, t3 in Figure 1 includes both acknowledgment
and repetition. Different strategies can represent
lower or higher uptake depending on how effec-
tively they achieve the aforementioned functions
of uptake. For example, Tannen (1987) argues
that repetition is a highly pervasive and effective
strategy for ratifying listenership and building a
coherent discourse. In education, high uptake has
been defined as cases where the teacher follows
up on the student’s contribution via a question or
elaboration (Collins, 1982; Nystrand et al., 1997).

We build on this literature from discourse analy-
sis and education to build our dataset, to develop
our uptake measure and to compare the ability of
different measures to capture key uptake strategies.

3 A New Educational Uptake Dataset

Despite the substantial literature on the functions
of uptake, we are not aware of a publicly available
dataset labeled for this phenomenon. To address
this, we recruit domain experts (math teachers and
raters trained in classroom observation) to anno-
tate a dataset of exchanges between students and
teachers. The exchanges are sampled from tran-
scripts of 45-60 minute long 4th and 5th grade
elementary math classroom observations collected
by the National Center for Teacher Effectiveness
(NCTE) between 2010-2013 (Kane et al., 2015).
The transcripts represent data from 317 teachers
across 4 school districts in New England that serve
largely low-income, historically marginalized stu-
dents. Transcripts are fully anonymized: student
and teacher names are replaced with terms like
“Student”, “Teacher” or “Mrs. H”.2

2Parents and teachers gave consent for the study (Harvard
IRB #17768), and for de-identified data to be retained and
used in future research. The transcripts were anonymized at
the time they were created.
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Preparing utterance pairs. We prepare a
dataset of utterance pairs (S, T ), where S is a stu-
dent utterance and T is a subsequent teacher utter-
ance. The concept of uptake presupposes that there
is something to be taken up; in our case that the
student utterance has substance. For example, short
student utterances like “yes” or “one-third” do not
present many opportunities for uptake. Based on
our pilot annotations, these utterances are difficult
for even expert annotators to label. Therefore, we
only keep utterance pairs where S contains at least
5 tokens, excluding punctuation. We also remove
all utterance pairs where the utterances contain an
[Inaudible] marker, indicating low audio quality.
Out of the remaining 55k (S, T ) pairs, we sample
2246 for annotation.3

Annotation. Given that uptake is a subjective
and heterogeneous construct, we relied heavily on
domain-expertise and took several other quality as-
surance steps for the annotation. As a result, the
annotation took six months to develop and com-
plete, longer than most other annotations in NLP
for a similar data size (∼2k examples).

Our annotation framework for uptake is designed
by experts in math quality instruction, including
our collaborators, math teachers and raters for the
Mathematical Quality Instruction (MQI) coding
instrument, used to assess math instruction (Teach-
ing Project, 2011). In the annotation interface,
raters can see (1) the utterance pair (S, T ), (2) the
lesson topic, which is manually labeled as part of
the original dataset, and (3) two utterances immedi-
ately preceding (S, T ) for context. Annotators are
asked to first check whether (S, T ) relates to math
– e.g. “Can I go to the bathroom?” is unrelated to
math. If both S and T relate to math, raters are
asked to select among three labels: “low”, “mid”
and “high”, indicating the degree to which a teacher
demonstrates that they are following what the stu-
dent is saying or trying to say. The annotation
framework is included in Appendix A.

We recruited expert raters (with experience in
teaching and classroom observation) whose demo-
graphics were representative of US K-12 teacher
population. We followed standard practices in ed-
ucation for rater training and calibration. We con-
ducted several pilot annotation rounds (5+ rounds

3To enable potential analyses on the temporal dynamics
of uptake, we randomly sampled 15 transcripts where we
annotate all (S, T ) pairs (constituting 29% of our annotations).
The rest of the pairs are sampled from the remaining data.

with a subset of raters, 2 rounds involving all 13
raters), quizzes for raters, thorough documentation
with examples, and meetings with all raters. After
training raters, we randomly assign each example
to three raters.

Post-processing and rater agreement. Table 1
includes a sample of our annotated data. Inter-rater
agreement for uptake is Spearman ρ = .474 (Fleiss
κ = .286

4), measured by (1) excluding examples
where at least one rater indicated that the utterance
pair does not relate to math5; (2) converting rater’s
scores into numbers (“low”: 0, “mid”: 1, “high”:
2); (3) z-scoring each rater’s scores; (4) computing
a leave-out Spearman ρ for each rater by correlating
their judgments with the average judgments of the
other two raters; and (5) taking the average of the
leave-out correlations across raters. Our interrater
agreement values comparable to those obtained in
widely-used classroom observation protocols such
as MQI and the Classroom Assessment Scoring
System (CLASS) (Pianta et al., 2008) that include
parallel measures to our uptake construct (see Kelly
et al. (2020) for a summary).6 We obtain a single
label for each example by averaging the z-scored
judgments across raters.

4 Uptake as Overlap & Similarity

As we see in Table 1, examples labeled for high
uptake tend to have overlap between S and T ; this
is expected, since incorporating the previous utter-
ance in some form is known to be an important as-
pect of uptake (Section 2). Therefore, we begin by
carefully analyzing repetition and defer discussion
of more complex uptake phenomena to Section 5.

To accurately quantify repetition-based uptake,
we evaluate a range of metrics and surprisingly find
that word overlap based measures correlate signif-
icantly better with uptake annotations than more
sophisticated, utterance-level similarity measures.7

4We prefer to use correlations because kappa has undesir-
able properties (see Delgado and Tibau, 2019) and correlations
are more interpretable and directly comparable to our models’
results (see later sections).

5This step is motivated by widely used education observa-
tion protocols such as MQI, which also clearly separate on- vs
off-task instruction.

