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Abstract

Recent neural text generation models have
shown significant improvement in generating
descriptive text from structured data such as
table formats. One of the remaining impor-
tant challenges is generating more analytical
descriptions that can be inferred from facts in
a data source. The use of a template-based gen-
erator and a pointer-generator is among the po-
tential alternatives for table-to-text generators.
In this paper, we propose a framework consist-
ing of a pre-trained model and a copy mecha-
nism. The pre-trained models are fine-tuned to
produce fluent text that is enriched with numer-
ical reasoning. However, it still lacks fidelity
to the table contents. The copy mechanism is
incorporated in the fine-tuning step by using
general placeholders to avoid producing hallu-
cinated phrases that are not supported by a ta-
ble while preserving high fluency. In summary,
our contributions are (1) a new dataset for nu-
merical table-to-text generation using pairs of
a table and a paragraph of a table description
with richer inference from scientific papers,
and (2) a table-to-text generation framework
enriched with numerical reasoning.

1 Introduction

Recent data-to-text generation studies have shown
significant improvement in generating faithful text
aligned with data sources. A copy mechanism has
been widely explored to improve faithfulness in
various ways. Wiseman et al. (2017) used joint
probabilities to let models choose between copy-
ing records from data sources or generating from
a vocabulary. Puduppully et al. (2019) improved
a similar approach by modeling entity represen-
tations as a unit of copying. This approach has
proven to be effective in generating descriptive text
that explicitly mentions facts from sources.

However, as introduced by Chen et al. (2020a),
humans have the ability to produce more analyti-

Model Precision Recall F1

Our full model 89.6 82.2 85.7

Lee et al. (2018) 86.2 83.7 84.9

Table 2: The overall mention detection results on the test set 
of OntoNotes.

Target Header

Our full model

Description

Table 2 shows the mention detection results on the test set. 
Similar to coreference linking results, our model achieves 
higher precision and F1 score, which indicates that our 
model can significantly reduce false positive mentions while 
it can still find a reasonable number of mentions.

Figure 1: Example of table and description in numeric
NLG dataset.

cal text with richer inference, including numerical
reasoning. Making inferences beyond texts is still
an open question due to the limitation of language
models in handling numeric operations. In this
study, we further encourage research by elaborat-
ing numerical tables to initialize the ability to inject
reasoning while maintaining high fluency.

Our contributions are summarized as follows.

• We introduce a new dataset for table-to-
text generation focusing on numerical rea-
soning. The dataset consists of textual de-
scriptions of numerical tables from scientific
papers. Our dataset is publicly available on
https://github.com/titech-nlp/numeric-nlg.

• We adopt template-guided text generation
(Kale and Rastogi, 2020a) for a table-to-text
generation task and propose injecting pre-
executed numerical operations in the template
to guide numerical-reasoning-based text gen-
eration. We compare different types of tem-
plates for table representations in pre-trained
models.

https://github.com/titech-nlp/numeric-nlg
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• We propose a copy mechanism for pre-trained
models, that uses general placeholders cover-
ing table contents and results of pre-executed
numerical operations to avoid fact hallucina-
tion.

• We conduct experiments with current state-of-
the-art neural generation models and a sim-
ple template-based system to demonstrate the
challenges and opportunities for future re-
search on text generation with numerical rea-
soning.

2 Related Work

The power of tables in presenting data efficiently
further encourages research done by exploring the
tables as data sources in natural language tasks,
such as table-to-text generation (Liang et al., 2009;
Wiseman et al., 2017; Lebret et al., 2016; Parikh
et al., 2020), table question answering (Pasupat and
Liang, 2015; Wang et al., 2018), and table-based
fact verification (Chen et al., 2020b; Gupta et al.,
2020). Recent research on the table-to-text gen-
eration task is starting to generate text with more
reasoning. Murakami et al. (2017) explored stock
prices to generate market comments by adding gen-
eralization tags of possible arithmetic operations
to cover mathematical reasoning. Nie et al. (2018)
proposed operation-guided attentions by exploring
the results of pre-executed numerical operations.
The dataset closest to ours is LOGICNLG, by Chen
et al. (2020a), who first introduced logical text gen-
eration using open-domain tables with unknown
schemas. Different from our target text for gen-
eration, which consists of several sentences in a
paragraph, they proposed a task of generating only
one sentence from selected table contents.

3 Numerical Table-to-Text Dataset

We created numericNLG, a new table-to-text
dataset focusing on a text generation task with nu-
merical reasoning. We collected table descriptions
from scientific papers, that are naturally produced
by experts with richer inference.

3.1 Dataset Creation

Data Acquisition We constructed a table-to-text
dataset based on numerical tables of experimental
results, extracted from PDF files of scientific pa-
pers on the ACL Anthology website,1 introduced

1https://www.aclweb.org/anthology/

by Suadaa et al. (2021). Then, we collected can-
didates for corresponding descriptions from the
source files using PDFMiner.2 We used table num-
bers in their captions as keywords for the collection.
An example of a table and its description is shown
in Figure 1.

