AGGGEN: Ordering and Aggregating while Generating

Xinnuo Xu', Ondrej Dusek’, Verena Rieser’ and Ioannis Konstas’
"The Interaction Lab, MACS, Heriot-Watt University, Edinburgh, UK
*Charles University, Faculty of Mathematics and Physics, Prague, Czechia

Xx6, v.t.rieser,

i.konstas@hw.ac.uk

odusek@ufal . .mff.cuni.cz

Abstract

We present AGGGEN (pronounced ‘again’), a
data-to-text model which re-introduces two ex-
plicit sentence planning stages into neural data-
to-text systems: input ordering and input ag-
gregation. In contrast to previous work us-
ing sentence planning, our model is still end-
to-end: AGGGEN performs sentence planning
at the same time as generating text by learn-
ing latent alignments (via semantic facts) be-
tween input representation and target text. Ex-
periments on the WebNLG and E2E challenge
data show that by using fact-based alignments
our approach is more interpretable, expressive,
robust to noise, and easier to control, while
retaining the advantages of end-to-end sys-
tems in terms of fluency. Our code is avail-
able at https://github.com/Xinnuoxu/
AggGen.

1 Introduction

Recent neural data-to-text systems generate text
“end-to-end” (E2E) by learning an implicit mapping
between input representations (e.g. RDF triples)
and target texts. While this can lead to increased
fluency, E2E methods often produce repetitions,
hallucination and/or omission of important con-
tent for data-to-text (Dusek et al., 2020) as well
as other natural language generation (NLG) tasks
(Cao et al., 2018; Rohrbach et al., 2018). Tradi-
tional NLG systems, on the other hand, tightly
control which content gets generated, as well as its
ordering and aggregation. This process is called
sentence planning (Reiter and Dale, 2000; Duboue
and McKeown, 2001, 2002; Konstas and Lapata,
2013; Gatt and Krahmer, 2018). Figure 1 shows
two different ways to arrange and combine the rep-
resentations in the input, resulting in widely differ-
ent generated target texts.

In this work, we combine advances of both
paradigms into a single system by reintroducing

Input DBpedia Triples Human-authored Text

« William Anders (_dateOfRetirement)1969-09-01
« Apollo 8 Frank Borman

o William Anders | member_of /Apollo 8

« Apollo 8 (backup_pilot) Buzz Aldrin

o Apollo 8(operator) NASA

William Anders, who retired on
September 1st, 1969, was a crew
member on Apollo 8 and served
under commander Frank Borman.
Apollo 8 was operated by NASA
with Buzz Aldrin as backup pilot.

Sentence Plan 1:

member_of operator @ackup,pilot commander dateOfRetiremenD

Generated Target Text 1:

William Anders served as a crew member on Apollo 8 operated by nasa. The backup pilot
was Buzz Aldrin. Frank Borman was also an Apollo 8 commander. William Anders retired
on September 1st, 1969.

Sentence Plan 2:

dateOfRetirement

Generated Target Text 2:

William Anders retired on 1969-09-01. He was a crew member of nasa 's Apollo 8. Frank
Borman was also a commander with Buzz Aldrin as the backup pilot.

Figure 1: Two different sentence plans with their cor-
responding generated target texts from our model on
the WebNLG dataset. Planning and generation is per-
formed jointly. The dashed line denotes aggregation.

sentence planning into neural architectures. We
call our system AGGGEN (pronounced ‘again’).
AGGGEN jointly learns to generate and plan at the
same time. Crucially, our sentence plans are in-
terpretable latent states using semantic facts' (ob-
tained via Semantic Role Labelling (SRL)) that
align the target text with parts of the input repre-
sentation. In contrast, the plan used in other neural
plan-based approaches is usually limited in terms
of its interpretability, control, and expressivity. For
example, in (Moryossef et al., 2019b; Zhao et al.,
2020) the sentence plan is created independently,
incurring error propagation; Wiseman et al. (2018)
use latent segmentation that limits interpretability;
Shao et al. (2019) sample from a latent variable, not
allowing for explicit control; and Shen et al. (2020)
aggregate multiple input representations which lim-
its expressiveness.

AGGGEN explicitly models the two planning
processes (ordering and aggregation), but can di-
rectly influence the resulting plan and generated

"Each fact roughly captures “who did what to whom”.

1419

Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 1419-1434
August 1-6, 2021. ©2021 Association for Computational Linguistics

https://github.com/XinnuoXu/AggGen
https://github.com/XinnuoXu/AggGen

target text, using a separate inference algorithm
based on dynamic programming. Crucially, this en-
ables us to directly evaluate and inspect the model’s
planning and alignment performance by comparing
to manually aligned reference texts.