6High interrater variability — especially when it comes
to ratings of teacher quality — are widely documented by
gold standard studies in the field of education (see Cohen and
Goldhaber (2016) for a summary).

7We focus on unsupervised methods that enable scalabil-
ity and domain-generalizability; please see Appendix B for
supervised baselines.
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Example Uptake

S: ’Cause you took away 10 and 70 minus 10 is 60.
T: Why did we take away 10? high

S: There’s not enough seeds.
T: There’s not enough seeds. How do you know
right away that 128 or 132 or whatever
it was you got doesn’t make sense?

high

S: Teacher L, can you change your dimensions
like 3-D and stuff for your bars?
T: You can do 2-D or 3-D, yes. I already said that.

mid

S: The higher the number, the smaller it is.
T: You got it. That’s a good thought. mid

S: An obtuse angle is more than 90 degrees.
T: Why don’t we put our pencils down and just do
some brainstorming, and then we’ll go back
through it?

low

S: Because the base of it is a hexagon.
T: Student K? low

Table 1: Examples from our annotated data, showing
the majority label for each example.

4.1 Methods

We use several algorithms to better understand if
word- or utterance-level similarity is a better mea-
sure of uptake. For each token-based algorithm,
we experiment with several different choices for
pre-processing as a way to get the best possible
baselines to compare to. We include symbols for
the set of choices yielding best performance : re-
moving punctuation ♠, removing stopwords using
NLTK (Bird, 2006) ⊕, and stemming via NLTK’s
SnowballStemmer †.

String- and token-overlap.

LCS: Longest Common Subsequence.

%-IN-T: Fraction of tokens from S that are also
in T (Miller and Beebe-Center, 1956). [♠⊕ †]
%-IN-S: Fraction of tokens from T that are also
in S. [♠⊕]

JACCARD: Jaccard similarity (Niwattanakul et al.,
2013). [♠⊕]

BLEU: BLEU score (Papineni et al., 2002) for up
to 4-grams. We use S as the reference and T as
the hypothesis.[♠⊕ †]

Embedding-based similarity. For the word
vector-based metrics, we use 300-dimensional
GloVe vectors (Pennington et al., 2014) pretrained
on 6B tokens from Wikipedia 2014 and the Giga-
word 5 corpus (Parker et al., 2011).

Model ρ 95% CI

LCS .283 [.240, .329]
%-IN-T .523*** [.488, .559]
%-IN-S .440 [.399, .480]
JACCARD .450 [.413, .487]
BLEU .510 [.472, .543]

GLOVE [ALIGNED] .518 [.483, .550]
GLOVE [UTT] .424 [.378, .465]
SENTENCE-BERT .390 [.350, .432]
UNIVERSAL SENTENCE ENCODER .448 [.408, .486]

Table 2: Results from our baseline measures. Asterisks
indicate that %-IN-T significantly outperforms GLOVE
[ALIGNED] (p < 0.001), measured by a paired boot-
strap test, comparing the difference between the ρ ob-
tained by %-IN-T and the one by GLOVE [ALIGNED]
across 1000 iterations, then using a t-test.

GLOVE [ALIGNED]: Average pairwise cosine
similarity of word embeddings between tokens
from S and its most similar token in T . [♠]
GLOVE [UTT]: Cosine similarity of utterance
vectors representing S and T . Utterance vectors
are obtained by averaging word vectors from S
and from T . [♠⊕]
SENTENCE-BERT: Cosine similarity of utterance
vectors representing S and T , obtained using a
pre-trained Sentence-BERT model for English
(Reimers and Gurevych, 2019).8

UNIVERSAL SENTENCE ENCODER: Inner
product of utterance vectors representing S and T ,
obtained using a pre-trained Universal Sentence
Encoder for English (Cer et al., 2018).

4.2 Results

We compute correlations between model scores
and human labels via Spearman rank order correla-
tion ρ. We perform bootstrap sampling (for 1000
iterations) to compute 95% confidence intervals.

The results are shown in Table 2. Overall,
we find that token-based measures outperform
utterance-based measures, with %-IN-T (ρ = .523),
GLOVE [ALIGNED] (ρ = .518) (a soft word over-
lap measure) and BLEU (ρ = .510) performing
the best. Even embedding-based algorithms that
are computed at the utterance-level do not outper-
form %-IN-T, a simple word overlap baseline. It
is noteworthy that all measures have a significant
correlation with human judgments.

8https://github.com/UKPLab/
sentence-transformers

https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers
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The surprisingly strong performance of %-IN-
T, GLOVE [ALIGNED] and BLEU provide further
evidence that the extent to which T repeats words
from S is important for uptake (Tannen, 1987), es-
pecially in the context of teaching. The fact that
removing stopwords helps these measures suggests
that the repetition of function words is less impor-
tant for uptake; an interesting contrast to linguistic
style coordination in which function words play a
key role (Danescu-Niculescu-Mizil and Lee, 2011).
Moreover, the amount of words T adds in addition
to words from S also seems relatively irrelevant
based on the lower performance of the measures
that penalize T containing words that are not in S
— examples in Table 1 also support this result.

5 Uptake as Dependence

Now we introduce our main uptake measure, used
to capture a broader range of uptake phenomena
beyond repetition including, e.g., acknowledgment
and question answering (Section 2). We formalize
uptake as dependence of T on S, captured by the
Jensen-Shannon Divergence, which quantifies the
extent to which we can tell whether T is a response
to S or is it a random response (T ′). If we cannot
tell the difference between T and T ′, we argue that
there can be no uptake, as T fails all three functions
of coherence, grounding and collaboration.