Data Cleansing and Annotation Extracted ta-
ble descriptions can be noisy since they may con-
tain only table numbers without any sentences de-
scribing table facts. We hired experts in the com-
puter science field to clean and annotate the ex-
tracted descriptions in the following steps:

• Examine tables and their corresponding de-
scriptions and then recommend only the de-
scriptions that have at least one sentence rep-
resenting numerical facts in the table.

• Categorize each sentence of the recommended
description into three fact-checking classes:
data description, supporting description, and
not-related-to-table description. As a final
dataset, we used only sentences classified as
belonging to the data description category to
reduce fact hallucination.

• Identify a content plan of table description by
selecting part of table headers which directly
stated or logically inferred in the description,
called target header. For example, refer to the
table description shown in Figure 1, “Our full
model” is selected as the target header.

We used the same split of training, validation,
and test sets as the source table dataset (Suadaa
et al., 2021).

3.2 Dataset Comparison

Table 1 provides a comparison of numericNLG
with other related table-to-text datasets. The RO-
TOWIRE (Wiseman et al., 2017) dataset consists
of summaries of NBA basketball games contain-
ing several paragraphs, paired with their corre-
sponding box-score tables. Since ROTOWIRE
has only 39 record types, each table contains sim-
ilar record types with limited schemas. Although
most of the ROTOWIRE table contents are in nu-
merical values, the summaries contain only a few
numerical-reasoning sentences, such as a compari-
son of scores between two basketball teams. While
our dataset consists of closed domain articles as

2http://pypi.python.org/pypi/pdfminer/

https://www.aclweb.org/anthology/
http://pypi.python.org/pypi/pdfminer/
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Tables Examples Unit of Desc. Vocab. Token/Desc. Domain Inference Schema
ROTOWIRE 4.9K 4.9K Document 11.3K 337 Sport Few Known
LOGICNLG 7.3K 37.0K Sentence 122.0K 11 Open Rich Unlimited
numericNLG 1.3K 1.3K Paragraph 19.6K 94 Scientific Rich Unlimited

Table 1: Dataset comparison.

with ROTOWIRE, it is of shorter text (a paragraph)
and with unlimited table schemas.

Chen et al. (2020a) introduced the LOGICNLG
dataset to facilitate the study of table-to-text gen-
eration tasks with richer inference. The dataset
contains unlimited schemas of open-domain tables
crawled from Wikipedia, paired with five annotated
sentences covering different logical inferences. Al-
though most inferences are numerical reasoning,
the table contents are not fully numeric.

Similar in motivation to LOGICNLG in gener-
ating text that can be logically entailed by facts
in tables, numericNLG consists of collections of
paragraphs that are naturally produced by human
experts in scientific papers, paired with their corre-
sponding numerical tables. Our dataset has fewer
tables than LOGICNLG, focusing on numerical-
reasoning text in the scientific domain.

4 Table Representation

Due to ROTOWIRE’s limited schemas, Wiseman
et al. (2017) viewed a table input as a set of records
(entity, value, type), where the entity and the type
are the extracted row and column names, respec-
tively. Because of the unlimited table schemas in
our dataset, by capturing the original table struc-
ture in real-world tables, this paper uses the repre-
sentations which consist of captions, row headers,
column headers, cell values, and metrics, called a
data table. Using only descriptive facts from the
data table as input representations is sufficient to
generate descriptive texts that explicitly mention
facts in the table. However, since we intend to pro-
duce more analytical text with numerical reason-
ing, we propose adding inferred facts to the input
representation by computing a set of arithmetic op-
erations on the data table beforehand, defined as a
pre-executed operation table.

Data Table We view T as a set of cells with their
corresponding row header (rh), column header
(ch), numerical value (val), and metric-type (m),
defined as a data table (TD). A data table for the
example in Figure 1 consists of rh: ((model, our
full model), (model, lee et al. (2018))); ch: ();
val: ((89.6, 82.2, 85.7), (86.2, 83.7, 84.9); and m:

(precision, recall, f1). Since our tables are anno-
tated with a targeted header as a content plan for
table descriptions, we mark cells corresponding
to the targeted header with a target flag (tgt) to
highlight the marked cells in text generation. We
set tgt = 1 for targeted cells and tgt = 0 for
non-targeted cells. In this study, we preprocess the
header name by concatenating the row and column
headers (h = [rh; ch]) and keep information about
the header category by extracting overlapping to-
kens of row and column headers as th. As a re-
sult, we define TD = (hij , thij , valij ,mij , tgtij),
where 1 ≤ i ≤ nr, 1 ≤ j ≤ nc; nr and nc are the
numbers of rows and columns, respectively.

Pre-executed Operation Table We provide a ta-
ble of pre-executed cell operations (TOP ) by do-
ing mathematical operations only on targeted cells
to limit the calculation. In this study, we cover
maximum, minimum, and difference operations.
Examples of a preprocessed table, data table, and
pre-executed operation table are shown in Figure
2.

