
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 1435–1450

August 1–6, 2021. ©2021 Association for Computational Linguistics

1435

Reflective Decoding: Beyond Unidirectional Generation with
Off-the-Shelf Language Models

Peter West1,2 Ximing Lu1,2 Ari Holtzman1

Chandra Bhagavatula2 Jena Hwang2 Yejin Choi1,2

1Paul G. Allen School of Computer Science & Engineering, University of Washington
2Allen Institute for Artificial Intelligence

{pawest, ahai, yejin}@cs.washington.edu
{ximinglu, chandrab, jenah}@allenai.org

Abstract

Publicly available, large pretrained Language
Models (LMs) generate text with remarkable
quality, but only sequentially from left to right.
As a result, they are not immediately appli-
cable to generation tasks that break the unidi-
rectional assumption, such as paraphrasing or
text-infilling, necessitating task-specific super-
vision.

In this paper, we present REFLECTIVE DE-
CODING, a novel unsupervised algorithm that
allows for direct application of unidirectional
LMs to non-sequential tasks. Our 2-step ap-
proach requires no supervision or even paral-
lel corpora, only two off-the-shelf pretrained
LMs in opposite directions: forward and back-
ward. First, in the contextualization step, we
use LMs to generate ensembles of past and
future contexts which collectively capture the
input (e.g. the source sentence for paraphras-
ing). Second, in the reflection step, we condi-
tion on these “context ensembles”, generating
outputs that are compatible with them. Com-
prehensive empirical results1 demonstrate that
REFLECTIVE DECODING outperforms strong
unsupervised baselines on both paraphrasing
and abductive text infilling, significantly nar-
rowing the gap between unsupervised and su-
pervised methods. REFLECTIVE DECODING
surpasses multiple supervised baselines on var-
ious metrics including human evaluation.

1 Introduction

Language Models (LMs) like GPT-2 (Radford et al.,
2019), trained over vast unstructured data, can
leverage enhanced generation methods (Holtzman
et al., 2020; Martins et al., 2020; Welleck et al.,
2019) to give fluent and coherent continuations
to given input text—e.g. news articles or stories.

1Further results and resource are available at
https://homes.cs.washington.edu/˜pawest/
ReflectiveDecoding.html

!!"#: How are
circulatory system

tissues formed?

"!: How do circulatory
systems form?

input

paraphrase

generated contextsParaphrasing
1 Sample contexts #$~%& (#|)%&')

2 Sample "! from +,

+,()%&')

c1: This is a medical question
best answered by a doctor…

…
c2: As with all tissue in the body,
this begins with cell division …

c3: is one of many key questions
about the circulatory system …

/: I picked her up and took her to
San Francisco General hospital.

input

hypothesis

1 Sample contexts #$~%& (#|2*, 2+)

2 Sample "! from +,

…
c1: The day after her
discharge she told
me she was a lot
better …1(: Amy had heart

palpitations after a
lot of caffiene

1): By the time she
arrived her heart
felt much better

+,(2*, 2+)

-NLG generated contexts

Figure 1: Illustration of REFLECTIVE DECODING ap-
plied to paraphrasing and abductive infilling (αNLG
Bhagavatula et al., 2020). Only the right-context is
shown, although both right- and left-contexts are used
in practice. First the contextualization step (1) captures
aspects of an input by generating many representative
contexts for it. Then in the reflection step (2) we sam-
ple generations that can replace the input and fit these
representative contexts

←−
RD.

GPT-3 (Brown et al., 2020) takes this a step fur-
ther: given a small number of examples and a
well-constructed prompt, it shows remarkable per-
formance on tasks where vast quantities of super-
vised data and finetuning were thought to be nec-
essary. While this demonstrates the potential for
LM-decoding in few-shot or even zero-shot out-
of-the-box settings, limited access to GPT-3 and
immense computational cost keep this from being
a widely usable or efficient solution.

Yet recent work shows that GPT-2 may hold sim-
ilar capabilities when it is primed correctly. Li and

https://homes.cs.washington.edu/~pawest/ReflectiveDecoding.html
https://homes.cs.washington.edu/~pawest/ReflectiveDecoding.html

1436

Liang (2021) achieve supervised-level performance
in a few-shot setting using smaller, accessible mod-
els like GPT-2. They learn a small number of task-
specific vectors as a prefix to the input, without
tuning the model itself. Off-the-shelf GPT-2 is ca-
pable of few-shot learning given the right setup; our
work aims to push this concept further, by showing
that out-of-the-box LMs can solve complex gener-
ation problems simply by using the right decoding
algorithm.

We introduce REFLECTIVE DECODING—a
novel decoding method that allows LMs to be ap-
plied to generation tasks that break the “text con-
tinuation” paradigm, such as paraphrasing and text-
infilling. REFLECTIVE DECODING requires no
supervision, only two complementary off-the-shelf
LMs—one forward (

−→
LM) and one backward (

←−
LM).

That means no per-task finetuning, even on unstruc-
tured text in the target domain.

Inspired by the distributional hypothesis (Firth,
1957), REFLECTIVE DECODING works by generat-
ing text that might occupy the same contexts as an
input. We use two LMs (

−→
LM and

←−
LM) to generate

contexts for a given input, which implicitly capture
aspects of its meaning (the contextualization step).
Then, in the reflection step, we condition on this
ensemble of contexts, decoding over the input with
generations that are distributionally related to—or
replace—the input.

Paraphrasing is a natural application: a good
paraphrase should intuitively be compatible with
the same contexts as the original text. REFLEC-
TIVE DECODING shows strong unsupervised para-
phrasing performance: On the Quora question pair
dataset, we find one variant of our model (RD30)
outperforms unsupervised baselines on all but one
metric, and supervised baselines on both the SARI
metric and human evaluation. We see the same
trends on the Twitter URL corpus (Lan et al., 2017).

REFLECTIVE DECODING can also be applied to
tasks that only replace part of the input, or gener-
ate within it, like infilling; on αNLG (Bhagavatula
et al., 2020), we outperform the best unsupervised
baseline on overall quality, effectively halving the
gap with supervised methods. In both applications,
REFLECTIVE DECODING directly applies off-the-
shelf pretrained models, without finetuning on the
task or target domain. This provides evidence that
off-the-shelf Language Models can excel at sur-
prising applications, when paired with decoding
algorithms designed to elicit specific kinds of infor-

mation.

2 Method

2.1 Notation

Arrows indicate the order in which sampling func-
tions condition on and generate tokens: −→ indi-
cates generating from the left-most token to the
right (left-to-right), while←− indicates going right-
to-left. For Language Models (LMs), this means−→
LM is what is often called a “forward LM”, while←−
LM is a “backward LM”. For our sampling function
(RD), this also indicates which generated context
is being conditioned on, e.g.

−→
RD conditions on left

context, extending it to the right to generate output.

2.2 Overview

Currently, LM-decoding is limited to a text con-
tinuation paradigm. Given an input text sinput,
LM(c|sinput) generates contexts c that might come
after (forward, i.e.

−→
LM) or before (backward, i.e.←−

LM) the input. LM-decoding generates outside of
the input by continuing it, but many tasks require
us to generate over or within the input: paraphras-
ing requires reformulating the input, while infilling
requires inserting text in the middle of it.

Reflective Decoding approaches this shortcom-
ing by turning conventional LM-decoding around.
While LM(c|sinput) generates the kinds of contexts
c the input might appear in, RD generates s that
might replace sinput in these same contexts. The
distributional hypothesis (Firth, 1957) suggests se-
mantically similar texts appear in similar contexts,
meaning RD is also likely to sample in the semantic
neighborhood of sinput.