We can formally define the dependence for a
single teacher-student utterance pair (s, t) in terms
of a pointwise variant of JSD (PJSD) as

pJSD(t, s) ∶= −1

2
( log P(Z=1∣M=t, s)

+ E log(1 − P(Z=1∣M=T
′
, s))) + log(2) (1)

where (S, T ) is a teacher-student utterance pair,
T
′ is a randomly sampled teacher utterance that is

independent of S, and M ∶= ZT + (1 − Z)T ′ is a
mixture of the two with a binary indicator variable
Z ∼ Bern(p=0.5).

This pointwise measure relates to the stan-
dard JSD for T ∣S=s and T

′ by taking
expectations over the teacher utterance via
E[pJSD(T, s)∣S=s]=JSD(T ∣S=s∥T ′). We
consider the pointwise variant for the rest of the
section, as we are interested in a measure of depen-
dence between a specific (t, s) rather than one that
is averaged over multiple teacher utterances.

5.1 Next Utterance Classification

The definition of PJSD naturally suggests an esti-
mator based on the next utterance classification
task — a task previously used in neighboring NLP
areas like dialogue generation and discourse coher-
ence. We fine-tune a pre-trained BERT-base model
(Devlin et al., 2019) on a dataset of (S, T ) pairs
to predict if a specific (s, t) is a true pair or not
(i.e., whether t came from T or T ′). The objective
function is cross-entropy loss, computed over the
output of the final classification layer that takes in
the last hidden state of t. Let Z be a binary indi-
cator variable representing the model’s prediction.
Then, the cross entropy loss for identifying z is

L(t, s) = − log fθ(t, s) − E log(1 − fθ(T ′, s))
(2)

Which can be used directly as an estimator for the
log-probability terms in Equation 1,

p̂JSD(t, s) ∶= 1

2
L(t, s) + log 2. (3)

Standard variational arguments (Nowozin et al.,
2016) show that any classifier fθ forms a lower
bound on the JSD,

JSD(T ∣S = s∥T ′) ≥ E[p̂JSD(T, s)∣S = s].

Thus, our overall procedure is to fit fθ(t, s) by max-
imizing E[p̂JSD(t, s)] over our dataset and then
use fθ(t, s) (a monotone function of p̂JSD(t, s))
as our pointwise measure of dependence.

Training data. We use (S, T ) pairs from three
sources to form our training data: the NCTE dataset
(Kane et al., 2015) (Section 3), Switchboard (God-
frey and Holliman, 1997) and a one-on-one online
tutoring dataset (Section 6) — we use a combina-
tion of datasets instead of one dataset in order to
support the generalizability of the model. Filter-
ing out examples with S < 5 tokens or [Inaudible]
markers (Section 3), our resulting dataset consists
of 259k (S, T ) pairs. For each (s, t) pair, we ran-
domly select 3 negative (s, t′) pairs from the same
source dataset, yielding 777k examples.9

Parameter settings. We fine-tune our model for
1 epoch to avoid overfitting with a batch size of
32 × 2 gradient accumulation steps, max length of

9We do not split the data into training and validation sets,
as we found that using predictions on the training data vs those
on the test data as our uptake measure yield similar results, so
we opted for maximizing training data size.
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Model ρ 95% CI

%-IN-T .523 [.488, .559]
PJSD .540*** [.505, .574]

Table 3: Results from the PJSD model. The asterisks,
calculated as in Table 2, indicate that the difference be-
tween the two models’ performance is significant.

120 tokens for S and T each (the rest is truncated),
learning rate of 6.24e-5 with linear decay and the
AdamW optimizer (Loshchilov and Hutter, 2017).
Training took about 13hrs on a single TitanX GPU.

5.2 Results & Analysis

Table 3 shows that the PJSD model (ρ = .540) sig-
nificantly outperforms %-IN-T. Our rough estimate
on the upper bound of rater agreement (ρ = .539,
obtained from a pilot annotation where all 13 raters
rated 70 examples) indicate that our best models’
scores in a similar range as human agreement.10

Table 4 includes illustrative examples for model
predictions. Our qualitative comparison of PJSD

and %-IN-T indicates that (1) the capability of PJSD

to differentiate between more and less important
words in terms of uptake (Examples 1 and 6) ac-
counts for many cases where PJSD is more accurate
than %-IN-T, (2) neither model is able to capture
rare and semantically deep forms of uptake (Exam-
ple 3), (3) PJSD generally gives higher scores than
%-IN-T to coherent responses with limited word
overlap (Example 5).

Now we turn to our motivating goals for propos-
ing PJSD and quantitatively analyze its ability to
capture more sophisticated forms for uptake.

Comparison of linguistic phenomena. To un-
derstand if there is a pattern explaining PJSD’s bet-
ter performance, we quantify the occurence of dif-
ferent linguistic phenomena for examples where
PJSD outperforms %-IN-T. Concretely, we com-
pute the residuals for each model, regressing the
human labels on their predictions. Then, we take
those examples where the difference between the
two models’ residuals is 1.5 standard deviations
above the mean difference between their residu-
als. We label teacher utterances in these examples

10Human agreement and model scores are not directly com-
parable. The human agreement values (as reported here for 13
raters and in Section 3 for 3 raters) are averaged leave-out es-
timates across raters (skewed downward). The models’ scores
represent correlations with an averaged human score, which
smooths over the interrater variance of 3 raters.