Linearized Table Supporting transfer learning
of pre-trained transformers to our table-to-text gen-
eration task, we prepare a linearized table PT as an
input representation so that it similar to the repre-
sentation that encoder has seen during pre-training.
T is converted to a flat string PT = w1, ..., w|PT |,
similar to that used in many prior work (Wang
et al., 2020; Chen et al., 2020a; Kale and Rastogi,
2020b), where wi denotes the i-th word in para-
graph PT with length |PT |. In this study, we adopt
the template-based input representation, introduced
by Kale and Rastogi (2020a), to handle representa-
tion bias between a structured data T and a natural
language utterance PT , where PT is generated us-
ing a manually defined template. We propose not
only covering data table TD in the template but also
injecting the pre-executed numerical operations of
table T through TOP to guide numerical-reasoning-
based text generation. We consider four different
methods3 for converting T into sequences, the last
two being our contributions.

3An example is shown in Table 6 in the appendix.
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header name val metric 
(m)

tar
get

h th

our full model model 89.6 precision 1

our full model model 82.2 recall 1

our full model model 85.7 f1 1

lee et al. (2018) model 86.2 precision 0

lee et al. (2018) model 83.7 recall 0

lee et al. (2018) model 84.9 f1 0

target header: our full model
metric-type: precision, recall, f1

op 
name

op arguments metric result

h th h val

max our full model, 
lee et al. (2018)

model precision our full 
model

89.6

max our full model, 
lee et al. (2018)

model f1 our full 
model

85.7

max our full model, 
lee et al. (2018)

model recall lee et al. 
(2018)

83.7

min our full model, 
lee et al. (2018)

model recall our full 
model

82.2

min our full model, 
lee et al. (2018)

model precision lee et al. 
(2018)

86.2

min our full model, 
lee et al. (2018)

model f1 lee et al. 
(2018)

84.9

diff our full model, 
lee et al. (2018)

model precision 3.4

diff our full model, 
lee et al. (2018)

model recall -1.5

diff our full model, 
lee et al. (2018)

model f1 0.8

Data Table (TD)

Pre-executed Operation Table (TOP)

preci
sion

recall f1

89.6 82.2 85.7

86.2 83.7 84.9

table 2: the overall mention detection results on the 
test set of ontonotes.

model our full model

model lee et al.(2018)

Figure 2: Examples of preprocessed table, data table, and pre-executed operation table.

1. Naive Representation
T is simply flattened into a sequence ignoring
its table structure by concatenating captions,
headers, metrics, and targeted cell values:

caption: <table id> <caption>. row
name: <rh1> . . . <rhnr>. column
name: <ch1> . . . <chnc>. met-
ric:<m1>, ..., <mnr/nc>. value: <val1.1>
. . . <valnr.nc> .

This naive representation omits the rela-
tion between rows and columns. Note that
<table id> is extracted from the caption
to support table mentioning in generating ta-
ble descriptions.

2. Data-based Template (TD temp)
T is transformed into a natural language sen-
tence by scanning each row of TD with tgt =
1 to fill a manually defined template:

<table id> shows <caption>.
<m1.1> of <h1.1> is <val1.1> . . .
<mnr.nc> of <hnr.nc> is <valnr.nc>.

This representation covers the semantics of
data in the original table.

3. Reasoning-based Template (TOP temp)
Mathematical operation arguments and results
from TOP are injected in this representation
to cover the numerical reasoning of data in the

original table. We define hop and valop as a
header and a value of an operation result re-
spectively, where op ={max, min, diff}. Spe-
cific to the difference operation, hdiff1 and
hdiff2 refer to the first and second header ar-
guments, respectively. Then, T is represented
by concatenating the templatized representa-
tion for each row of TOP :

<table id> shows <caption>.
<hmax> has the largest <mmax>
(<valmax>) of <thmax>. <hmin>
has the smallest <mmin> (<valmax>)
of <thmin>. <mdiff> of <hdiff1> is
larger/smaller than <hdiff2>.

4. Data and Reasoning-based Template (TD +
TOP temp)
T is converted by combining templatized sen-
tences of TD and TOP . This representation
covers both data and their numerical reason-
ing.

5 Generation Models

The task is to generate text by translating table
representation PT into table description Y =
y1, y2, ..., yn. We apply a series of generation mod-
els to solve the proposed task. While our focus is
primarily on pre-trained models since they have
been most widely used for limited data settings,
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<table_id> shows that <header_max> achieves 
higher <metric_max> and <metric_max>-
score.

Table 2 shows that our full model achieves 
higher precision and f1-score.

TOP of Table 2

op … m h result val result

max preci
sion

our full 
model

89.6

max f1 our full 
model

85.7

…

diff f1 0.8

TD of Table 2

h th val m target

our full 
model

mo
del

89.6 precis
ion

1

our full 
model

mo
del

82.2 recall 1

…

lee et 
al 2018

mo
del

84.9 f1 0

table alignment

Fine-tuning phase

As shown in Table 2, our full model achieves 
higher precision and f1.