We demonstrate this for two data-to-text gener-
ation tasks: the E2E NLG (Novikova et al., 2017)
and the WebNLG Challenge (Gardent et al., 2017a).
We work with a triple-based semantic representa-
tion where a triple consists of a subject, a predicate
and an object.” For instance, in the last triple in
Figure 1, Apollo 8, operator and NASA are the sub-
ject, predicate and object respectively. Our contri-
butions are as follows:

e We present a novel interpretable architecture
for jointly learning to plan and generate based on
modelling ordering and aggregation by aligning
facts in the target text to input representations with
an HMM and Transformer encoder-decoder.

e We show that our method generates output
with higher factual correctness than vanilla encoder-
decoder models without semantic information.

e We also introduce an intrinsic evaluation
framework for inspecting sentence planning with a
rigorous human evaluation procedure to assess fac-
tual correctness in terms of alignment, aggregation
and ordering performance.

2 Related Work

Factual correctness is one of the main issues for
data-to-text generation: How to generate text ac-
cording to the facts specified in the input triples
without adding, deleting or replacing information?
The prevailing sequence-to-sequence (seq2seq)
architectures typically address this issue via rerank-
ing (Wen et al., 2015a; Dusek and Jurcicek, 2016;
Juraska et al., 2018) or some sophisticated training
techniques (Nie et al., 2019; Kedzie and McKeown,
2019; Qader et al., 2019). For applications where
structured inputs are present, neural graph encoders
(Marcheggiani and Perez-Beltrachini, 2018; Rao
et al., 2019; Gao et al., 2020) or decoding of ex-
plicit graph references (Logan et al., 2019) are ap-
plied for higher accuracy. Recently, large-scale
pretraining has achieved SoTA results on WebNLG
by fine-tuning T5 (Kale and Rastogi, 2020).
Several works aim to improve accuracy and con-
trollability by dividing the end-to-end architec-
ture into sentence planning and surface realisation.

Note that E2E NLG data and other input semantic repre-
sentations can be converted into triples, see Section 4.1.

Castro Ferreira et al. (2019) feature a pipeline with
multiple planning stages and Elder et al. (2019)
introduce a symbolic intermediate representation
in multi-stage neural generation. Moryossef et al.
(2019b,a) use pattern matching to approximate the
required planning annotation (entity mentions, their
order and sentence splits). Zhao et al. (2020) use a
planning stage in a graph-based model — the graph
is first reordered into a plan; the decoder conditions
on both the input graph encoder and the linearized
plan. Similarly, Fan et al. (2019) use a pipeline ap-
proach for story generation via SRL-based sketches.
However, all of these pipeline-based approaches
either require additional manual annotation or de-
pend on a parser for the intermediate steps.

Other works, in contrast, learn planning and re-
alisation jointly. For example, Su et al. (2018) in-
troduce a hierarchical decoding model generating
different parts of speech at different levels, while
filling in slots between previously generated to-
kens. Puduppully et al. (2019) include a jointly
trained content selection and ordering module that
is applied before the main text generation step.The
model is trained by maximizing the log-likelihood
of the gold content plan and the gold output text. Li
and Rush (2020) utilize posterior regularization in
a structured variational framework to induce which
input items are being described by each token of the
generated text. Wiseman et al. (2018) aim for better
semantic control by using a Hidden Semi-Markov
Model (HSMM) for splitting target sentences into
short phrases corresponding to “templates”, which
are then concatenated to produce the outputs. How-
ever it trades the controllability for fluency. Simi-
larly, Shen et al. (2020) explicitly segment target
text into fragment units, while aligning them with
their corresponding input. Shao et al. (2019) use a
Hierarchical Variational Model to aggregate input
items into a sequence of local latent variables and
realize sentences conditioned on the aggregations.
The aggregation strategy is controlled by sampling
from a global latent variable.

In contrast to these previous works, we achieve
input ordering and aggregation, input-output align-
ment and text generation control via interpretable
states, while preserving fluency.

3 Joint Planning and Generation

We jointly learn to generate and plan by aligning
facts in the target text with parts of the input repre-
sentation. We model this alignment using a Hidden

1420

Markov Model (HMM) that follows a hierarchical
structure comprising two sets of latent states, corre-
sponding to ordering and aggregation. The model
is trained end-to-end and all intermediate steps are
learned in a unified framework.