-.6 0 .6

answer***

reformulation***

collaborative
completion***

acknowledgment***

repetition***

JSD
is higher

%-in-t
is higher

Figure 2: The difference (δ) between the scores from
%-IN-T and PJSD for five uptake phenomena labeled
in Switchboard. Asterisks indicate significance (***:
p < 0.001), estimated via a median test.

for four linguistic phenomena associated with up-
take and good teaching (elaboration prompt, re-
formulation, collaborative completion, and answer
to question), allowing multiple labels (e.g. elab-
oration prompt and completion often co-occur).11

As Table 5 shows, elaboration prompts, which are
exemplars of high uptake in teaching (Nystrand
et al., 1997) are significantly more likely to occur
in this set — suggesting that there is a qualitative
difference between what these models capture that
is relevant for teaching. We do not find a signifi-
cant difference in the occurrence of reformulations,
collaborative completions and answers between the
two sets, possibly due to the small sample size
(n=67). To see whether these differences are sig-
nificant on a larger dataset, we now turn to the
Switchboard dialogue corpus.

Switchboard dialog acts. We take advantage of
dialog act annotations on Switchboard (Jurafsky
et al., 1997), to compare uptake phenomena cap-
tured by %-IN-T and PJSD at a large scale. We iden-
tify five uptake phenomena labeled in Switchboard
and map them to SWBD-DAMSL tags: acknowl-
edgment, answer, collaborative completion, refor-
mulation and repetition (see details in Appendix C).

We estimate scores for %-IN-T and PJSD for
all utterance pairs (S, T ) in Switchboard, filtering
out ones where S < 5 tokens. We apply our PJSD

model from Section 5.1, which was partially fine-
tuned on Switchboard. Since both measures are

11We label examples with above average uptake scores, as
there is no trivial interpretation for uptake strategies labeled
on low-uptake examples.
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Example Label
(quartile)

Model predictions
PJSD %-IN-T

1
S: i knew that eight was a composite number and -
T: why? how? how did you know it was composite?

top

top mid

2

S: do you have to know division to do fractions?
T: i would think - division, sometimes, yes, you do need to know division to do some
types of fractions. when we get to putting your fraction in simplest forms, yes, you
need to know division and multiplication facts. you know something else you can find
that comes in fractions?

top top

3
S: you put a one instead of a two.
T: yes i did. thank you. you always correct me. that’s too high. let’s bring it down.
how many times do you think, student d?

bottom bottom

4
S: five, six, seven, eight, you take eight off.
T: no, no, no equal pieces. right? okay so how many equal pieces do you need to make?

bottom

bottom bottom

5
S: i can prove it that it’s three hundred.
T: and you think it’s -? mid bottom

6
S: oh, i see it. i see it.
T: okay, now this is also another equivalent fraction. after you color, see if you see the
equivalent fraction. let’s see what you’ve got, student y.

mid top

Table 4: Example model predictions, comparing the PJSD model to %-IN-T. All labels are converted to percentiles:
top (75th), mid (25-75th) and bottom (25th). Green indicates correct predictions, red indicates predictions from
the opposite quartile and grey indicates mid-range predictions.

Label Examples

elaboration
prompt
(4.25*)

S: so it means that the whole equation
is only the same.
T: what does it mean? i still don’t
understand what is it?

reformulation
(2.6)

S: multiplication is like, say, for instance,
nine times twenty. you just take - nine just
nine times and add it up.
T: okay, so repeated addition.

answer
(2.67)

S: do we look at the d or the m first?
T: the m. what’s this called, that i’m writing?

collaborative
completion (0)

S: we had to add twenty-four plus twenty-four.
T: because there are how many triangles?

Table 5: Examples for linguistic phenomena, manually
labeled in the dataset where PJSD and %-IN-T make
significantly different predictions. Parenthetical num-
bers after the labels represent the odds ratio of exam-
ples with this label occurring in the set where PJSD per-
forms better over the set where %-IN-T performs better
(*: p < 0.05, computed via a Fisher exact test).

bounded, we quantile-transform the distribution of
each measure to have a uniform distribution. For
each uptake phenomenon, we compute the differ-
ence (δ) between the median score from PJSD and
the median score from %-IN-T for all (S, T ) pairs
where T is labeled for that phenomenon.

The results (Figure 2) show that PJSD predicts
significantly higher scores than %-IN-T for all phe-
nomena, especially for answers, reformulations,

collaborative completions and acknowledgments.
For repetition, δ is quite small, but still significant
due to the large sample size. These findings corrob-
orate our hypothesis that %-IN-T and PJSD capture
repetition similarly, but PJSD is able to better cap-
ture other uptake phenomena.

6 Downstream Application

To test the generalizability of our uptake measures
and their link to instruction quality, we correlate
PJSD and %-IN-T with educational outcomes on
three different datasets of student-teacher interac-
tions (Table 6).

NCTE dataset. We use all transcripts from the
NCTE dataset (Kane et al., 2015) (Section 3)
with associated classroom observation scores based
on the MQI coding instrument (Teaching Project,
2011). We select two items from MQI relevant to
uptake as outcomes: (1) use of student math contri-
butions and (2) overall quality of math instruction.
Since these items are coded at a 7-minute segment-
level, we take the average ratings across raters and
segments for each transcript.

Tutoring dataset. We use data from an educa-
tional technology company (same as in Chen et al.,
2019), which provides on-demand text-based tu-
toring for math and science. With a mobile appli-
cation, a student can take a picture of a problem
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Dataset Size Genre Topic Class size Outcome PJSD (β) %-IN-T (β)

NCTE
1.6k conv. in-person

spoken
math whole class

use of student contributions .101*** .113***
55k (S, T ) math instruction quality .091*** .121***

SimTeacher
338 conv.
2.7k (S, T )

virtual
spoken literature small group quality of feedback .127* .123*

Tutoring
4.6k conv. virtual

written
math,
science

one-on-one
student satisfaction .069*** .008

85k (S, T ) external reviewer rating .063*** .021

Table 6: The correlation of uptake scores from PJSD and %-IN-T and outcomes for three educational datasets. The
β values represent z-scored coefficients, each obtained from an ordinary least squares regression, controlling for
the number of (S, T ) pairs with uptake scores in each conversation (*: p < 0.05, **: p < 0.01, ***: p < 0.001).

or write it down, and is then connected to a pro-
fessional tutor who guides the student to solve the
problem. Similarly to Chen et al. (2019), we filter
out short sessions where the tutors are unlikely to
deliver meaningful tutoring. Specifically, we create
a list of (S, T ) pairs for all sessions, keeping pairs
where S ≥ 5 tokens, and then remove sessions with
fewer than ten (S, T ) pairs. This results in 4604
sessions, representing 108 tutors and 1821 students.
Each session is associated with two outcome mea-
sures: (1) student satisfaction scores (1-5 scale)
and (2) a rating by the tutor manager based on an
evaluation rubric (0-1 scale).