As shown in <table_id>, <header_max> achieves 
higher <metric_max> and <metric_max>.

placeholder memory                           actions                                sources
Step 0: None                                   <table_id> → Table 2                            caption
Step 1: None                                   <header_max> → our full model      1st max in TOP
Step 2: <metric_max>: precision   <metric_max> → precision           found in memory

<value_max>: 89.6            
Step 3: <value_max>: 89.6             <metric_max> → f1                         2nd max in TOP

select from placeholder memory or table sources

Y :

𝒀𝒕𝒆𝒎𝒑 ∶

𝒀#𝒕𝒆𝒎𝒑 :

𝒀	# :

Inference phase

Figure 3: Placeholder alignment in copy-based pre-trained model.

like ours, we also include a template-based genera-
tor and a pointer-generator network as baselines.

5.1 Non-pre-trained Models

Template-based Generator We design a
domain-specific template-based generator cov-
ering two types of sentences in producing table
descriptions: table referring sentences and data
description sentences. Since our task focuses
on numerical-reasoning descriptions, we define
templatized sentences using maximum records in
table TOP :

<table id> shows <caption>. we can see
that <hmax> outperforms other <thmax> with
<valmax> of <mmax>.

Pointer-Generator Pointer-generator (See et al.,
2017) is a sequence-to-sequence model with atten-
tion and a copy mechanism. This model copes with
the out-of-vocabulary problem in data-to-text gen-
eration by jointly copying from source texts and
generating from a vocabulary.

5.2 Pre-trained Models

Fine-tuned GPT2 GPT2 (Radford et al., 2019)
is a pre-trained language model with a decoder-only
transformer architecture. We fine-tuned the GPT2
model by using table representation PT as a prefix
of our input. Specifically, we fed the concatenation
of table representation PT and table description Y
to the model and generated Y . In the inference
phase, we used only PT as the input to generate Ŷ
starting after the last token of PT .

Fine-tuned T5 T5 (Raffel et al., 2020) is a pre-
trained transformer model with an encoder-decoder
architecture, that solves natural language tasks by
converting into a text-to-text format. We fine-tuned
the T5 model in our dataset by adding a “summa-
rize” prefix to table representation PT producing
output Ŷ .

Copy Mechanism Pre-trained language models
have proven their effectiveness in handling the open
vocabulary problem through subword tokenization.
Supported by attention layers of the transformer
in their architecture, the models learn to attend
to source inputs while generating target texts in
subword units. However, pre-trained generators
often produce texts that are not aligned to table
sources. In this study, we propose strengthening
their copying ability by incorporating a copy mech-
anism into the pre-trained models. Although a copy
mechanism based on pointer-generator (See et al.,
2017) was used for pre-trained models (Chen et al.,
2020c) and is well-known in the community, it
cannot maintain the global logical structure of sen-
tences with richer inference. We instead employed
a simpler copy mechanism based on placeholders
(Murakami et al., 2017) with more specific tags
than in Chen et al. (2020a). We further propose a
ranking-based placeholder alignment algorithm, as
illustrated in Figure 3.

First, we align entities and numbers in Y with
the data tables TD and pre-executed arithmetic op-
eration results TOP by using string matching. The
alignment starts from the first row to the last row
of TOP . If no matched token is found, it continues
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Model BLEU ROUGE-L METEOR BERTSCORE PARENT
Template-based 2.82 26.97 15.82 86.88 17.15
Pointer-generator (naive) 2.80 15.26 7.82 76.38 1.40
Fine-tuned GPT2 (naive) 3.06 23.7 18.84 85.12 6.56
Fine-tuned GPT2 (TD temp) 3.01 22.97 *17.10 *84.68 6.53
Fine-tuned GPT2 (TOP temp) 4.63 *25.39 18.85 *85.66 7.72
Fine-tuned GPT2 (TD + TOP temp) 5.05 *25.13 19.14 *85.40 8.05
Fine-tuned GPT2 (naive) + Copy 1.29 *11.66 *6.94 *78.73 *2.45
Fine-tuned GPT2 (TD temp) + Copy 1.36 *11.23 *6.43 *77.76 *2.10
Fine-tuned GPT2 (TOP temp) + Copy 1.18 *9.40 *4.42 *73.83 *0.91
Fine-tuned GPT2 (TD + TOP temp) + Copy 1.22 *9.62 *5.47 *70.87 *1.55
Fine-tuned T5 (naive) 4.25 29.71 18.94 87.64 13.09
Fine-tuned T5 (TD temp) 5.02 30.25 *20.11 87.68 15.09
Fine-tuned T5 (TOP temp) 4.99 28.63 18.85 *87.17 12.25
Fine-tuned T5 (TD + TOP temp) 4.83 29.13 18.46 87.34 12.78
Fine-tuned T5 (naive) + Copy 5.14 *27.40 18.49 *86.37 *12.47
Fine-tuned T5 (TD temp) + Copy 4.96 *27.08 18.23 *86.12 *11.65
Fine-tuned T5 (TOP temp) + Copy 5.24 *28.02 18.68 *86.52 *11.96
Fine-tuned T5 (TD + TOP temp) + Copy 5.45 *28.15 19.16 *86.54 *12.95