Concretely, REFLECTIVE DECODING samples
s that fits the same contexts as sinput in 2 simple
steps. We first sample many representative contexts
ci that could neighbor the input, e.g. using

−→
LM

in Figure 1. This is the contextualization step.
Second, in the reflection step, we generate text
in the opposite direction (using

←−
LM in Figure 1),

which fits these contexts as well as sinput fits them.
To consider all ci’s while decoding, we ensemble
the different distributions imposed by conditioning
on each ci:

←−
RD (s) =

∏
i

←−
LM(s|ci)wi

Z(s, c, w)
(1)

where Z normalizes the fraction to a proper proba-
bility distribution (see Equation 2). In essence, this

1437

Algorithm 1: Learn REFLECTIVE DECODER
←−
RD

Input: Forward language model
−→
LM

Backward language model
←−
LM

Source text sinput

1: Sample contexts, c1...cnc ∼
−→
LM(c|sinput)

2: Initialize parameters w = w1...wnc s.t.∑
wi = 1, wi ≥ 0

3: learn w = argmaxw
←−
RD(sinput)

s.t.
∑
wi = 1, wi ≥ 0

Output:
←−
RD

ensemble
←−
RD restricts generations to fit all contexts

ci. Reversed
−→
RD is the same, except it uses

−→
LM

with left contexts ci generated by
←−
LM.

By ensembling the contexts in a Product of Ex-
perts (Hinton, 2002) framework, we can generate
a hypothesis s that fits the full contextual finger-
print. Yet, some contexts are more informative than
others: probable but generic contexts like “See the
appendix for details.” are not descriptive of neigh-
boring text. We learn weights wi to prioritize con-
texts ci in the ensemble that are most informative
for sinput, by maximizing the probability of sinput
under Equation 1 (described in Algorithm 1). In
effect, we are learning an on-the-fly autoencoder
at inference time, using weighted ensembles of
contexts as a representation (see §2.7, §A.1).

To motivate how this method functions, consider
the paraphrasing example from Figure 1 with in-
put sinput = How are circulatory system tissues
formed? Generated contexts reflect different as-
pects of sinput: c1 situates sinput as a question
(This is a medical question...), while c2 and c3 ex-
plore central concepts (as with all tissue...; about
the circulatory system). Even though each context
could follow many sentences, together they form
a fingerprint for sinput. A sentence that could be
followed by all of c1, c2, c3 will likely be a question
(c1), about tissue formation (c2), and the circulatory
system (c3), and generally occupy the same seman-
tic neighborhood as sinput, e.g. How do circulatory
systems form?

In the case of paraphrasing, our task is to replace
all of sinput with something that might appear in
the same contexts. Other tasks, however, might
require us to replace only part of a sentence (e.g. in-
context paraphrasing) or even insert text at a given
position (e.g. infilling). REFLECTIVE DECODING

makes this easy: simply hold part of sinput static
when we generate from RD.

2.3 REFLECTIVE DECODING

Here we dive into the details of REFLECTIVE DE-
CODING, by considering the right-hand context
ensemble (

←−
RD), keeping in mind that the process

is repeated on the left-hand as well (
−→
RD).

First, in the contextualization step (line 1 of
Algorithm 1), we sample many right-hand contexts
ci for sinput, using

−→
LM. These will be used as a

representative sample of the contexts sinput appears
in. Second, in the reflection step (lines 2 & 3) our
goal is to construct a sampling function

←−
RD that

will yield texts similar to sinput. We define
←−
RD as:

←−
RD(s) =

∏
i

←−
LM(s|ci)wi∏|s|

j=0

∑
t∈V

∏
i

←−
LM(t|sj+1:|s| + ci)wi

(2)
This is equivalent to Equation 1, but giving the
exact normalization factor in the denominator.

Equation 2 is a token-wise Product of Experts
model, that captures the semantic neighborhood
of sinput via the combination of contexts ci and
their weights wi (§2.7). We learn wi that maximize←−
RD(sinput) (probability of generating sinput un-
der
←−
RD), thereby up-weighting contexts specific

to sinput. We initialize these weights (line 2),
then train them (line 3) using the Adam optimizer
(Kingma and Ba, 2014). We normalize weights
into a proper probability distribution at every step.

Reverse-direction
−→
RD is learned symmetrically,

flipping the roles of
−→
LM and

←−
LM and sampling left-

hand context instead (see §B.1 for details). Finally,
we generate from

←−
RD (and

−→
RD), sampling outputs

that would appear in the same contexts as sinput.
Depending on the application, we rank and select
a final output in different ways, always using

−→
LM

and
←−
LM together to capture bidirectional fit.

2.4 Implementation
Weight Learning and Pruning Context weights
wi are learned using the Adam optimizer (Kingma
and Ba, 2014). In practice this takes under 100
steps (negligible time compared to LM decoding).
While we sample tens of contexts (line 1 of Algo-
rithm 1), many end up with negligible weight under
the learned distribution (Equation 2). To efficiently
sample from

←−
RD and

−→
RD, we drop all but the top

kc contexts and renormalize weights: kc < nc con-
texts are used during the reflection step.

Parameters We sample nc contexts to describe
the source sinput. We use nucleus sampling (Holtz-

1438

Task: !NLG
%!: Ray hung a tire on a rope to make his daughter a swing. __?__

%": Ray ran to his daughter to make sure she was okay.

RD He put her on the swing, and while she was on the swing, she fell off and was lying on
the ground.

%!: Tom and his family were camping in a yurt. __?__ %": He chased it around until it left the yurt.

RD He went to the yurt and found a bear that was in the yurt

Task: Paraphrasing

what is it like to have a midlife crisis?
RD30 what does it mean to have a midlife crisis?

RD45 what do you do when you have a midlife crisis?

is it possible to make money as a film critic?

RD30 is there a way to make money as a film critic?

RD45 is it possible to make a living as a movie critic?

Figure 2: Example generations of REFLECTIVE DECODING on paraphrasing and abductive text infilling (αNLG).
RD45 encourages more difference from the input than RD30 (§3.1).

man et al., 2020) with parameter pc, and a maxi-
mum length of lenc. Once

−→
RD and

←−
RD are learned,

we sample ns generations from each, of length
lens. We again use nucleus sampling, but choose
ps per-example to account for vastly different en-
tropy in RD (§B.3). Values for all hyperparameters
are available in §B.4.

Language Models We train large forward (
−→
LM)

and backward (
←−
LM) Language Models based on

GPT-2 (Radford et al., 2019) using the OpenWeb-
Text training corpus (Gokaslan and Cohen, 2019)2.
Our implementation details follow those of past
work retraining GPT-2 (Zellers et al., 2019).

2.5 Application: Paraphrasing
To paraphrase, we begin by generating candidate
outputs. Following §2.3 the REFLECTIVE DECOD-
ING sampling function is learned in each direction
(
−→
RD,
←−
RD) using the source sentence sinput. Then,

ns generations are sampled from both
−→
RD and

←−
RD:

s1, ..., sns ∼
−→
RD, sns+1, ..., s2∗ns ∼

←−
RD

This gives a robust set of candidates that are com-
patible with the same left and right contexts as
sinput. Many of these will be semantically related
to sinput, but must be scored and ranked in order
to select true paraphrases. REFLECTIVE DECOD-
ING is based on the notion that good “fit” with the
same contexts is a robust measurement of similar-
ity, yielding a natural “contextual scoring function”
(Equation 7 and §2.7). We measure how likely can-
didate s is to generate the same contexts that sinput
did when constructing

−→
RD and

←−
RD:

score(s) =
1

nc

∑
crh

−→
LM(crh|s)+

1

nc

∑
clh

←−
LM(clh|s)

(3)

where crh are the generated contexts used in
←−
RD,

2https://github.com/yet-another-account/openwebtext

and clh for
−→
RD. This explicitly estimates how sim-

ilar the contexts of s and sinput are on both sides,
the underlying objective of REFLECTIVE DECOD-
ING.