SimTeacher dataset. We use a dataset collected
by Cohen et al. (2020), via a mixed reality sim-
ulation platform in which novice teachers get to
practice key classroom skills in a virtual classroom
interface populated by student avatars. The avatars
are controlled remotely by a trained actor; hence
the term “mixed” reality. All pre-service teach-
ers from a large public university complete a five-
minute simulation session at multiple timepoints in
their teacher preparation program, and are coached
on how to better elicit students’ thinking about a
text. We use data from Fall 2019, with 338 sessions
representing 117 teachers. Since all sessions are
based on the same scenario (discussed text, lead-
ing questions, avatar scripts), this dataset uniquely
allows us to answer the question: controlling for
student avatar scripts, does a greater teacher uptake
lead to better outcomes? For the outcome variable,
we use their holistic “quality of feedback” measure
(1-10 scale), annotated at the transcript-level by the
original research team.12

12This overall quality scale accounts for the extent to which
teachers actively work to support student avatars’ develop-
ment of text-based responses, highlighting the importance of
probing student responses (e.g. “Where in the text did you see
that?”; “What made you think this about the character?”).

6.1 Results & Analysis

As outcomes are linked to conversations, we first
mean-aggregate uptake scores to the conversation-
level. We then compute the correlation of up-
take scores and outcomes using an ordinary least
squares regression, controlling for the number of
(S, T ) pairs in each conversation.

The results (Table 6) indicate that PJSD cor-
relates with all of the outcome measures signifi-
cantly. %-IN-T also shows significant correlations
for NCTE and for SimTeacher, but not for the tu-
toring dataset. We provide more details below.

For NCTE and SimTeacher, we find that two
measures show similar positive correlations with
outcomes. These results provide further insight into
our earlier findings from Section 5.2. They suggest
that the teacher’s repetition of student words, also
known as “revoicing” in math education (Forman
et al., 1997; O’Connor and Michaels, 1993), may
be an especially important mediator of instruction
quality in classroom contexts and other aspects of
uptake are relatively less important. The significant
correlation of PJSD with the outcome in case of
SimTeacher is especially noteworthy because PJSD

was not fine-tuned on this dataset (Section 5.1);
this provides evidence for the adaptability of a pre-
trained model to other (similar) datasets.

The gap between the two measures in case of
the tutoring dataset is an interesting finding, possi-
bly explained by the conversational setting: repeti-
tion may be an effective uptake strategy in multi-
participant & spoken settings, ensuring that every-
one has heard what the student said and is on the
same page; whereas, in a written 1:1 teaching set-
ting, repetition may not be necessary or effective
as both participants are likely to assume that that
their interlocutor has read their words. Our qualita-
tive analysis suggests PJSD might be outperform-
ing %-IN-T because it is better able to pick up
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high student feedback (%-IN-T < PJSD) low student feedback (PJSD < %-IN-T)

S: if they’re the same length i think
T: that’s right! all we need is the length, and that’s enough.
S: the energy from the one pendulum moving will transfer the
same frequency to the second pendulum once they touch?
T: they don’t even need to touch! we can swing them so they
swing side by side, like two swings on a swingset.
S: pendulum one will start to absorb energy from pendulum two?
T: exactly! and eventually, the whole process will reverse until
pendulum one is moving full speed again.

S: when you are saying mixture are you talking about nitrogen?
T: thanks for your question.
S: no i don’t think so
T: great answer!
S: i don’t know , just made an educated guess
T: great try!
S: i want further explanation about volume and
number moles when using nitrogen
T: sure. no worries!

Table 7: Examples from the tutoring dataset — for both examples, the predictions by PJSD are more accurate than
the ones by %-IN-T that predicts too low and too high values, respectively, when compared to student ratings.

on cues related to teacher responsiveness (we in-
clude two examples in Table 7). To test this, we
detect coarse-grained estimates of teacher uptake:
teacher question marks (estimate of follow-up ques-
tion) and teacher exclamation marks (estimate of
approval). We then follow the same procedure as in
Section 5.2 and find that dialogs where PJSD outper-
forms %-IN-T, in terms of predicting student rat-
ings, have a higher ratio of exchanges with teacher
questions (p < 0.05, obtained from two-sample
t-test) and teacher exclamation marks (p < 0.01).

To put these effect sizes from Table 6 (where sig-
nificant) in the context of education interventions
that are designed to increase student outcomes (typ-
ically test scores), the coefficients we report here
are considered average for an effective educational
intervention (Kraft, 2020). Further, existing guide-
lines for educational interventions would classify
uptake as a promising potential intervention, as it
is highly scalable and easily quantified.

7 Related Work

Prior computational work on classroom discourse
has employed supervised, feature-based classifiers
to detect teachers’ discourse moves relevant to stu-
dent learning, such as authentic questions, elabo-
rated feedback and uptake, treating these moves as
binary variables (Samei et al., 2014; Donnelly et al.,
2017; Kelly et al., 2018; Stone et al., 2019; Jensen
et al., 2020). Our labeled dataset, unsupervised
approach (involving a state-of-the art pre-trained
model), and careful analysis across domains are
novel contributions that will enable a fine-grained
and domain-adaptable measure of uptake that can
support researchers and teachers.