3.1 Model Overview

Let = {x1,22,...,27} be a collection of .J in-
put triples and y their natural language description
(human written target text). We first segment y
into a sequence of T' facts y1.7r = y1,¥2,---, YT,
where each fact roughly captures “who did what to
whom” in one event. We follow the approach of
Xu et al. (2020), where facts correspond to predi-
cates and their arguments as identified by SRL (See
Appendix B for more details). For example:

William Anders, who retired in 1969, was a crew member on Apollo 8.
J L

R R
Fact-1 Fact-2

Each fact y, consists of a sequence of tokens
vt th e ,yiv t. Unlike the text itself, the plan-
ning information, i.e. input aggregation and order-
ing, is not directly observable due to the absence
of labelled datasets. AGGGEN therefore utilises
an HMM probabilistic model which assumes that
there is an underlying hidden process that can be
modeled by a first-order Markov chain. At each
time step, a latent variable (in our case input triples)
is responsible for emitting an observed variable (in
our case a fact text segment). The HMM specifies
a joint distribution on the observations and the la-
tent variables. Here, a latent state z; emits a fact
Y, representing the group of input triples that is
verbalized in y;. We write the joint likelihood as:

p(zur,yur | 2) =p(z1r |) p(yir | 217, 2)
=|p(z) [[p(z | Ztlw)] [Hp(yt | Zmﬂ?)} :

i.e., it is a product of the probabilities of each la-
tent state transition (transition distribution) and the
probability of the observations given their respec-
tive latent state (emission distribution).

3.2 Parameterization

Latent State. A latent state z; represents the in-
put triples that are verbalized in the observed fact
y¢. It is not guaranteed that one fact always ver-
balizes only one triple (see bottom example in
Figure 1). Thus, we represent state z; as a sequence
of latent variables o}, . . ., or*, where L; is the num-
ber of triples verbalized in y;. Figure 2 shows the
structure of the model.

dateOfRetirement ¢ member_of e operato
e backup_pilot e commander

[Predicates of input triples @]
. r

member_of operator
1 2 1 Ui 2 3
%e-y > % O — > GG — > o
T2
« member_of Zi1 Zy
e operator T3

He was a crew member of nasa 's Apollo 8

Figure 2: The structure of our model. z;, z;—1, ¥y,
and y;_1 represent the basic HMM structure, where z;,
z;_1 are latent states and y;, y;—1 are observations. In-
side the dashed frames is the corresponding structure
for each latent state z;, which is a sequence of latent
variables otL t representing the predicates that emit the
observation. For example, at time step ¢ — 1 two in-
put triples (‘member_of” and ‘operator’) are verbalized
in the observed fact y;—1, whose predicates are repre-
sented as latent variables 0(1t_1) and o%t_l). T1-4 rep-
resent transitions introduced in Section 3.2.

Leto, € Q = {1,..., K} be a set of possible
latent variables, then K7 is the size of the search
space for z;. If ol maps to unique triples, the search
space becomes intractable for a large value of K.
To make the problem tractable, we decrease K
by representing triples by their predicate. Q thus
stands for the collection of all predicates appearing
in the corpus. To reduce the search space for z;
further, we limit L; < L, where L = 3.3

Transition Distribution. The transition distribu-
tion between latent variables (T1 in Figure 2) is
a K x K matrix of probabilities, where each row
sums to 1. We define this matrix as

D (off | ogl_l),:r> = softmax (AB ® M (q)) (1)

where © denotes the Hadamard product.
AcREX™ and BeR™K are matrices
of predicate embeddings with dimension m.
q={q1,q2,...,q7} is the set of predicates of the
input triples x, and each g; € Q is the predicate of
the triple z;. M (q) is a K x K masking matrix,
where M;; = 1if i € g and j € ¢, otherwise

3By aligning the triples to facts using a rule-based aligner
(see Section 5), we found that the chance of aggregating more
than three triples to a fact is under 0.01% in the training set of
both WebNLG and E2E datasets.

1421

M;; = 0. We apply row-wise softmax over the
resulting matrix to obtain probabilities.

The probability of generating the latent state z;
(T2 in Figure 2) can be written as the joint distribu-
tion of the latent variables o}, ..., oF*. Assuming
a first-order Markov chain, we get:

p(zt\x)zp(og,oi,of,...,oft \x)
Ly
:p(o? | x) |:Hp (oi | Ogll),w)] 7
1=1
0

where o; is a marked start-state.

On top of the generation probability of the la-
tent states p(z; |) and p (z¢—1 |), we define
the transition distribution between two latent states
(T3 in Figure 2) as:

Ly_
p (2| 2ie1,@) =p (of1), 00 | @)
Ly_
P (Otl ‘ O(tt_ 1),{E)

0 Ly
P\Ot,.--;0¢ ‘CE)

where oé:l) denotes the last latent variable in la-
tent state z;_1, while o;; denotes the first latent
variable (other than the start-state) in latent state
z;. We use two sets of parameters { Aj,, Bi, } and
{Agut, Bout} to describe the transition distribution
between latent variables within and across latent
states, respectively.