2.6 Application: Abductive Reasoning
Abductive natural language generation (αNLG
from Bhagavatula et al. 2020) is the task of fill-
ing in the blank between 2 observations o1 and o2,
with a hypothesis h that abductively explains them.
The challenge for LM-decoding is making use of
context from both sides (o1 on the left and o2 on
the right). This is particularly challenging for unsu-
pervised decoding methods because unidirectional
LMs cannot naturally condition on both sides when
generating h.

REFLECTIVE DECODING simplifies this prob-
lem by capturing information about both o1 and
o2 in a single decoding function (

←−
RD or

−→
RD), then

holding o1 and o2 static at generation time (i.e.
teacher forcing). Concretely, we use concatenated
o1+o2 as sinput in Algorithm 1, and construct sam-
pling functions

−→
RD,
←−
RD informed by both observa-

tions. We are interested in sampling in between o1
and o2, so when sampling hypotheses h from

←−
RD

we condition on the right-side observation o2 (and
vice-versa for

−→
RD and o1). This is equivalent to ap-

pending the given observation to sampled contexts:

h1, ..., hnŝ
∼ ←−RD(h|o2)

hnŝ+1, ..., h2∗nŝ
∼ −→RD(h|o1)

(4)

Note that both
−→
RD and

←−
RD contain information

about both o1 and o2, effectively turning a 2-sided
contextual constraint into a 1-sided one.

We also use a task-specific scoring function to
rank sampled hypotheses. We would like a hypoth-
esis h that best explains both observations, and so
use Language Models to measure this:

score(h) =
←−
LM(o1|h+o2)+

−→
LM(o2|o1+h) (5)

1439

Adding h should help to “explain” each observa-
tion given the other, i.e. that o2 follows from o1+h
and o1 from h+ o2. To filter hypotheses that only
explain one of the two observations, we remove
any that make either observation less probable than
the empty hypothesis, imposing:

←−
LM(o1|h+ o2) >

←−
LM(o1|o2)

−→
LM(o2|o1 + h) >

−→
LM(o2|o1)

2.7 Intuitions and Theory

Here we discuss the theoretical intuition for RE-
FLECTIVE DECODING, as a way to sample genera-
tions that share contextual “fit” with a source text,
deriving the sampling function of Equation 2.

We start by considering how to relate the mean-
ing of two texts, generation s and input sinput. We
follow a distributional intuition (Firth, 1957), that
meaning can be understood through the contexts in
which text appears. Many distributional approaches
learn contentful neural representations by predict-
ing context given input text (Mikolov et al., 2013;
Kiros et al., 2015), then compare these represen-
tations to establish semantic similarity. We can,
instead, compare contexts directly—judging the
difference in meaning between texts sinput and s
by their divergence:

DKL(
−→
LM(c|sinput),

−→
LM(c|ŝ)) (6)

We use
−→
LM to interchangeably denote the theoreti-

cal left-to-right distribution of text, and the LM es-
timating it. Thus,

−→
LM(c|s) is the distribution over

right contexts c given sentence s, and Equation 6
can be understood as the “contextual information
difference” we expect s to have from sinput. Note,
we could similarly use left-hand context and

←−
LM

—and do so in practice.
We use finite-sample cross entropy as an effec-

tive empirical proxy for DKL:

Ĥ(
−→
LM(c|sinput),

−→
LM(c|s)) =
1

N

∑
ci∼
−→
LM(c|sinput)

−log
−→
LM(ci|s)

(7)

Where ci ∼
−→
LM(c|sinput) indicates sampling con-

texts for sinput from
−→
LM. Intuitively, we want to

minimize this score when generating s: an optimal
output has a similar meaning to sinput and so fills

approximately the same contextual hole, minimiz-
ing the value of this “contextual distance”.

In this form, Ĥ compares 2 complete texts–s and
sinput–but we are trying to generate s for which
the divergence from sinput is low. We flip the role
of “text” and “context”3 to define a function from
which we can sample s:

←−
RD(sj |, sj+1:n) =

∏
i

←−
LM(sj |sj+1:n + ci)

wi∑
t∈V

∏
i

←−
LM(t|sj+1:n + ci)wi

(8)

(equivalent to Equation 2, derived in §A.1) sj is the
jth token in s (sampled right-to-left from n to 0),
and V is the vocabulary. Weights wi are learned by
maximizing the probability of sinput.

Equation 8, estimates the probability of predict-
ing sinput and s from a finite set of contexts ci
generated from sinput. This approximately mini-
mizes Equation 6, as being generated by the same
weighted ensemble of contexts strongly correlates
with generating the same contexts in the same pro-
portions, i.e. low divergence, due to the sparsity
of language. We can sample s with low contextual
distance from sinput using

←−
RD. Further, we can use

left context to construct
−→
RD by simply reversing

the directions of the LMs used.

3 Experiments

3.1 Task: Paraphrase Generation

Task: Following past work, we test our para-
phrasing method (§2.5) on the Quora question pair
dataset. We hold out 1000 examples for testing,
with the rest for training and validation (used by
supervised baselines), disallowing overlap with the
test set. We test a subset of models (compatible
unsupervised models, MT) on the Twitter URL cor-
pus (Lan et al., 2017), using 1000 examples from
the canonical test split.

Metrics: Following past work, we include auto-
matic metrics BLEU (Papineni et al., 2002), ME-
TEOR (Denkowski and Lavie, 2014), and TERp

(Snover et al., 2009). These measure agreement
with references, but high reference/input overlap
means copying is rewarded (Mao and Lee, 2019);
indeed, copying source sentences as-is wins on
these metrics (Table 1), meaning both BLEU and
METEOR can be easily gamed.

3Context is a symmetric relation: a given text serves as the
one-sided context of its own context.

https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs

1440

Method SARI↑ BLEU↑ METEOR↑ TERP ↓ Human↑ Novelty ↑

Human Source 17.8 56.0 37.6 48.0 - 0.0
Reference 91.9 100.0 100.0 0.0 71.7 43.9

Supervised PG-IL 32.8 49.1 33.8 49.0* 29.4 24.4
DiPS 38.8 41.0 27.9 56.0 36.6 48.5*
BART 36.1 44.7 34.7* 66.0 46.1 35.2

Supervised (Bilingual) MT 35.6 48.1 33.5 52.0 59.3 26.8

Unsupervised R-VQVAE 27.2 43.6 32.3 60.0 33.5 26.2
CGMHTop 32.3 42.0 28.2 59.0 27.0 27.6
CGMH30 33.9 40.9 27.5 60.0 31.5 29.7
CGMH45 32.6 33.8 23.4 65.0 15.8 44.5
UPSA 34.0 36.6 26.7 70.0 37.8 44.4

RDTop (Us) 29.0 49.9* 33.9 52.0 27.5 20.8
RD30 (Us) 40.0* 46.8 32.2 57.0 63.2* 30.0
RD45 (Us) 38.6 39.9 28.9 65.0 61.1 45.0

Table 1: Model performance on the Quora test split. Bold indicates best for model-type, * indicates best overall
(excluding human), underline indicates second-best for unsupervised. The first 5 columns are measures of quality,
while the last measures novelty (Equation 9) or difference from the input. We rerun evaluations from past work.

Past work has emphasized the important chal-
lenge of generating novel paraphrases (Liu et al.,
2010; Chen and Dolan, 2011) We address this in 3
ways. First, we explicitly quantify a simple notion
of novelty:

Novelty(ŝ) = 100−BLEU(ŝ, sinput) (9)

to quantify the novelty-quality trade-off. Second,
we include the SARI metric (Xu et al., 2016) which
explicitly balances novelty from input with refer-
ence overlap. Third, we quantify an overall human
quality metric accounting for this.