Our work aligns closely with research on the
computational study of conversations. For example,
measures have been developed to study construc-
tiveness (Niculae and Danescu-Niculescu-Mizil,

2016), politeness (Danescu-Niculescu-Mizil et al.,
2013) and persuasion (Tan et al., 2016) in conversa-
tions. Perhaps most similar to our work, Zhang and
Danescu-Niculescu-Mizil (2020) develop an unsu-
pervised method to identify therapists’ backward-
and forward-looking utterances, with which they
guide their conversations.

We also draw on work measuring discourse co-
herence via embedding cosines (Xu et al., 2018;
Ko et al., 2019), or via utterance classification (Xu
et al., 2019; Iter et al., 2020), the latter of which
is used also for building and evaluating dialog sys-
tems (Lowe et al., 2016; Wolf et al., 2019). Our
work extends these two families of methods to hu-
man conversation and highlights the different lin-
guistic phenomena they capture. Finally, our work
shows the key role of coherence in the socially
important task of studying uptake.

8 Conclusion

We propose a framework for measuring uptake, a
core conversational phenomenon with particularly
high relevance in teaching contexts. We release an
annotated dataset and develop and compare unsu-
pervised measures of uptake, demonstrating signif-
icant correlation with educational outcomes across
three datasets. This lays the groundwork (1) for
scaling up teachers’ professional development on
uptake thereby enabling improvements to educa-
tion, (2) for conducting analyses on uptake across
domains and languages where labeled data does
not exist and (3) for studying the effect of uptake
on a wider range of socially relevant outcomes.
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9 Ethical Considerations

Our objective in building a dataset and a frame-
work for measuring uptake is (1) to aid researchers
studying conversations and teaching and (2) to (ulti-
mately) support the professional development of ed-
ucators by providing them with a scalable measure
of a phenomenon that supports student learning.
Our second objective is especially important, since
existing forms of professional development aimed
at improving uptake are highly resource intensive
(involving classroom observations and manual eval-
uation). This costliness has meant that teachers
working in under-resourced school systems have
thus far had limited access to quality professional
development in this area.

The dataset we release is sampled from tran-
scripts collected by the National Center for Teacher
Effectiveness (NCTE) (Kane et al., 2015) (Har-
vard IRB #17768). These transcripts represent data
from 317 teachers across 4 school districts in New
England that serve largely low-income, historically
marginalized students. The data was collected as
part of a carefully designed study on teacher ef-
fectiveness, spanning three years between 2010
and 2013 and it was de-identified by the original
research team, meaning that in the transcripts, stu-
dent names are replaced with “Student” and teacher
names are replaced with “Teacher”. Both parents
and teachers gave consent for the de-identified
data to be retained and used in future research.
The collection process and representativeness of
the data are all described in great detail in (Kane
et al., 2015). Given that the dataset was collected a
decade ago, there may be limitations to its use and
ongoing relevance. That said, research in education
reform has long attested to the fact that teaching
practices have remained relatively constant over
the past century (Cuban, 1993; Cohen and Mehta,
2017) and that there are strong socio-cultural pres-
sures that maintain this (Cohen, 1988).

The data was annotated by 13 raters, whose de-
mographics are largely representative of teacher
demographics in the US13. All raters have do-
main expertise, in that they are former or cur-
rent math teachers and former or current raters
for the Mathematical Quality Instruction (Teach-
ing Project, 2011). The raters were trained for at
least an hour each on the coding instrument and
spent 8 hours on average on the annotation (over

13https://nces.ed.gov/fastfacts/display.
asp?id=28

the course of several weeks) and were compensated
$16.5 / hr.

In Section 6, we apply our data to to two educa-
tional datasets besides NCTE. We do not release
either of these datasets. The SimTeacher dataset
was collected by Cohen et al. (2020) (University of
Virginia IRB #2918), for research and program im-
provement purposes. The participants in the study
are mostly white (82%), female (90%), and middle
class (71%), mirroring the broader teaching profes-
sion. As for the tutoring dataset, the data belongs
to a private company; the students and tutors have
given consent for their data to be used for research,
with the goal of improving the company’s services.
The company works with a large number of tutors
and students; we use data that represents 108 tutors
and 1821 students. 70% of tutors in the data are
male, complementing the other datasets where the
majority of teachers are female. The company does
not share other demographic information about tu-
tors and students.

Similarly to other data-driven approaches, it is
important to think carefully about the source of
the training data when considering downstream use
cases of our measure. Our unsupervised approach
helps address this issue as it allows for training the
model on data that is representative of the popula-
tion that it is meant to serve.

References
M. M. Bakhtin. 1981. The dialogic imagination: four

essays. University of Texas Press.

Steven Bird. 2006. NLTK: The Natural Language
Toolkit. In Proceedings of the COLING/ACL 2006
Interactive Presentation Sessions, pages 69–72, Syd-
ney, Australia. Association for Computational Lin-
guistics.

Jere E Brophy. 1984. Teacher behavior and student
achievement. 73. Institute for Research on Teaching,
Michigan State University.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder for english.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 169–174.

Guanliang Chen, Rafael Ferreira, David Lang, and Dra-
gan Gasevic. 2019. Predictors of student satisfac-
tion: A large-scale study of human-human online
tutorial dialogues. International Educational Data
Mining Society.

https://nces.ed.gov/fastfacts/display.asp?id=28
https://nces.ed.gov/fastfacts/display.asp?id=28
https://doi.org/10.3115/1225403.1225421
https://doi.org/10.3115/1225403.1225421


1648

Herbert H Clark and Edward F Schaefer. 1989. Con-
tributing to discourse. Cognitive science, 13(2):259–
294.