Emission Distribution. The emission distribu-
tion p (y¢ | z¢,z) (T4 in Figure 2) describes the
generation of fact y; conditioned on latent state z;
and input triples . We define the probability of
generating a fact as the product over token-level
probabilities,

Ny
p(yelze,2) =p(y | ze.2) [[p(i | v 20, 2).
=2

The first and last token of a fact are marked fact-
start and fact-end tokens. We adopt Transformer
(Vaswani et al., 2017) as the model’s encoder and
decoder.

Each triple is linearized into a list of tokens fol-
lowing the order: subject, predicate, and object.
In order to represent individual triples, we insert
special [SEP] tokens at the end of each triple. A
special [CLS] token is inserted before all input
triples, representing the beginning of the entire in-
put. An example where the encoder produces a
contextual embedding for the tokens of two input
triples is shown in Figure 6 in Appendix E.

At time step ¢, the decoder generates fact y;
token-by-token autoregressively, conditioned on

both the contextually-encoded input and the latent
state z;. To guarantee that the generation of y;
conditions only on the input triples whose predicate
is in z;, we mask out the contextual embeddings of
tokens from other unrelated triples for the encoder-
decoder attention in all Transformer layers.

Autoregressive Decoding. Autoregressive Hid-
den Markov Model (AR-HMM) introduces ex-
tra links into HMM to capture long-term corre-
lations between observed variables, i.e., output to-
kens. Following Wiseman et al. (2018), we use
AR-HMM for decoding, therefore allowing the in-
terdependence between tokens to generate more
fluent and natural text descriptions. Each token
distribution depends on all the previously gener-

ated tokens, i.e., we define the token-level proba-

bilities as p(y! | yi;gt_l)’ ytlz(z‘fl)

p(y! | ytlz(ifl) , Z¢,). During training, at each time
step ¢, we teacher-force the generation of the fact y;
by feeding the ground-truth history, y1.;_1), to the
word-level Transformer decoder. However, since
only y; depends on the current hidden state z;, we
only calculate the loss over y;.

, Zt, x) instead of

3.3 Learning

We apply the backward algorithm (Rabiner, 1989)
to learn the parameters introduced in Section 3.2,
where we maximize p(y | x), i.e., the marginal like-
lihood of the observed facts y given input triples
x, over all the latent states z and o on the entire
dataset using dynamic programming. Following
Murphy (2012), and given that the latent state at
time ¢ is C, we define a conditional likelihood of
future evidence as:

575 (C) £ p (yt+1iT | Zy = C? CE), (2)

where C' denotes a group of predicates that are
associated with the emission of y. The size of C
ranges from 1 to I and each component is from the
collection of predicates QQ (see Section 3.2). Then,
the backward recurrences are:

Be—1 (C/) =p (yt:T | z2e—1 = C/,x)
5 oo 1= oo =l =2
C

with the base case 7 (C) = 1. The marginal
probability of y over latent z is then obtained as
p(y |2) = Y0 o (O)p (21 = Cla).

In Equation 2, the size of the search space for
Cis Yk K®, where K = |Q), i.e., the number
of unique predicates appearing in the dataset. The

1422

Predicates of

Inputtriples@
o;) (0}) (0}) (03) (0}) InputOrdering
0 1 0 0 1

Input Aggregation

® @

‘ Fact1 ‘ ‘

Sentence Planning

Fact2 ‘ Text Generation

Figure 3: The inference process (Section 3.4)

problem can still be intractable due to high K, de-
spite the simplifications explained in Section 3.2
(cf. predicates). To tackle this issue and reduce the
search space of C, we: (1) only explore permuta-
tions of C' that include predicates appearing on the
input; (2) introduce a heuristic based on the overlap
of tokens between a triple and a fact—if a certain
fact mentions most tokens appearing in the predi-
cate and object of a triple we hard-align it to this
triple.* As a result, we discard the permutations
that do not include the aligned predicates.

3.4 Inference

After the joint learning process, the model is able
to plan, i.e., order and aggregate the input triples
in the most likely way, and then generate a text de-
scription following the planning results. Therefore,
the joint prediction of (7, z) is defined as:

(g,2) = arg max

(y',2'),2' e{z(V)}

p(y.2z |z)

©))

= argmax p(y' |z, 2)p(2 |),

(v'.2"),z e{z(V)}

where {z(")} denotes a set of planning results, §
is the text description, and Z is the planning result
that ¢ is generated from.