We have humans evaluate fluency, consistency,
and novelty on Amazon Mechanical Turk. The
overall score (“Human” in Table 1) is the rate ex-
amples meet thresholds for all 3: fluent enough
to understand, with at most minor differences in
meaning and at least minor differences in word-
ing. On quora, we test 200 examples, with agree-
ment (Fleiss’ κ Fleiss, 1971) of 0.40 (fluency),
0.54 (consistency), 0.77 (novelty) and 0.48 (over-
all) i.e. moderate to substantial agreement (Landis
and Koch, 1977). On the Twitter corpus, we use
100 examples with agreement of 0.39, 0.42, 0.54,
and 0.36, indicating fair to moderate agreement.
On both we have 3 raters per example. See §C.2
for more.

Baselines: Parameters for REFLECTIVE DECOD-
ING are given in §B.4. We mainly compare against
3 unsupervised baselines: Controlled Sentence
Generation by Metropolis Hastings (CGMH from
Miao et al. 2019), Simulated Annealing (UPSA

from Liu et al. 2019) and the residual VQ-VAE of
Roy and Grangier (2019a) (R-VQVAE). This is a
cross-section of recent approaches (VAE, editing).

We also compare against a machine-translation
approach (see Sec 6), pivoting through German
using Transformer (Vaswani et al., 2017) models
trained on WMT19 data (Barrault et al., 2019). MT
is included in a separate section in our results as it
uses supervised bilingual data (Table 1).

We include supervised baselines: the pointer
generator trained by imitation learning (PG-IL) as
in Du and Ji (2019), the diversity-promoting DiPS
model (Kumar et al., 2019), and a finetuned BART
model (Lewis et al., 2019), which uses a more
complex pretraining method than our LMs. Note
that DiPS generates multiple diverse paraphrases
so we pick one at random.

CGMH and REFLECTIVE DECODING both re-
turn multiple sampled, ranked paraphrases. We can
easily control for Novelty by taking the highest-
ranked output that meets a Novelty threshold. For
both, we have a version with no threshold (Top),
and with thresholds such that average Novelty
is 30 and 45. Novelty cutoffs do not depend
on the reference, only the source, and are equiv-
alent to selecting with BLEU-ori (Novelty is
100 − BLEU-ori) by Miao et al. (2019) or Bao
et al. (2019).

3.2 Task: Abductive NLG

Task: The Abductive natural language genera-
tion task (αNLG) presented in Bhagavatula et al.
(2020) requires generating a hypothesis that fits

1441

Method SARI↑ Human ↑ Novelty ↑

Source 13.6 - 0.0
Reference 90.7 51.3 63.3

MT 36.1 70.9 30.4

R-VQVAE 31.1 32.3 40.4
CGMHTop 32.7 27.8 25.5
CGMH30 33.2 25.1 30.1
CGMH45 31.8 13.5 45.2
RDTop/30 (Us) 31.4 46.5 37.0
RD45 (Us) 36.4 56.9 45.3

Table 2: Model performance on the Twitter URL test
split. Bold indicates best for model-type. We show
only metrics accounting for novelty (more in §C.3)

between observations o1 and o2, and explains them.
We apply REFLECTIVE DECODING to this problem
as outlined in §2.6, using the given data splits.

Metrics: For human evaluation, over 200 exam-
ples we ask 3 raters on Amazon Mechanical Turk
about coherence between h and o1, o2, o1+o2, and
overall quality on 4-value likert scales. We found
Fleiss’ kappa (Fleiss, 1971) of 0.32, 0.40, 0.41,
and 0.41 respectively, indicating fair to moderate
agreement (Landis and Koch, 1977).

Baselines: Parameters for REFLECTIVE DECOD-
ING are given in §B.4. We include baselines from
the original work: different supervised variants of
GPT-2 large with access to the observations, and op-
tionally commonsense embeddings or generations
from COMET (Bosselut et al., 2019). We include
unsupervised baselines of GPT-2 conditioned on o1
+ o2 directly, the gradient-based DeLorean model
of Qin et al. (2020), and ILM infilling model of
Donahue et al. (2020), representing recent unsuper-
vised methods.

4 Results and Analysis

Paraphrasing First, the Quora dataset: On auto-
matic metrics from past works (BLEU, METEOR,
TERP) our lowest-Novelty model setting (RDTop)
achieves the highest unsupervised scores, and high-
est overall on BLEU. Other high scoring rows
(Source, PG-IL) are similarly low-Novelty. The
SARI metric explicitly balancesNovelty with sim-
ilarity to reference. On SARI we see such low-
Novelty models perform worse. The best over-
all model on SARI is our medium-Novelty set-
ting (RD30) which outperforms MT and supervised
models.

Our human evaluation measures what fraction of

outputs are found to be fluent, consistent, and novel.
As with SARI, both our mid and high-Novelty
models perform quite well, again with the medium-
Novelty setting outperforming all baselines. As
further validation for SARI as a proxy for human,
they share the same top-5 models.

Results on the Twitter URL corpus largely sup-
port those on Quora. REFLECTIVE DECODING

achieves the best unsupervised scores on novelty-
aware metrics (Table 2), with the best overall SARI,
even outperforming reference on the human metric,
although MT achieves the highest overall.

In sum, REFLECTIVE DECODING is able to com-
pete on previously used quality metrics favoring
low-Novelty, but can produce more varied out-
puts preferred by humans. RD45 is among the best
models by SARI and Human on Quora despite ex-
ceeding the novelty of even the reference.

αNLG Results on αNLG (Table 3) present a
strong case that REFLECTIVE DECODING can ef-
fectively use bidirectional context. Strong hypothe-
ses use information from both initial the observa-
tion o1 and the future observation o2. Humans
ranked the ability of REFLECTIVE DECODING to
capture this 42.4, about 17 points above the next-
best unsupervised baseline and only 15 points be-
low the best supervised method tested. We see
similar results for overall evaluation. A likely fac-
tor in this is the (comparatively) high degree of
coherence between h and o2 by REFLECTIVE DE-
CODING. Where other methods seem to pay more
attention to observation o1 (the o2 column generally
has much lower values), REFLECTIVE DECODING

has comparably high coherence with left-hand (o1)
and right-hand (o2) contexts.

We also include example generations in Figure 2
to demonstrate the ability of REFLECTIVE DECOD-
ING to combine o1 and o2. For example, h = He
put her on the swing, and while she was on the
swing, she fell off and was lying on the ground.
incorporates information from both observations.
Specifically, it takes into account the swing that
Ray is building for his daughter which is only men-
tioned in o1, and hypothesizes about a potential
injury due to Ray checking on his daughter in o2.
See appendix for more generations.

Overall, the strong performance of REFLECTIVE

DECODING on αNLG shows that unsupervised
generation with context ensemble applies to infill-
ing in addition to paraphrasing.

1442

5 Discussion

REFLECTIVE DECODING Out-of-the-Box A
major advantage to applying REFLECTIVE DECOD-
ING is ease-of-use: armed with our pretrained lan-
guage models, practitioners can immediately begin
generating. With general pretrained models and un-
derlying principles that are domain-agnostic, RE-
FLECTIVE DECODING works across a broad range
of text style–no finetuning required–making explo-
ration and adaptation simple. Multiple rounds of
generation mean REFLECTIVE DECODING may
run slower than other methods at inference time4,
but it avoids training time. There are clearly set-
tings that favor supervised learning (narrow, known
domain with abundant training data), but REFLEC-
TIVE DECODING is a good option to begin gener-
ating and exploring immediately with high quality
generation.

A useful abstraction for understanding RE-
FLECTIVE DECODING for current applications is
“prompting”, i.e., writing a prefix to implicitly or ex-
plicitly describe a task for a pretrained model. RE-
FLECTIVE DECODING generates natural contexts
that the desired generation would appear in. This
breaks from other methods of automatic prompt-
ing, which often forego “natural” prompts (Shin
et al., 2020; Reynolds and McDonell, 2021), even
making them continuous (Li and Liang, 2021; Ham-
bardzumyan et al., 2021; Lester et al., 2021; Qin
and Eisner, 2021). REFLECTIVE DECODING also
notably creates a set of prompts (contexts) for each
example, where other methods attempt to learn an
overall task prompt. Still, all of these are connected
by the popular intuition that useful behavior in pre-
trained models can be induced through contextual
input.