David K Cohen. 1988. Teaching practice: Plus ça
change. National Center for Research on Teacher
Education East Lansing, MI.

David K Cohen and Jal D Mehta. 2017. Why reform
sometimes succeeds: Understanding the conditions
that produce reforms that last. American Educa-
tional Research Journal, 54(4):644–690.

Julie Cohen and Dan Goldhaber. 2016. Building
a more complete understanding of teacher evalua-
tion using classroom observations. Educational Re-
searcher, 45(6):378–387.

Julie Cohen, Vivian Wong, Anandita Krishnamachari,
and Rebekah Berlin. 2020. Teacher coaching in
a simulated environment. Educational Evaluation
and Policy Analysis, 42(2):208–231.

James Collins. 1982. Discourse style, classroom inter-
action and differential treatment. Journal of Read-
ing Behavior, 14(4):429–437.

Larry Cuban. 1993. How teachers taught: Constancy
and change in American classrooms, 1890-1990.
Teachers College Press.

Cristian Danescu-Niculescu-Mizil and Lillian Lee.
2011. Chameleons in imagined conversations: A
new approach to understanding coordination of lin-
guistic style in dialogs. ACL HLT 2011, page 76.

Cristian Danescu-Niculescu-Mizil, Moritz Sudhof,
Dan Jurafsky, Jure Leskovec, and Christopher Potts.
2013. A computational approach to politeness with
application to social factors. In 51st Annual Meet-
ing of the Association for Computational Linguistics,
pages 250–259. ACL.

Rosario Delgado and Xavier-Andoni Tibau. 2019.
Why cohen’s kappa should be avoided as per-
formance measure in classification. PloS one,
14(9):e0222916.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Patrick J Donnelly, Nathaniel Blanchard, Andrew M
Olney, Sean Kelly, Martin Nystrand, and Sidney K
D’Mello. 2017. Words matter: automatic detection
of teacher questions in live classroom discourse us-
ing linguistics, acoustics, and context. In Proceed-
ings of the Seventh International Learning Analytics
& Knowledge Conference, pages 218–227.

Ellice A Forman, Dawn E McCormick, and Richard
Donato. 1997. Learning what counts as a math-
ematical explanation. Linguistics and Education,
9(4):313–339.

John J Godfrey and Edward Holliman. 1997.
Switchboard-1 release 2. Linguistic Data Con-
sortium, Philadelphia, 926:927.

Barbara J Grosz et al. 1977. The representation and
use of focus in a system for understanding dialogs.
In IJCAI, volume 67, page 76. Citeseer.

Michael Alexander Kirkwood Halliday and Ruqaiya
Hasan. 1976. Cohesion in English. London: Long-
mans.

Jerry R Hobbs. 1979. Coherence and coreference.
Cognitive Science, 3(1):67–90.

Dan Iter, Kelvin Guu, Larry Lansing, and Dan Jurafsky.
2020. Pretraining with contrastive sentence objec-
tives improves discourse performance of language
models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4859–4870.

Emily Jensen, Meghan Dale, Patrick J Donnelly, Cath-
lyn Stone, Sean Kelly, Amanda Godley, and Sid-
ney K D’Mello. 2020. Toward automated feedback
on teacher discourse to enhance teacher learning. In
Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, pages 1–13.

Daniel Jurafsky, Elizabeth Shriberg, and Debra Bi-
asca. 1997. Switchboard SWBD-DAMSL Labeling
Project Coder’s Manual, Draft 13. Technical Report
97-02, University of Colorado Institute of Cognitive
Science.

T Kane, H Hill, and D Staiger. 2015. National center
for teacher effectiveness main study. icpsr36095-v2.

Sean Kelly, Robert Bringe, Esteban Aucejo, and
Jane Cooley Fruehwirth. 2020. Using global obser-
vation protocols to inform research on teaching ef-
fectiveness and school improvement: Strengths and
emerging limitations. Education Policy Analysis
Archives, 28:62.

Sean Kelly, Andrew M Olney, Patrick Donnelly, Martin
Nystrand, and Sidney K D’Mello. 2018. Automati-
cally measuring question authenticity in real-world
classrooms. Educational Researcher, 47(7):451–
464.

Wei-Jen Ko, Greg Durrett, and Junyi Jessy Li. 2019.
Linguistically-informed specificity and semantic
plausibility for dialogue generation. In Proceedings
of NAACL 2019, pages 3456–3466.

Matthew A Kraft. 2020. Interpreting effect sizes of
education interventions. Educational Researcher,
49(4):241–253.



1649

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Ryan Lowe, Iulian Vlad Serban, Michael Noseworthy,
Laurent Charlin, and Joelle Pineau. 2016. On the
evaluation of dialogue systems with next utterance
classification. In Proceedings of the 17th Annual
Meeting of the Special Interest Group on Discourse
and Dialogue, pages 264–269.

George A. Miller and J. G. Beebe-Center. 1956. Some
psychological methods for evaluating the quality of
translations. Mechanical Translation, 3:73–80.

Vlad Niculae and Cristian Danescu-Niculescu-Mizil.
2016. Conversational markers of constructive dis-
cussions. In Proceedings of NAACL-HLT, pages
568–578.

Suphakit Niwattanakul, Jatsada Singthongchai,
Ekkachai Naenudorn, and Supachanun Wanapu.
2013. Using of Jaccard Coefficient for Keywords
Similarity. In Proceedings of the International Mul-
tiConference of Engineers and Computer Scientists,
volume 1.