The entire inference process (see Figure 3) in-
cludes three steps: input ordering, input aggrega-
tion, and text generation. The first two steps are
responsible for the generation of {z()} together
with their probabilities {p(z(") | z)}, while the last
step is for the text generation p(y’ | 2%,).

Planning: Input Ordering. The aim is to find the
top-k most likely orderings of predicates appearing
in the input triples. In order to make the search
process more efficient, we apply left-to-right beam-

“This heuristic is using the rule-based aligner introduced in
Section 5 with a threshold to rule out alignments in which the
triples are not covered over 50%, since our model emphasises
more on precision. Thus, not all triples are aligned to a fact.

search® based on the transition distribution intro-
duced in Equation 1. Specifically, we use a tran-
sition distribution between latent variables within
latent states, calculated with predicate embeddings
Ajn and By, (see Section 3.2). To guarantee that the
generated sequence does not suffer from omission
and duplication of predicates, we constantly update
the masking matrix M (¢) by removing generated
predicates from the set g. The planning process
stops when ¢ is empty.

Planning: Input Aggregation. The goal is to find
the top-n most likely aggregations for each result
of the Input Ordering step. To implement this
process efficiently, we introduce a binary state for
each predicate in the sequence: O indicates “wait”
and 1 indicates “emit” (green squares in Figure 3).
Then we list all possible combinations® of the bi-
nary states for the Input Ordering result. For each
combination, the aggregation algorithm proceeds
left-to-right over the predicates and groups those
labelled as “emit” with all immediately preceding
predicates labelled as “wait”. In turn, we rank all
the combinations with the transition distribution
introduced in Equation 1. In contrast to the Input
Ordering step, we use the transition distribution
between latent variables across latent states, cal-
culated with predicate embeddings Aqy: and Boyt.
That is, we do not take into account transitions be-
tween two consecutive predicates if they belong to
the same group. Instead, we only consider consec-
utive predicates across two connected groups, i.e.,
the last predicate of the previous group with the
first predicate of the following group.

Text Generation. The final step generates a text
description conditioned on the input triples and the
planning result (obtained from the Input Aggrega-
tion step). We use beam search and the planning-
conditioned generation process described in Sec-
tion 3.2 (“Emission Distribution”).

3.5 Controllability over sentence plans

While the jointly learnt model is capable of fully
automatic generation including the planning step
(see Section 3.4), the discrete latent space allows
direct access to manually control the planning com-
ponent, which is useful in settings which require

>We use beam search since Viterbi decoding aims at getting
2" = arg max,(z1.7|y,.7), but y,.p is not available at this
stage.

®We assume that each fact is comprised of L triples at
most. To match this assumption, we discard combinations

containing a group that aggregates more than L predicates.

1423

increased human supervision and is a unique fea-
ture of our architecture. The plans (latent variables)
can be controlled in two ways: (1) hyperparam-
eter. Our code offers a hyperparameter that can
be tuned to control the level of aggregation: no
aggregation, aggregate one, two triples, etc. The
model can predict the most likely plan based on
the input triples and the hyperparameter and gener-
ate a corresponding text description; (2) the model
can directly adopt human-written plans, e.g. us-
ing the notation [eatType][near customer-rating],
which translates to: first generate ‘eatType’ as an
independent fact and then aggregate the predicates
‘near’ and ‘customer-rating’ in the following fact
and generate their joint description.

4 Experiments

4.1 Datasets

We tested our approach on two widely used data-
to-text tasks: the E2E NLG (Novikova et al., 2017)
and WebNLG’ (Gardent et al., 2017a). Compared
to E2E, WebNLG is smaller, but contains more
predicates and has a larger vocabulary. Statistics
with examples can be found in Appendix C. We fol-
lowed the original training-development-test data
split for both datasets.

4.2 Evaluation Metrics

Generation Evaluation focuses on evaluating the
generated text with respect to its similarity to
human-authored reference sentences. To compare
to previous work, we adopt their associated metrics
to evaluate each task. The E2E task is evaluated
using BLEU (Papineni et al., 2002), NIST (Dod-
dington, 2002), ROUGE-L (Lin, 2004), METEOR
(Lavie and Agarwal, 2007), and CIDEr (Vedantam
et al., 2015). WebNLG is evaluated in terms of
BLEU, METEOR, and TER (Snover et al., 2000).
Factual Correctness Evaluation tests if the gener-
ated text corresponds to the input triples (Wen et al.,
2015b; Reed et al., 2018; Dusek et al., 2020). We
evaluated on the E2E test set using automatic slot
error rate (SER),? i.e., an estimation of the occur-
rence of the input attributes (predicates) and their
values in the outputs, implemented by Dusek et al.