Table 2: Experimental results of different models with various types of table representations and proposed copy
mechanism. Scores with asterisk * symbol were significantly different from those of naive models under Wilcoxon
test (p < 0.05).

to the rows of TD. We set a higher rank to TOP

than TD in the alignment since we focus on logi-
cal text generation. Then, we replace the matched
tokens with corresponding placeholders4 in a tem-
platized description Ytemp. As depicted in Figure
3, since “our full model” in sentence Y is matched
with the header result of the maximum operation,
we replace it with <header max> placeholder.
During the fine-tuning phase, instead of directly
generating Y , the models learn to produce a tem-
platized description Ytemp including placeholders
as well as words.

In the inference phase, we design a ranking al-
gorithm with a placeholder memory to select the
best-replaced tokens for placeholders of a predicted
templatized description Ŷtemp in producing a gener-
ated description Ŷ . We define a set of values in the
same row of source tables as a content set and pri-
oritize replacing placeholders in one sentence with
the same content set, ensuring sentence coherence.
A content set of TD is a tuple of header, metric, and
value. For TOP , a content set consists of header,
metric, and value of the operation results. Specific
to the difference operation, we add the header of
the first and second arguments to the content set
since the header arguments are important to capture
entity comparison in a sentence.

We utilize a placeholder memory to temporarily
save prioritized placeholder candidates from the
same content set that is previously chosen. For

4Details of placeholders and their definition are in Tables
7 and 8 in the appendix.

example, as shown in Figure 3, after replacing the
header max placeholder with the header result
from the first row of maximum records of TOP

in Step 1, the related placeholders from the same
content set (metric max and value max) are
added to the placeholder memory as higher-ranked
candidates in the searching space. The placeholder
memory is reset to empty in the following sentence
of Ŷtemp and the alignment starts again from the
next content set of table sources.

6 Experiments

We conducted experiments on the proposed dataset
to evaluate the performance of the text generation
models and verify the effectiveness of the approach
of using different table representations.

6.1 Automatic Evaluation Metrics

We used BLEU (Papineni et al., 2002), ROUGE-L
(Lin, 2004), and METEOR (Banerjee and Lavie,
2005) to evaluate the informativeness of generated
texts. We computed the BERTSCORE (Zhang et al.,
2020) to assess the similarity between the gener-
ated texts and the ground-truth table descriptions
by using contextualized token embeddings of pre-
trained BERT (Devlin et al., 2019), which have
been shown to be effective for paraphrase detection.
Considering both references and table contents, we
also used the PARENT metric, proposed by Dhin-
gra et al. (2019). In our experiments, we modified
the PARENT calculation by adding noun phrases
of table captions as table contents and used only
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targeted table contents for table sources.

6.2 Implementation Details

We trained a pointer-generator model using the
Adagrad optimizer with a batch size of 8 and a
learning rate of 0.15. For fine-tuning the GPT2
model, the Adam optimizer set weight decay to
3 × 10−5. Following Raffel et al. (2020), the T5
model was fine-tuned with a constant learning rate
of 0.001. We trained all models for a maximum of
ten epochs with early stopping based on the loss
score on the validation set (patience of 3). At the
time of decoding, the generated text was produced
through a beam search of size 5.

7 Results

7.1 Automatic Evaluation

Table 2 shows our experimental results. The fine-
tuned T5 models performed better than the oth-
ers in terms of BLEU, ROUGE-L, METEOR, and
BERTSCORE. The slightly lower PARENT of the
best fine-tuned T5 model than the template-based
generator implies that the fine-tuned T5 model was
also comparable in terms of generating related ta-
ble descriptions. The pointer-generator model had
the lowest score since our dataset consists of lim-
ited table collections with a broad vocabulary and
challenging target texts.

Effect of table representation Comparing the
performance between table representation types in
the pre-trained models, we can see a different ten-
dency between GPT2 and T5. The more similar the
table representation used as an input, the higher the
score of GPT2. Since GPT2 had only a decoder, the
inputs including reasoning-based templates (TOP

and TD + TOP ), which are more similar to our tar-
get with numerical reasoning, performed the best
for several metrics with more than 1 point improve-
ment. In T5 with an encoder-decoder architecture,
on the contrary, there was only a slight margin
between different table representations. This in-
dicates that the encoder part of T5 can capture
table contexts from various input templates. For
variants without a copy mechanism, T5 with only
data representation (TD) outperformed the other
representation types with longer sentences for all
metrics. Because of the gap between the encoder
and decoder, T5 still had difficulty aligning the
information of longer inputs and outputs.