Sebastian Nowozin, Botond Cseke, and Ryota
Tomioka. 2016. f-gan: training generative neural
samplers using variational divergence minimization.
In Proceedings of the 30th International Conference
on Neural Information Processing Systems, pages
271–279.

Martin Nystrand, Adam Gamoran, Robert Kachur, and
Catherine Prendergast. 1997. Opening dialogue.
New York: Teachers College Press.

Martin Nystrand, Lawrence L Wu, Adam Gamoran,
Susie Zeiser, and Daniel A Long. 2003. Questions in
time: Investigating the structure and dynamics of un-
folding classroom discourse. Discourse processes,
35(2):135–198.

Mary C O’Connor and Sarah Michaels. 1993. Align-
ing academic task and participation status through
revoicing: Analysis of a classroom discourse
strategy. Anthropology & Education Quarterly,
24(4):318–335.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Robert Parker, David Graff, Junbo Kong, Ke Chen,
and Kazuaki Maeda. 2011. English gigaword fifth
edition ldc2011t07, 2011. URL https://catalog. ldc.
upenn. edu/LDC2011T07.[Online].

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Robert C Pianta, Karen M La Paro, and Bridget K
Hamre. 2008. Classroom Assessment Scoring Sys-
tem: Manual K-3. Paul H Brookes Publishing.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3973–3983.

Borhan Samei, Andrew M Olney, Sean Kelly, Martin
Nystrand, Sidney D’Mello, Nathan Blanchard, Xi-
aoyi Sun, Marcy Glaus, and Art Graesser. 2014. Do-
main independent assessment of dialogic properties
of classroom discourse. Grantee Submission.

Cathlyn Stone, Patrick J Donnelly, Meghan Dale, Sarah
Capello, Sean Kelly, Amanda Godley, and Sidney K
D’Mello. 2019. Utterance-level modeling of indica-
tors of engaging classroom discourse. International
Educational Data Mining Society.

Chenhao Tan, Vlad Niculae, Cristian Danescu-
Niculescu-Mizil, and Lillian Lee. 2016. Winning
arguments: Interaction dynamics and persuasion
strategies in good-faith online discussions. In Pro-
ceedings of the 25th international conference on
world wide web, pages 613–624.

Deborah Tannen. 1987. Repetition in conversation: To-
ward a poetics of talk. Language, pages 574–605.

Learning Mathematics for Teaching Project. 2011.
Measuring the mathematical quality of instruction.
Journal of Mathematics Teacher Education, 14:25–
47.

Gordon Wells. 1999. Dialogic inquiry: Towards
a socio-cultural practice and theory of education.
Cambridge University Press.

Thomas Wolf, Victor Sanh, Julien Chaumond, and
Clement Delangue. 2019. Transfertransfo: A trans-
fer learning approach for neural network based con-
versational agents. CoRR, abs/1901.08149.

Peng Xu, Hamidreza Saghir, Jin Sung Kang, Teng
Long, Avishek Joey Bose, Yanshuai Cao, and Jackie
Chi Kit Cheung. 2019. A cross-domain transfer-
able neural coherence model. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 678–687.
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A Annotation Framework

Figure 3 shows a screenshot of our annotation in-
terface. In the annotation framework, we used the
term “active listening” to refer to uptake, since we
found that active listening is more interpretable
to raters, while uptake is too technical. However,
the difference in terminology should not affect the
annotations, since the two constructs are synony-
mous and we designed the annotation instructions
entirely based on the linguistics and education lit-
erature on uptake. For example, the title of the in-
struction manual is “Annotating Teachers’ Uptake
of Student Ideas”, and we define different levels of
uptake with phrasings such as “the teacher provides
evidence for following what the student is saying
or trying to say”, linking our definition to Clark
and Schaefer (1989)’s theory on grounding. We
include annotation instructions with the dataset.

Figure 3: Screenshot of the annotation interface.
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Model ρ

PJSD .540

RoBERTa-base .561
BERT-base .618

Table 8: Supervised model results.

B Supervised Model Results

We conducted experiments to compare the perfor-
mance of our unsupervised models to that of su-
pervised models. We randomly split the annotated
data into training (80%) and test (20%) sets, using
the z-scored rater judgments as labels (Section 3).
We trained BERT-base (Devlin et al., 2019) and
RoBERTa-base (Liu et al., 2019) on this data for
10 epochs with early stopping, and a batch size
of 8 × 2 gradient accumulation steps — all other
parameters are defaults set by Huggingface14.

The results are shown in Table 8. The supervised
models outperform our unsupervised models by
less than .08, indicating the competitiveness of our
unsupervised methods. Interestingly, we also find
that BERT outperforms RoBERTa, a gap that per-
sisted despite tuning the number of training epochs.
Since our paper’s focus is unsupervised methods
that enable scalability and domain-generalizability,
we leave more extensive parameter search and su-
pervised model comparison for future work.

C Mapping the SWBD-DAMSL Tagset
to Uptake Phenomena

We map tags from SWBD-DAMSL (Jurafsky et al.,
1997) to five salient uptake phenomena: acknowl-
edgment, answer, reformulation, collaborative com-
pletion and repetition. Table 9 summarizes our
mapping. Since acknowledgment is highly fre-
quent and it can co-occur with several other dialog
acts, we consider those examples to be acknowl-
edgments that are labeled exclusively for this phe-
nomenon (using either the tag b, bh or bk).

14https://huggingface.co/

https://huggingface.co/
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Uptake phenomenon DAMSL Tags % of Examples

acknowledgment b, bh, bk 81%

answer tags containing “n” 13%

reformulation bf 2%

collaborative completion ˆ2 2%

repetition ˆm 2%

Table 9: Mapping between uptake phenomena and tags from SWBD-DAMSL (Jurafsky et al., 1997).