"Since we propose exploring sentence planning and in-
creasing the controllability of the generation model and do not
aim for a zero-shot setup, we only focus on the seen category
in WebNLG.

8SER is based on regular expression matching. Since only
the format of E2E data allows such patterns for evaluation, we
only evaluate factual correctness on the E2E task.

Model BLEU TER METEOR

T5* 6470 — 0.46
PlanEnc* 6442 0.33 0.45
ADAPT* 60.59 0.37 0.44
TILB-PIPE* 44.34 0.48 0.38
Transformer 58.47 0.37 0.42
AGGGEN 58.74 0.40 0.43
AGGGEN_op 55.30 0.44 0.43
AGGGEN_ag 52.17 0.50 0.44
Table 1: Generation Evaluation Results on the

WebNLG (seen). The models labelled with ¢ are from
previous work. The rest are our implementations.

(2020). SER counts predicates that were added,
missed or replaced with a wrong object.

Intrinsic Planning Evaluation examines plan-
ning performance in Section 6.

4.3 Baseline model and Training Details

To evaluate the contributions of the planning com-
ponent, we choose the vanilla Transformer model
(Vaswani et al., 2017) as our baseline, trained on
pairs of linearized input triples and target texts. In
addition, we choose two types of previous works
for comparison: (1) best-performing models re-
ported on the WebNLG 2017 (seen) and E2E
dataset, i.e. TS (Kale and Rastogi, 2020), PlanEnc
(Zhao et al., 2020), ADAPT (Gardent et al., 2017b),
and TGen (Dusek and Jurc¢icek, 2016); (2) models
with explicit planning, i.e. TILB-PIPE (Gardent
et al., 2017b), NTemp+AR (Wiseman et al., 2018)
and Shen et al. (2020).

To make our HMM-based approach converge
faster, we initialized its encoder and decoder with
the baseline model parameters and fine-tuned them
during training of the transition distributions. En-
coder and decoder parameters were chosen based
on validation results of the baseline model for each
task (see Appendix D for details).

S Experiment Results

5.1 Generation Evaluation Results

Table 1 shows the generation results on the
WebNLG seen category (Gardent et al., 2017b).
Our model outperforms TILB-PIPE and Trans-
former, but performs worse than TS5, PlanEnc and
ADAPT. However, unlike these three models, our
approach does not rely on large-scale pretrain-
ing, extra annotation, or heavy pre-processing us-
ing external resources. Table 2 shows the results
when training and testing on the original E2E set.
AGGGEN outperforms NTemp+AR and is compa-
rable with Shen et al. (2020), but performs slightly

1424

Model [BLEU NIST MET R-L CIDer [Add Miss Wrong SER
TGen®* 66.41 85565 45.07 69.17 2.2253 | 00.14 04.11 00.03 04.27
NTemp+AR* 59.80 7.5600 38.75 65.01 1.9500 — — — —

Shen et al. (2020)* | 65.10 — 45.50 6820 2.2410 — — — —

Transformer 68.23 8.6765 4431 (69.88 22153 | 00.30 04.67 0020 05.16
AGGGEN 64.14 83509 4513 66.62 2.1953 | 0032 01.66 00.71 02.70
AGGGEN_qgp 5890 79100 4321 62.12 19656 | 01.65 0299 03.01 07.65
AGGGEN_jg 44.00 6.0890 4375 5824 0.8202 | 08.74 00.45 0092 10.11

Table 2: Evaluation of Generation (middle) and Factual correctness (right) trained/tested on the original E2E data
(Section 5 for metrics description). Models with ¢ are from previous work, the rest are our implementations.

Model [BLEU NIST MET R-L CIDer
TGen® 39.23 6.022 3697 55.52 1.762
Transformer 38.57 5.756 3592 5545 1.668
AGGGEN 41.06 6.207 3791 55.13 1.844
AGGGEN_op | 38.24 5951 36.56 51.53 1.653
AGGGEN_ag | 3044 4.636 37.99 49.94 0.936

Table 3: Evaluation of Generation trained on the orig-
inal E2E data, while tested on the cleaned E2E data.
Note that, the clean test set has more diverse MRs and
fewer references per MR, which leads to lower scores
— see also the paper introducing the cleaned E2E data
(Table 2 and 3 in Dusek et al. (2019)).

worse than both seq2seq models in terms of word-
overlap metrics.