Effect of copy mechanism The worst scores of
the fine-tuned GPT2+copy models indicate that
our proposed copy mechanism failed to learn
the templatized target patterns in the fine-tuning
step. The decoder-only GPT2 could not handle
the sparse distributions of target texts with place-
holders. Conversely, the copy-based fine-tuned T5
models achieved a better BLEU score due to their
encoder and decoder ability in handling output texts
with placeholders.

7.2 Qualitative Analysis
Table 3 shows table descriptions generated by the
template-based, pointer-generator, and fine-tuned
pre-trained models (GPT2 and T5), using data and
reasoning-based templates5 for our table example
in Figure 2. We marked sentences related to table
captions in green, correct facts based on table con-
tents in blue, and incorrect facts in red. In this study,
since we had a limited training set with a broader
vocabulary, the pointer-generator model tended to
result in repetitive words and failed to generate
well-described descriptions. The pre-trained mod-
els, GPT2 and T5, generated more natural descrip-
tions. While several pieces of text generated by
GPT2 included numerical facts, they used numbers
that were not extracted from table contents. The
T5 models produced descriptions that were more
related to table contents than GPT2.

Considering our lengthy output examples in Ta-
ble 3, unlike the fine-tuned GPT2 model, which
generated longer sentences, the fine-tuned T5
model generated shorter sentences than the refer-
ences.6 The length gap between the references
and outputs of the fine-tuned T5 model affected
the F1-based metrics of ROUGE-L, METEOR,
BERTSCORE, and PARENT. Note that BLEU is
a precision-based metric that can handle shorter
outputs through a brevity penalty (Papineni et al.,
2002). Therefore, we assume that BLEU better rep-
resents the performance of the fine-tuned T5 model
than the other metrics.

7.3 Human Evaluation
We conducted a human evaluation7 to better as-
sess the quality of the generated text. We com-
pared our copy-based fine-tuned T5 model with

5Examples using other table representations are shown in
Table 9 in the appendix.

6Average token length of references: 80.57, GPT2: 87.39,
GPT2+copy: 73.58, T5: 39.81, T5+copy: 41.81.

7The interfaces are shown in Figures 4 and 5 in the ap-
pendix.



1458

Model Generated Text
Reference table 2 shows the mention detection results on the test set. similar to coreference linking

results, our model achieves higher precision and f1 score, which indicates that our model
can significantly reduce false positive mentions while it can still find a reasonable number
of mentions.

Template-based table 2 shows the overall mention detection results on the test set of ontonotes. we can
see that our full outperforms other model with 85.7 f1.

Pointer-generator the table 2 shows the results of the results of the results of the results of the the art of the
art of...

Fine-tuned GPT2
(TD + TOP temp)

the table shows the recall performance with our full model. the result of our full model
is 88.7, which is comparable with the 89.3 performance of our full model but still better
than the 89.9 and 89.2 performance in both the f1, prec and full models. we also find
that our full model does not perform very well when compared against a full one, with
89.4% and 89.4% recall and 89.2% recall respectively. we can also find that our full
model is slightly inferior in terms of recall.

Fine-tuned GPT2
(TD + TOP temp) + Copy

table 2 : ( the - d model : a ) the : aa . the: the, the: and, the: the: the,the and, theand:
the and, theand: theand: theand, theand: ...
(<table id>: table 2; <cat header>: model)

Fine-tuned T5
(TD + TOP temp)

table 2 presents the overall mention detection results on ontonotes. our full model
outperforms all the state-of-the-art systems in terms of recall and f1 score.

Fine-tuned T5
(TD + TOP temp) + Copy

table 2 shows the overall mention detection results on the test set of ontonotes. our
full model outperforms the previous state-of-the-art models by a large margin, which
confirms the effectiveness of our proposed approach.
(<table id>: table 2; <header max>: our full model)

Table 3: Example of generated table description.

Model Descriptive Facts Inferred Facts Relevance#Supp #Cont %Cont #Supp #Cont %Cont
Template-based 1.00 0.01 0.01 0.93 0.11 10.64 3.89
Pointer-generator 0.00 0.00 0.00 0.00 0.00 0.00 1.50
Fine-tuned GPT2 0.03 1.28 97.46 0.43 1.94 81.78 2.36
Fine-tuned T5 0.05 0.07 54.55 0.50 1.10 68.75 3.51
Fine-tuned T5 + Copy 0.04 0.04 50.00 0.78 0.57 42.62 3.78

Table 4: Average number of supporting and contradicting facts in generated table descriptions, percentage of
contradicting to total facts, and levels of relevance to table captions.

Model Gram Coher Conc
Template-based 7.78 11.11 −9.44
Pointer-generator −72.78 −77.22 −78.33
Fine-tuned GPT2 31.11 28.89 27.78
Fine-tuned T5 18.33 17.22 39.44
Fine-tuned T5 + Copy 15.56 19.44 20.56

Table 5: Grammaticality, coherence, and conciseness
levels of table description generators.

the template-based, pointer-generator, fine-tuned
GPT2, and fine-tuned T5 models. We did not com-
pare it against the copy-based fine-tuned GPT2
since GPT2 failed to incorporate our proposed copy
mechanism. We used the best table representation
with majority metrics for each model on the basis
of the experimental results in Table 2.