Future Applications REFLECTIVE DECODING

can extend beyond our experiments here, however.
A simple example is in-context paraphrasing, i.e.
writing a paraphrase that fits the true context that
the original sentence appears in. Most existing
paraphrasing methods consider only out-of-context
sentences, and would require significant changes to
consider context as a constraint; for REFLECTIVE

DECODING we can simply combine true and gen-
erated contexts without with the same algorithm.

Driving REFLECTIVE DECODING is a notion
of context as a representation, with clear poten-

4Depending on parameters we found most baselines took
multiple seconds per example vs. 10s of seconds for REFLEC-
TIVE DECODING on a multi-gpu machine.

tial for future work. Pretrained LMs capture rich
information about text spans, but accessing it with-
out fine-tuning is nontrivial; within the model it
is an uninterpretable mass of parameters and acti-
vation weights. Our work observes that unidirec-
tional LMs are only capturing this information to
predict adjacent context–this is the sole learning
signal–so all of this information is expressed in
the model’s context prediction. Thus, we capture
some of this rich information to represent spans, by
capturing a finite-sample version of this full predic-
tive distribution in generated contexts. In REFLEC-
TIVE DECODING specifically, we use this form
of representation to generate back into the source
span–paraphrasing or infilling–but the notion can
be applied much more generally. In translation for
instance, we might first generate contexts for the
source sentence that represent its meaning, noisily
translate these contexts, then impose that any trans-
lations for the source fit the same contexts under a
translation-language LM. Constraining translations
in this way can add robustness to existing systems
by anchoring translations to informative contexts.
Beyond explicit generation even, we might use a
very large LM like GPT-3 to define a strong scoring
function or metric as in Equation 7, first generat-
ing contexts for some target sentence, then scoring
candidates by how well they generate these same
contexts. As in our work, such a score could indi-
cate how well the option fills the same contextual
role as the target, harnessing the strong reasoning
of whatever model is used.

6 Related Work

Distributional Intuitions A key aspect of RE-
FLECTIVE DECODING is using a distributional in-
tuition to represent the meaning of a text through
many contexts. Kiros et al. (2015); Miao et al.
(2019) quantify semantic relationships and Lin and
Pantel (2001) identify paraphrastic relationships
under similar intuitions. A major point of differ-
ence between past work and ours is that we sample
explicit contexts, allowing unsupervised generation
back from these contexts, while past work typically
learns a neural representation based on contexts
and conditions on this vector-encoded representa-
tion.

Unsupervised Paraphrasing Some approaches
train neural variational auto-encoders unsuper-
vised to represent source sentences, then decodes
from these representations to paraphrase (Roy

1443

o1 o2 o1 + o2 all

Human 86.3 89.1 85.1 84.4

Supervised

COMeTEmb+GPT2 69.3 60.1 56.4 56.3
COMeTTxt+GPT2 68.9 54.8 51.9 50.6
O1-O2-Only 69.2 57.7 54.3 53.8

Unsupervised

GPT2-Fixed 20.6 13.9 10.8 10.3
DeLorean 48.7 24.6 23.6 22.5
ILM 45.9 27.3 25.3 25.0
Reflective Decoding 53.4 51.7 42.4 41.9

Table 3: Model performance on αNLG. The first 3
scores query agreement between hypothesis and given
observation(s), “all” indicates overall judgement. RE-
FLECTIVE DECODING significantly outperforms all un-
supervised baselines.

and Grangier, 2019b; Bao et al., 2019). This re-
quires training specialized representations, whereas
REFLECTIVE DECODING applies general-purpose
LMs. We compare to Roy and Grangier (2019b).

Paraphrasing by editing the input (Miao et al.,
2019; Liu et al., 2019) has shown promise. Like
REFLECTIVE DECODING, these approaches can
be applied without training specialized models, but
are necessarily limited by edit-paths and local min-
ima, as edits are often restricted to single-word
replacement, insertion, and deletion. Generated
paraphrases must follow a continuous local edit
path, while REFLECTIVE DECODING can generate
new sentences from scratch.

REFLECTIVE DECODING and MT-based para-
phrasing both pivot through an alternative textual
form to paraphrase (context and translation, re-
spectively). But MT paraphrasing systems cycle-
translate through a pivot language (Federmann
et al., 2019; Wieting and Gimpel, 2018), which
requires supervised bilingual translation data, with
an implicit notion of interlingual paraphrasing.

Novelty in Paraphrasing Mao and Lee (2019)
observe that paraphrases close to the source often
win on automatic quality metrics. However, dis-
similarity from the source correlates with human
notions of paraphrasing (Liu et al., 2010). Ku-
mar et al. (2019) increase novelty through their
diversity-promoting sampling method. Alterna-
tive metrics that consider novelty alongside quality
have been proposed (Sun and Zhou, 2012; Feder-
mann et al., 2019). The SARI metric (Xu et al.,
2016), included here, combines these notions.

Abductive Text Infilling αNLG (Bhagavatula
et al., 2020) is a text infilling task that specifically
measures the ability of models to explain bidirec-
tional context (observations o1, o2) with a hypoth-
esis that fits between them. This naturally fits RE-
FLECTIVE DECODING, which fills in contextual
gaps. Recent work has directly addressed this task
(Qin et al., 2020) while the infilling literature is
also quite applicable (Donahue et al., 2020). We
compare to both of these methods on abductive
infilling, showing superior results.

7 Conclusions

We present REFLECTIVE DECODING, a novel un-
supervised text generation method for tasks that
do not fit the text continuation paradigm. It uses
just two pretrained Language Models to generate
contexts that capture aspects of input text, generat-
ing back into the input from there. It significantly
outperforms unsupervised baselines in quality and
novelty for paraphrasing. Further, in abductive nat-
ural language generation it outperforms unsuper-
vised baselines by a significant margin and halves
the gap with supervised models. REFLECTIVE DE-
CODING uses the concept of representing meaning
with generated contexts, offering new possibilities
for unsupervised conditional text generation.

Acknowledgements

We thank anonymous reviewers for many help-
ful comments. This research is supported in
part by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) (funding refer-
ence number 401233309), DARPA CwC through
ARO (W911NF15-1-0543), DARPA MCS program
through NIWC Pacific (N66001-19-2-4031), the
Allen Institute for AI, and a gift from Intel Labs
Cognitive Computing Research.

Ethical Considerations

In order to complete our human evaluation we used
Amazon Mechanical Turk. We estimated the range
of times we expected our task to take, and made
sure that at minimum workers would be paid a
wage of $15.00 per hour if they were solely com-
pleting our task.

As part of this effort, we plan to release our
code and model. Our forward and backward lan-
guage models are the same size as the publicly
available GPT-2 (Radford et al., 2019). Training
time/energy was likely significantly smaller than

1444

the original release; existing code and hyperparam-
eters were available, and we use a smaller dataset.
Further, there is no publicly available backward
GPT-2 model that we are aware of, so releasing
a pair of forward and backward models that were
trained on the same data allows for proper compar-
isons about left-to-right vs. right-to-left processing
of English text.

We estimate that the potential dangers of releas-
ing this from a malicious generation perspective
are low. Our forward model is similar to already re-
leased GPT-2 models. While the backward model
adds new generation potential and scientific nov-
elty, it is unlikely to compare to GPT-3 (Brown
et al., 2020) which many hobbyists and private
companies now have access to. We believe that re-
leasing a pair of forward and backward models will
be more useful to researchers who wish to study
the symmetries and asymmetries of the linguistic
distribution.

References
Yu Bao, Hao Zhou, Shujian Huang, Lei Li, Lili Mou,

Olga Vechtomova, Xinyu Dai, and Jiajun Chen.
2019. Generating sentences from disentangled syn-
tactic and semantic spaces. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 6008–6019.