However, the results in Table 3 demonstrate that
our model does outperform the baselines on most
surface metrics if trained on the noisy original E2E
training set and tested on clean E2E data (Dusek
et al., 2019). This suggests that the previous perfor-
mance drop was due to text references in the origi-
nal dataset that did not verbalize all triples or added
information not present in the triples that may have
down-voted the fact-correct generations.’ This also
shows that AGGGEN produces correct outputs even
when trained on a noisy dataset. Since constructing
high-quality data-to-text training sets is expensive
and labor-intensive, this robustness towards noise
is important.

5.2 Factual Correctness Results

The results for factual correctness evaluated using
SER on the original E2E test set are shown in Ta-
ble 2. The SER of AGGGEN is the best among
all models. Especially, the high “Miss™ scores
for TGen and Transformer demonstrate the high
chance of information omission in vanilla seq2seq-
based generators. In contrast, AGGGEN shows
much better coverage over the input triples while
keeping a low level of hallucination (low “Add”

“We also trained and tested models on the cleaned E2E
data. The full results (including the factual correctness evalu-
ation) are shown in Table 8 in Appendix F: there is a similar
trend as in results in Table 3, compared to Transformer.

and “Wrong” scores).

5.3 Ablation variants

To explore the effect of input planning on text
generation, we introduced two model variants:
AGGGEN_qp, where we replaced the Input Order-
ing with randomly shuffling the input triples before
input aggregation, and AGGGEN_,g, where the
Input Ordering result was passed directly to the
text generation and the text decoder generated a
fact for each input triple individually.

The generation evaluation results on both
datasets (Table 1 and Table 2) show that AGGGEN
outperforms AGGGEN_gp and AGGGEN_ 4 sub-
stantially, which means both Input Ordering and
Input Aggregation are critical. Table 2 shows that
the factual correctness results for the ablative vari-
ants are much worse than full AGGGEN, indi-
cating that planning is essential for factual cor-
rectness. An exception is the lower number of
missed slots in AGGGEN_,g. This is expected
since AGGGEN_,g generates a textual fact for
each triple individually, which decreases the pos-
sibility of omissions at the cost of much lower flu-
ency. This strategy also leads to a steep increase in
added information.

Additionally, AGGGEN_,g performs even
worse on the E2E dataset than on the WebNLG
set. This result is also expected, since input ag-
gregation is more pronounced in the E2E dataset
with a higher number of facts and input triples per
sentence (cf. Appendix C).

5.4 Qualitative Error Analysis

We manually examined a sample of 100 outputs
(50 from each dataset) with respect to their factual
correctness and fluency. For factual correctness,
we follow the definition of SER and check whether
there are hallucinations, substitutions or omissions
in generated texts. For fluency, we check whether
the generated texts suffer from grammar mistakes,
redundancy, or contain unfinished sentences. Fig-

1425

the cricketers food chinese
the cricketers near all bar one
the cricketers pricerange high

the cricketers area city centre

the cricketers customerrating average
the cricketers eattype restaurant

the cricketers familyfriendly yes

Inputs

the cricketers is a chinese restaurant near all bar one in the city centre .
it is children friendly and has an average customer rating .

[eatType priceRange] [food customerrating] [familyFriendly area near|

the cricketers is a chinese restaurant with a high price range. it has an averag
customer rating and is children friendly near all bar one in the city centre.

AggGen : Trans :

apollo 8 backup_pilot buzz aldrin william anders retirement 1969-09-01
apollo 8 crewmembers frank borman william anders crew_member apollo 8
apollo 8 operator nasa william anders birthplace british hong kong

Inputs

william anders (born in british hong kong) was a crew member of nasa's apo!
8 alongside frank borman. william anders retired on september 1st, 1969 .

[birthPlace] [crew .
william anders was born in british hong kong and served as a crew member on

apollo 8. frank borman was a crewman aboard the nasa operated apollo 8 mission.
the backup pilot was buzz aldrin. william anders retired on september Ist, 1969 .

ber] [operator crewMembers] [backup_pilot] [Retiremeni

AggGen Trans

Figure 4: Examples of input and system-generated tar-
get text for E2E (top) and WebNLG (bottom). The se-
quences in square brackets are the sentence plans.

ure 4 shows two examples of generated texts from
Transformer and AGGGEN (more examples, includ-
ing target texts generated by AGGGEN_op and
AGGGEN_jg, are shown in Table 6 and Table 7
in Appendix A). We observe that, in general, the
seq2seq Transformer model tends to compress
more triples into one fluent fact, whereas AGGGEN
aggregates triples in more but smaller groups, and
generates a shorter/simpler fact for each group.
Therefore, the texts generated by Transformer are
more compressed, while AGGGEN’s generations
are longer with more sentences. However, the plan-
ning ensures that all input triples will still be men-
tioned. Thus, AGGGEN generates texts with higher
factual correctness without trading off fluency. '’