In the first study, we evaluated the correctness
of the generated text on the basis of facts in ta-
bles. We randomly selected 30 tables in the test set
and elicited responses from three graduate students
per table. Following Wiseman et al. (2017), the
raters were asked to count how many facts in the

descriptions were supported by numerical data in
the tables and how many were contradicted. Since
our task covers numerical-reasoning text, we distin-
guished descriptive numerical facts from inferred
numerical facts. We also measured the level of rel-
evance of the generated text to the table captions
by using a four-point Likert scale (highly relevant,
relevant, somewhat relevant, and irrelevant).

The results are shown in Table 4. The pointer-
generator failed to reflect facts due to the wide
variety of our table schemas. While the fine-tuned
GPT2 model generated sentences with a larger
number of descriptive and inferred facts than the
others on average, most of the facts were contra-
dictive. The fine-tuned T5 model generated fewer
sentences than GPT2, with the average number of
inferred facts being larger than that of descriptive
facts. Our model based on the fine-tuned T5 model
with a copy mechanism reduced the ratio of con-
tradictive facts for both descriptive and inferred
facts.

Following earlier work (Puduppully et al., 2019),
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we also evaluated text fluency in terms of gram-
maticality, coherence, and conciseness by using
best-worst scaling (BWS) (Louviere and Wood-
worth, 1991; Louviere et al., 2015). We divided the
outputs of the five models into ten pairs of descrip-
tions. We presented workers with two descriptions
and asked them to decide which one is best for each
fluency category.

The score of each model was calculated by using
the MaxDiff approach (Orme, 2009): the number
of times a description was chosen as the best minus
the number of times it was chosen as the worst.
Scores range from −100 (absolutely worst) to 100
(absolutely best). We elicited judgments with Ama-
zon Mechanical Turk for the 30 descriptions, rated
by 3 participants. The results are shown in Ta-
ble 5. Most of the pre-trained models achieved
better scores than the others. The fine-tuned GPT2
model achieved the highest score in terms of gram-
maticality and coherence. The fine-tuned T5 model
achieved the highest score in terms of conciseness.
Adding a copy mechanism to the T5 slightly de-
creased the grammaticality and conciseness but
improved the coherence.

8 Conclusion

We proposed numericNLG, a new dataset for table-
to-text generation using a table and its correspond-
ing description from scientific papers, focusing on
numerical-reasoning texts. Even though our pro-
posed dataset is not a large-scale table collection,
we provided pairs of a table and its rich inference
description, that are naturally written by experts
in scientific papers, supporting further research on
table-to-text generation with numerical reasoning.

We conducted experiments with fine-tuned pre-
trained models by using several types of table lin-
earization as input representations, comparing with
a template-based generator and pointer-generator.
The experiments showed that transfer-learning of
pre-trained language models leads to an improve-
ment in our settings, that resulted in more fluent
text while it still lacked fidelity to table contents.
We then proposed incorporating a copy mechanism
by using general placeholders to avoid the produc-
tion of hallucinated phrases, that are not supported
by tables while preserving high fluency. Even
though our proposed copy mechanism failed to
learn to generate better outputs in the decoder-only
pre-trained models, we showed that a copy-based
pre-trained model with an encoder-decoder archi-

tecture leads to a better BLEU score and improves
correctness.
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A Table Representation

An example of table representation for Figure 2 is
shown in Table 6.

Type Table Representation
Naive caption: table 2 the overall mention detection re-

sults on the test set of ontonotes. row name: model
our full, model lee et al. (2018). metric: prec., rec.,
f1. value: 89.6 82.2 85.7.

TD

temp
table 2 shows the overall mention detection results
on the test set of ontonotes . prec. of model our
full model is 89.6 . rec. of model our full model is
82.2 . f1 of model our full model is 85.7 .

TOP

temp
table 2 shows the overall mention detection results
on the test set of ontonotes . our full model has the
largest prec. (89.6) of model. lee et al. (2018) has
the largest rec. (83.7) of model . our full model has
the largest f1 (85.7) of model . prec. of model our
full model is larger than model lee et al. (2018) .
rec. of model our full model is smaller than model
lee et al. (2018) . f1 of model our full model is
larger than model lee et al. (2018) .

TD+
TOP

temp

table 2 shows the overall mention detection results
on the test set of ontonotes . prec. of model our
full model is 89.6 . rec. of model our full model is
82.2 . f1 of model our full model is 85.7 . model
our full model has the largest prec. (89.6) . model
lee et al. (2018) has the largest rec. (83.7) . model
our full model has the largest f1 (85.7) . prec. of
model our full model is larger than model lee et al.
(2018) . rec. of model our full model is smaller
than model lee et al. (2018) . f1 of model our full
model is larger than model lee et al. (2018) .

Table 6: Example of table representation.

B Placeholders of Copy-based
Pre-trained Models

Tables 7 and 8 describe placeholders of our pro-
posed copy-based pre-trained models.