Loı̈c Barrault, Ondřej Bojar, Marta R Costa-Jussà,
Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, et al. 2019. Findings of the 2019
conference on machine translation (wmt19). In
Proceedings of the Fourth Conference on Machine
Translation (Volume 2: Shared Task Papers, Day 1),
pages 1–61.

Chandra Bhagavatula, Ronan Le Bras, Chaitanya
Malaviya, Keisuke Sakaguchi, Ari Holtzman, Han-
nah Rashkin, Doug Downey, Scott Yih, and Yejin
Choi. 2020. Abductive commonsense reasoning.
ICLR.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. Comet: Commonsense transformers for au-
tomatic knowledge graph construction. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4762–4779.

T. Brown, B. Mann, Nick Ryder, Melanie Subbiah,
J. Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, G. Krüger,
T. Henighan, R. Child, Aditya Ramesh, D. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, E. Sigler, Mateusz Litwin, Scott Gray,

Benjamin Chess, J. Clark, Christopher Berner, Sam
McCandlish, A. Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. ArXiv, abs/2005.14165.

David Chen and William Dolan. 2011. Collecting
highly parallel data for paraphrase evaluation. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 190–200, Portland, Ore-
gon, USA. Association for Computational Linguis-
tics.

Michael Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In Proceedings of the ninth
workshop on statistical machine translation, pages
376–380.

Chris Donahue, Mina Lee, and Percy Liang. 2020. En-
abling language models to fill in the blanks. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2492–
2501, Online. Association for Computational Lin-
guistics.

Wanyu Du and Yangfeng Ji. 2019. An empir-
ical comparison on imitation learning and rein-
forcement learning for paraphrase generation. In
EMNLP/IJCNLP.

Christian Federmann, Oussama Elachqar, and Chris
Quirk. 2019. Multilingual whispers: Generating
paraphrases with translation. In Proceedings of
the 5th Workshop on Noisy User-generated Text (W-
NUT 2019), pages 17–26, Hong Kong, China. Asso-
ciation for Computational Linguistics.

John R Firth. 1957. A synopsis of linguistic theory,
1930-1955. Studies in linguistic analysis.

Joseph L Fleiss. 1971. Measuring nominal scale agree-
ment among many raters. Psychological bulletin,
76(5):378.

Aaron Gokaslan and Vanya Cohen. 2019. Openweb-
text corpus.

Karen Hambardzumyan, Hrant Khachatrian, and
Jonathan May. 2021. Warp: Word-level adversarial
reprogramming. arXiv preprint arXiv:2101.00121.

Geoffrey E Hinton. 2002. Training products of experts
by minimizing contrastive divergence. Neural com-
putation, 14(8):1771–1800.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin
Choi. 2020. The curious case of neural text degener-
ation. ICLR.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

http://www.aclweb.org/anthology/W19-5301
http://www.aclweb.org/anthology/W19-5301
https://www.aclweb.org/anthology/P11-1020
https://www.aclweb.org/anthology/P11-1020
https://doi.org/10.18653/v1/2020.acl-main.225
https://doi.org/10.18653/v1/2020.acl-main.225
https://doi.org/10.18653/v1/D19-5503
https://doi.org/10.18653/v1/D19-5503
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

1445

Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems,
pages 3294–3302.

Ashutosh Kumar, Satwik Bhattamishra, Manik Bhan-
dari, and Partha Talukdar. 2019. Submodular
optimization-based diverse paraphrasing and its ef-
fectiveness in data augmentation. In NAACL-HLT.

Wuwei Lan, Siyu Qiu, Hua He, and Wei Xu. 2017.
A continuously growing dataset of sentential para-
phrases. In Proceedings of The 2017 Conference on
Empirical Methods on Natural Language Process-
ing (EMNLP), pages 1235–1245. Association for
Computational Linguistics.

J Richard Landis and Gary G Koch. 1977. The mea-
surement of observer agreement for categorical data.
biometrics, pages 159–174.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461.

Xiang Lisa Li and P. Liang. 2021. Prefix-tuning: Op-
timizing continuous prompts for generation. ArXiv,
abs/2101.00190.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Dekang Lin and Patrick Pantel. 2001. Dirt@ sbt@
discovery of inference rules from text. In Proceed-
ings of the seventh ACM SIGKDD international con-
ference on Knowledge discovery and data mining,
pages 323–328.

Chang Liu, Daniel Dahlmeier, and Hwee Tou Ng. 2010.
Pem: A paraphrase evaluation metric exploiting par-
allel texts. In Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Process-
ing, pages 923–932.

Xianggen Liu, Lili Mou, Fandong Meng, Hao Zhou,
Jie Zhou, and Sen Song. 2019. Unsupervised para-
phrasing by simulated annealing. arXiv preprint
arXiv:1909.03588.

Hongren Mao and Hungyi Lee. 2019. Polly
want a cracker: Analyzing performance of par-
roting on paraphrase generation datasets. In
EMNLP/IJCNLP.

Pedro Henrique Martins, Zita Marinho, and André F. T.
Martins. 2020. Sparse text generation.

Ning Miao, Hao Zhou, Lili Mou, Rui Yan, and Lei
Li. 2019. Cgmh: Constrained sentence generation
by metropolis-hastings sampling. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 6834–6842.

Tomas Mikolov, Kai Chen, Greg S. Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word repre-
sentations in vector space.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying lms with mixtures of soft prompts.
arXiv preprint arXiv:2104.06599.

Lianhui Qin, Vered Shwartz, Peter West, Chandra Bha-
gavatula, Jena D. Hwang, Ronan Le Bras, Antoine
Bosselut, and Yejin Choi. 2020. Back to the future:
Unsupervised backprop-based decoding for counter-
factual and abductive commonsense reasoning. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 794–805, Online. Association for Computa-
tional Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. Unpub-
lished manuscript.

Laria Reynolds and Kyle McDonell. 2021. Prompt pro-
gramming for large language models: Beyond the
few-shot paradigm. In Extended Abstracts of the
2021 CHI Conference on Human Factors in Com-
puting Systems, pages 1–7.

Aurko Roy and David Grangier. 2019a. Unsupervised
paraphrasing without translation. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 6033–6039.

Aurko Roy and David Grangier. 2019b. Unsupervised
paraphrasing without translation. In ACL.

Hubert JA Schouten. 1986. Nominal scale agreement
among observers. Psychometrika, 51(3):453–466.

Thibault Sellam, Dipanjan Das, and Ankur P. Parikh.
2020. Bleurt: Learning robust metrics for text gen-
eration. In ACL.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV,
Eric Wallace, and Sameer Singh. 2020. AutoPrompt:
Eliciting Knowledge from Language Models with
Automatically Generated Prompts. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
4222–4235, Online. Association for Computational
Linguistics.

http://aclweb.org/anthology/D17-1127
http://aclweb.org/anthology/D17-1127
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
http://arxiv.org/abs/2004.02644
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.18653/v1/2020.emnlp-main.58
https://doi.org/10.18653/v1/2020.emnlp-main.58
https://doi.org/10.18653/v1/2020.emnlp-main.58
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346

1446

Matthew G Snover, Nitin Madnani, Bonnie Dorr, and
Richard Schwartz. 2009. Ter-plus: paraphrase, se-
mantic, and alignment enhancements to translation
edit rate. Machine Translation, 23(2-3):117–127.

Hong Sun and Ming Zhou. 2012. Joint learning of a
dual SMT system for paraphrase generation. In Pro-
ceedings of the 50th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 38–42, Jeju Island, Korea. Associa-
tion for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di-
nan, Kyunghyun Cho, and Jason Weston. 2019. Neu-
ral text generation with unlikelihood training. arXiv
preprint arXiv:1908.04319.