Placeholder Description Example
of Figure 2

<header target> targeted header our full
model

<metric target> metric of tar-
geted header

precision

<value target> value of targeted
header

89.6

<header other> non-targeted
header

lee et al.
(2018)

<metric other> metric of non-
targeted header

precision

<value other> value of non-
targeted header

86.2

<cat header> header category model
<metric> metric lists precision,

recall, f1

Table 7: General placeholder descriptions for TD.

https://www.aclweb.org/anthology/2021.eacl-main.267
https://www.aclweb.org/anthology/2021.eacl-main.267
https://www.aclweb.org/anthology/C18-1165
https://www.aclweb.org/anthology/C18-1165
https://www.aclweb.org/anthology/C18-1165
https://doi.org/10.18653/v1/2020.acl-main.101
https://doi.org/10.18653/v1/2020.acl-main.101
https://doi.org/10.18653/v1/2020.acl-main.101
https://doi.org/10.18653/v1/D17-1239
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr


1462

Placeholder Description Example
of Figure 2

<header max> header of maxi-
mum records

our full
model

<cat header max> header category
of maximum
records

model

<metric max> metric of maxi-
mum records

precision

<value max> maximum value
of records

89.6

<header min> header of mini-
mum records

our full
model

<cat header min> header category
of minimum
records

model

<metric min> metric of mini-
mum records

recall

<value min> minimum value
of records

82.2

<header diff1> the first header
argument of dif-
ference records

our full
model

<header diff2> the second
header argument
of difference
records

lee et al.
(2018)

<cat header diff> header category
of difference
records

model

<metric diff> metric of differ-
ence records

precision

<value diff> difference value
of records

3.4

Table 8: General placeholder descriptions for TOP .

C System Output Examples

Table 9 shows table descriptions generated by the
fine-tuned GPT2 and fine-tuned T5 models with
and without a copy mechanism, using different
types of table representations for our table example
in Figure 2.

D Human Evaluation

Figures 4 and 5 show the user interface for eval-
uating correctness and relevance and for evaluat-
ing grammaticality, coherence, and conciseness,
respectively.
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Model Generated Text
Fine-tuned GPT2
(naive)

we compare our results using the model with that of the other model, which shows
the performance on both models. we can conclude that the models are more reliable
in predicting the usefulness of the model and more reliable than the other models. we
suggest that the more accurate the model, the higher the mention detection results on
both models. the model with the highest mentions detection yields a better model, and
also shows the best performance on both models.

Fine-tuned GPT2
(TD temp)

and finally we have seen that our model does not do the right thing by simply using the
word ”we.” as a noun we do not do the right thing by using the verb ”we.” as a noun our
word ”we” does not even have a verb, ”we do.” as a verb we do not even have a verb,
”we do.

Fine-tuned GPT2
(TOP temp)

the table shows the recall results for our full model. the f1 performance was better than
that in our full model, indicating that we did not have any other models in the dataset.
the rec. performance was comparable to that for the full model with a f1+ performance
of 82.7%.

Fine-tuned GPT2
(naive) + Copy

table 2 a new version of the first game of a new series , f1 a new version of a game of
an a new series , the new and another version of the original character , the one of the
character of the character of the person of the person of the character of a person , ...

Fine-tuned GPT2
(TD temp) + Copy

table 2 the best way to lee et al. (2018) the best for the . the first time, in the history, a.
the, it has. is that the , the , the 86.2 . the, the.

Fine-tuned GPT2
(TOP temp) + Copy

, model in our full and 3.4 . model . (,and, (and in) and inand(. (i. in)

Fine-tuned T5
(naive)

table 2 presents the overall mention detection results on the test set of ontonotes. we can
see that our full model outperforms all the baselines in terms of recall f1 score.

Fine-tuned T5
(TD temp)

table 2 shows the mention detection performance on the test set of ontonotes. our full
model outperforms all the baselines in terms of recall and f1 score.

Fine-tuned T5
(TOP temp)

table 2 shows the overall mention detection results on the test set of ontonotes. our full
model outperforms the state-of-the-art in both precision and recall.

Fine-tuned T5
(naive) + Copy

table 2 shows the overall model results on ontonotes. we can see that our full model
outperforms all baselines, which demonstrates the effectiveness of our approach.

Fine-tuned T5
(TD temp) + Copy

table 2 shows the overall mention detection results on the test set of ontonotes dataset.
our full model outperforms the state - of - the - art by a large margin , with an absolute
difference of 0.8% over the state of the art.

Fine-tuned T5
(TOP temp) + Copy

table 2 shows the overall mention detection results on the test set of ontonotes. our model
outperforms the state - of - the - art ( lee et al . , 2018 ) and is comparable to the state -
of - the - art ( lee et al . , 2018 ).

Table 9: Example of generated table description.
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Figure 4: Interface for evaluating correctness and relevance.
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Figure 5: Interface for evaluating grammaticality, coherence, and conciseness.