John Wieting and Kevin Gimpel. 2018. Paranmt-50m:
Pushing the limits of paraphrastic sentence embed-
dings with millions of machine translations. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 451–462.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze
Chen, and Chris Callison-Burch. 2016. Optimizing
statistical machine translation for text simplification.
Transactions of the Association for Computational
Linguistics, 4:401–415.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending against neural fake
news. In Advances in Neural Information Process-
ing Systems, pages 9051–9062.

Tianyi Zhang, V. Kishore, Felix Wu, Kilian Q. Wein-
berger, and Yoav Artzi. 2020. Bertscore: Evaluating
text generation with bert. ArXiv, abs/1904.09675.

https://www.aclweb.org/anthology/P12-2008
https://www.aclweb.org/anthology/P12-2008
https://doi.org/10.1162/tacl_a_00107
https://doi.org/10.1162/tacl_a_00107

1447

A Appendix

A.1 Derivation of Sampling Function
Here we derive the sampling function used for
REFLECTIVE DECODING, which allows genera-
tion using contextual similarity. This supplements
§2.7. Pc|s denotes the distribution of contexts c
for sentence s. This will be 1-sided context, for
instance right-hand context crh (i.e. Pc|s would

be estimated by left-to-right
−→
LM conditioned on

s
−→
LM(c|s)). Reversed Ps|c goes back from con-

text towards text. With right-hand context, this is
estimated by

←−
LM(s|c).

In §2.7, we consider the task of comparing a
source sentence ssrc with another sentence s. For
instance, we may want to know if s is a paraphrase
of ssrc. Following a distributional intuition (Firth,
1957) we define a simple way to compare meaning:

DKL(Pc|ssrc , Pc|s) (10)

Where DKL is the Kullback–Leibler divergence
measuring the difference between distributions
Pc|ssrc and Pc|s. This captures a notion above: we
take the amount the contexts of ssrc and s differ as
a proxy for their difference in meaning.

In paraphrase generation, we want to select for
contextual closeness, and thus only need to rank
options. We will then use cross-entropy:

H(
−→
LM(c|ssrc),

−→
LM(c|s))

=
∑
c

−−→LM(c|ssrc)log(Pc|s(c))

(11)

which is equivalent to DKL up to a constant offset,
and is easier to estimate. Here, the sum over c
indicates every possible context c, but in practice
we us finite samples.

From Sec 2.7, this quantifies contextual differ-
ence in meaning. For paraphrasing, we want a
sentence s that minimizes this, which is equivalent
to maximizing the exponent of its negation:

Score(s) = e
∑

c−Pc|slog(Pc|s(c))

=
∏
c

(
Ps|c(s)P (c)

P (s)

)Pc|s(c)

=
a0
P (s)

∏
c

Ps|c(s)
Pc|s(c)

(12)

Constant a0 results from factors of P (c). The result
is a Product of Experts (Hinton, 2002). P (s)−1 will

prioritize more context-specific paraphrases (low
probability but likely in context). However, our
LMs are not well equipped to handle unlikely text,
(expressivity is likely spent on likely text). Second,
while less likely text can have higher similarity,
this may not be the goal of our system. Rather
we want related sentences that are also fluent and
reasonable, so we drop P (s)−1, the equivalent of
multiplying in P (s), biasing the model towards
likely sequences:

Score(s) = c0
∏
c

Ps|c(s)
Pc|s(c)

(13)

A product of experts of the form:

Score(s) =
∏
c

Ps|c(s)
wc|s

(14)

We must set the weights wc|s in the finite sample
setting. To keep in line with this the format, we
will enforce that weights constitute a proper dis-
tribution. In the limiting case (unlimited samples)
wc|s should be set to Pc|s(c). However, these are
likely not efficient estimation weights. Further, ex-
ponentiating by this estimate will magnify errors.
Instead, we learn these weights using a heuristic,
discussed later.

Next, we move to the finite-sample setting, re-
placing distributions with LM estimates. Here we
will consider right-context (meaning Ps|c is esti-

mated by
←−
LM) but the left-context case proceeds

symmetrically. Substituting in the LM distribution:

Score(s) =
∏
c

←−
LM(s|c)wc|s

(15)

Where now the product over c indicates product
over the finite sampled contexts. We convert this to
a sampling function, decomposing into tokens of
generation s = s0...sn:

Score(s0:n) =
∏
j

∏
c

←−
LM(sj |sj+1:n)

wc|s (16)

This restates equation 15 factorizing LM proba-
bility by tokens. Renormalizing and decomposing
by token position gives a natural distribution to
sample from:

Psample(sj |sj+1:n) =∏
c

←−
LM(sj |sj+1:n)

wc|s∑
t∈V

∏
c

←−
LM(t|sj+1:n)

wc|s

(17)

1448

Algorithm 2: Learn REFLECTIVE DECODING sampling

function (left-to-right)

Input: Left to right language model
−→
LM

Right to left language model
←−
LM

Source text: ssrc
1: Sample contexts, c1...cnc ∼

←−
LM(c|ssrc)

2: Initialize parameters w = w1...wnc s.t.∑
wi = 1, wi ≥ 0

3: learn w = argmaxw
−→
RD(ssrc)

under
∑
wi = 1, wi ≥ 0

Output:
−→
RD

normalizing token-wise over the vocabulary V to
a proper distribution (sampling right-to-left, index
n down, to match convention). This is referred
to as

←−
RD in the body of the paper, and stated in

equation 8. This samples candidate generations
that encourage adherence to the contextual scoring
function.

Finally, we learn the weights (a proper distri-
bution): ssrc should receive the highest score (or
similarly, should have the lowest contextual differ-
ence with itself, as it is likely in its own contexts).

B Implementation Details

B.1 Left-to-Right REFLECTIVE DECODING
sampling function

From §2.3,
−→
RD is learned similar to

←−
RD, switching

the roles of
−→
LM and

←−
LM in algorithm 1. First,

the roles of the language models are flipped in the
sampling function:

−→
RD (s) =

∏
i

−→
LM(s|ci)wi∏|s|

j=0

∑
t∈V

∏
i

−→
LM(t|s0:j−1 + ci)wi

(18)
ci are now generated by right-to-left

←−
LM (i.e. left-

contexts). see Algorithm 2.

B.2 Post-processing Generations

Without learning stop-tokens, REFLECTIVE DE-
CODING samples fixed number (lens) of tokens.
Candidates are extracted from raw generations us-
ing sentence tokenization.

B.3 Entropy Calibration

Entropy calibration is used when sampling candi-
date generations (§2.4). When sampling output

lens lenc ns nc h pc kc

Pphrase inp+ 5 50 30 80 4. 0.7 6
αNLG 20 50 20 50 6. 0.9 6

Table 4: Most parameters are explained in §2.4. h is
entropy for calibration in §B.3

generations, generation parameters (truncation pa-
rameter ps from nucleus sampling, in paraphras-
ing) control how “greedy” or stochastic sampling
is. However, the effect of ps depends on many dy-
namic (example-wise) factors. Setting ps too low
may sample only the most likely option, too high
gives off-topic candidates. The “correct” value of
ps is highly example-dependent.

We define entropy calibration to control how
much “randomness” is used in sampling in a robust
way. Rather than directly setting a ps for all exam-
ples, this specifies the approximate entropy ĥ to
sample with for each example. In the greedy case
for instance, the desired entropy ĥ is set to 0 (i.e.
picking from a set of 1 possible option).

We search for ps in each case that is expected
to give the correct entropy for the full generation,
although ps is a token-level parameter. To estimate
this, we take sampling entropy over the source text
s0...sn under the nucleus-sampling truncated dis-
tribution Pp:

ĥ = (19)∑
i

∑
w∈Vp

−Pp(w|s0...si−1)logPp(w|s0...si−1)

(20)

Vp is the truncated vocabulary with parameter ps.
We select ps that gives a desired entropy, setthing
this to 4 or 6 which we found effective (App. B.4).

B.4 Parameters

Here, we give model settings for our 2 experimen-
tal settings, paraphrasing and αNLG. See Table 4.
αNLG requires higher variety (higher hsample, pc),
and fewer generated contexts (nc). We experi-
mented with different reasonable values on the dev
set of each model, evaluating manually. We use
transformer language models (Mega size) trained
on TPU pods (TensorFlow) of size 512. These will
be made publicly available. For generation we used
2 NVIDIA Titan Xp GPUs.

1449

What is your creative process? What are some tips for keeping ice cream from melting?

Unsupervised
RDTop (us) What is your creative process? What's the best way to keep ice cream from melting?
RD30 (us) What’s your creative process? What's the best way to keep ice cream from melting?
RD45 (us) What’s your creative process like? What's the best way to keep ice cream from melting?
R-VQVAE What is your creative process? What tips are for keeping some ice cream from melting?
UPSA What is in your career choice process? what are some good tips for making ice cream with hair loss treatment?
CGMHTop What is your dream key? What are some arguments for keeping crude cream from?
CGMH30 What is your dream key? What are some arguments for keeping crude cream from?
CGMH45 What is your dream key? What are some arguments for keeping crude cream from?
Supervised
PG-IL What is your creative process? What are some tips for ice cream from melting?
DiPS What is your creative strategy? How do I cure ice cream from melting?
BART What is your creative process? What are some ways to keep ice cream from melting?
Bilingual
MT What is your creative process? What tips are there to prevent ice from melting?

Figure 3: Example generations of baselines on Quora paraphrasing dataset (§3).

o1: I once knew a girl named Sammy
o2:She got help and everything was alright

o1: Ray hung a tire on a rope to make his daughter a swing
o2: Ray ran to his daughter to make sure she was okay.

Unsupervised
RD (us) She had problems and needed help. He put her on the swing, and while she was on the swing,

she fell off and was lying on the ground.
GPT-2-fixed I didn’t think to her, this was a normal situation of course, that's what he does, right?
DeLorean Sammy was a very sweet girl She hit the rope and the tire fell on top of her.
ILM She wanted my daughter to have a new boyfriend His daughter was flying on the rope.
Supervised
COMeT-Emb Sammy was in a car accident Ray's daughter fell off the swing.
COMeT-Txt Sammy got into a bad accident and her car broke

down
Ray's daughter fell and fell off the swing.

O1 + O2 Sammy got hit by a drunk driver Ray's daughter fell off the swing.

Figure 4: Example generations of baselines on αNLG dataset (§3). Models attempt to fill in the blank between
o1, o2 to explain them both.

C Evaluation

C.1 Automatic Metrics

Links to the automatic metrics: ROUGE, BLEU,
METEOR, TERP , SARI, BERTScore,BLEURT.
We include extra further metrics tested for Quora
in table 5: ROUGE (Lin, 2004), BLEURT (Sellam
et al., 2020), BERTScore (Zhang et al., 2020). For
BLEURT, and BERTScore we use default settings.
We also include iBLEU Sun and Zhou (2012) with
α = 0.9.

C.2 Human Evaluation

Human evaluation for Quora and Twitter are largely
described in §3. We reiterate that thresholds are
used for each measure, and “overall” is the rate
that all thresholds are met. Agreement is calculated
on these binary combined threshold categories (fol-

lowing Schouten 1986). Full human results for
paraphrasing are in Table 6. Human eval for αNLG
is described in §3.

C.3 Twitter Dataset
We include here the full results for paraphrasing
on the Twitter URL corpus (Lan et al., 2017), a
set of paraphrase pairs created by linking tweets
with matching shared URLs. We test unsupervised
models CGMH, R-VQVAE (UPSA Twitter model
is not available), and the backtranslation MT model.
We include supplementary results to the main paper
in Table 7.

D Further Generations

See Figures 3,4 for outputs of REFLECTIVE DE-
CODING and baselines.

https://pypi.org/project/pyrouge/
https://www.nltk.org/_modules/nltk/translate/bleu_score.html
https://www.cs.cmu.edu/~alavie/METEOR/README.html
https://github.com/snover/terp
https://github.com/cocoxu/simplification/blob/master/SARI.py
https://github.com/Tiiiger/bert_score
https://github.com/google-research/bleurt

1450

Method R-1↑ R-2↑ BLEURT↑ BERTScore↑ iBLEU↑ Novelty ↑

Human Source 70.1 47.0 19.9 95.2 40.4 0.0
Reference 100.0 100.0 99.3 100.0 84.4 43.9

Supervised PG-IL 66.6 44.0 11.1 94.7 36.7 24.4
DiPS 56.7 33.7 -29.5 92.7 31.8 48.5
BART 63.6 41.6 9.6 94.4 33.8 35.2

Supervised (Bilingual) MT 64.7 39.8 16.7 94.8 35.9 26.8

Unsupervised R-VQVAE 68.2 32.0 -7.6 93.2 31.9 26.2
CGMHTop 55.6 29.6 -53.6 92.1 30.6 27.6
CGMH30 54.5 28.3 -58.9 91.9 29.8 29.7
CGMH45 48.5 22.1 -80.9 90.7 24.9 44.5
UPSA 56.2 30.4 -44.5 90.7 27.3 44.4
RDTop (Us) 65.8 42.3 15.3 94.8 37.0 20.8
RD30 (Us) 62.1 38.0 7.7 94.2 35.1 30.0
RD45 (Us) 56.8 31.1 -1.9 93.5 30.4 45.0

Table 5: Model performance on the Quora test split. Included here are extra metrics beyond what is in the main
paper. R-1 and R-2 refer to ROUGE-1 and ROUGE-2.

Quora Twitter
Method Fluency Consistency Novelty Overall (%) Fluency Consistency Novelty Overall (%)

Reference 98.7 78.3 94.0 71.7 91.7 58.7 95.3 51.3

PG-IL 95.9 79.9 51.0 29.4 - - - -
DiPS 85.6 45.1 93.3 36.6 - - - -
BART 97.2 77.6 68.8 46.1 - - - -

MT 98.7 88.7 71.2 59.3 99.0 90.0 80.9 70.9

R-VQVAE 84.2 76.3 60.3 33.5 65.3 44.0 94.3 32.3
CGMHTop 79.4 43.1 85.6 27.0 71.9 48.8 82.6 27.8
CGMH30 78.8 37.9 96.4 31.5 67.2 35.8 92.0 25.1
CGMH45 71.6 19.9 98.5 15.8 51.5 20.9 96.3 13.5
UPSA 84.4 46.7 91.6 37.8 - - - -

RDTop (Us) 98.0 84.6 43.5 27.5 98.7 70.9 76.3 46.5
RD30 (Us) 98.7 75.3 88.2 63.2 98.7 70.9 76.3 46.5
RD45 (Us) 97.5 67.3 95.3 62.1 98.0 64.5 92.6 56.9

Table 6: Human evaluation results on both datasets for tested models. See §C.2.

Method SARI↑ BLEU↑ METEOR↑ TERP ↓ Novelty ↑

Human Source 13.6 36.7 25.0 75.0 0.0
Reference 90.7 100.0 100.0 0.0 63.3

Supervised (Bilingual) MT 36.1 29.4 22.1 80.0 30.4

Unsupervised R-VQVAE 31.1 25.2 21.0 90.0 40.4
CGMHTop 32.7 28.2 19.8 77.0 25.5
CGMH30 33.2 26.3 18.7 78.0 30.1
CGMH45 31.8 20.5 15.4 82.0 45.7
RDTop/30 (Us) 31.4 27.2 19.9 86.0 37.0
RD45 (Us) 36.1 25.6 19.0 88.0 45.3

Table 7: Model performance on the Twitter URL test split. Note: Diversity of RDTop is over 30 and so this model
is equivalent to RD30 here.