6 Intrinsic Evaluation of Planning

We now directly inspect the performance of the
planning component by taking advantage of the
readability of SRL-aligned facts. In particular, we
investigate: (1) Sentence planning performance.
We study the agreement between model’s plan-
ning and reference planning for the same set of
input triples; (2) Alignment performance — we use
AGGGEN as an aligner and examine its ability to
align segmented facts to the corresponding input
triples. Since both studies require ground-truth
triple-to-fact alignments, which are not part of the
WebNLG and E2E data, we first introduce a human
annotation process in Section 6.1.

The number of fluent generations for Transformer and
AGGGEN among the examined 100 examples are 96 and 95 re-
spectively. The numbers for AGGGEN_op and AGGGEN_ g
are 86 and 74, which indicates that both Input Ordering and
Input Aggregation are critical for generating fluent texts.

6.1 Human-annotated Alignments

We asked crowd workers on Amazon Mechanical
Turk to align input triples to their fact-based text
snippets to derive a “reference plan’ for each tar-
get text.!! Each worker was given a set of input
triples and a corresponding reference text descrip-
tion, segmented into a sequence of facts. The work-
ers were then asked to select the triples that are
verbalised in each fact.!> We sampled 100 inputs
from the WebNLG!? test set for annotation. Each
input was paired with three reference target texts
from WebNLG. To guarantee the correctness of
the annotation, three different workers annotated
each input-reference pair. We only consider the
alignments where all three annotators agree. Using
Fleiss Kappa (Fleiss, 1971) over the facts aligned
by each judge to each triple, we obtained an aver-
age agreement of 0.767 for the 300 input-reference
pairs, which is considered high agreement.

6.2 Study of Sentence Planning

We now check the agreement between the model-
generated and reference plans based on the top-1
Input Aggregation result (see Section 3.4). We
introduce two metrics:

e Normalized Mutual Information (NMI) (Strehl
and Ghosh, 2002) to evaluate aggregation. We
represent each plan as a set of clusters of triples,
where a cluster contains the triples sharing the same
fact verbalization. Using NMI we measure mutual
information between two clusters, normalized into
the 0-1 range, where 0 and 1 denote no mutual
information and perfect correlation, respectively.

o Kendall’s tau (7) (Kendall, 1945) is a ranking
based measure which we use to evaluate both or-
dering and aggregation. We represent each plan
as a ranking of the input triples, where the rank
of each triple is the position of its associated fact
verbalization in the target text. 7 measures rank
correlation, ranging from -1 (strong disagreement)
to 1 (strong agreement).

In the crowdsourced annotation (Section 6.1),
each set of input triples contains three reference
texts with annotated plans. We fist evaluate the cor-
respondence among these three reference plans by

""The evaluation requires human annotations, since anchor-
based automatic alignments are not accurate enough (86%) for
the referred plan annotation. See Table 5 (“RB”) for details.

12The annotation guidelines and an example annotation task
are shown in Figure 7 in Appendix G.

3We chose WebNLG over E2E for its domain and predicate
diversity.

1426

[NMILusx NMILy, K-taum, K-tau,,
Human 0.9340 0.7587 0.8415 0.2488
AGGGEN | 0.7101 0.6247 0.6416 0.2064

Table 4: Planning Evaluation Results. NMI and K-tau
calculated between human-written references (bottom),
and between references and our system AGGGEN (top).

| Precision Recall F1
RB (%) 86.20 100.00 92.59
Vtb (%) 89.73 84.16 86.85

Table 5: Alignment Evaluation Results. Alignment
accuracy for the Viterbi algorithm (Vtb) and the rule-
based aligner (RB).

calculating NMI and 7 between one plan and the
remaining two. In the top row of Table 4, the high
average and maximum NMI indicate that the refer-
ence texts’ authors tend to aggregate input triples
in similar ways. On the other hand, the low aver-
age 7 shows that they are likely to order the aggre-
gated groups differently. Then, for each set of input
triples, we measure NMI and 7 of the top-1 Input
Aggregation result (model’s plan) against each of
the corresponding reference plans and compute av-
erage and maximum values (bottom row in Table 4).
Compared to the strong agreement among refer-
ence plans on the input aggregation, the agreement
between model’s and reference plans is slightly
weaker. Our model has slightly lower agreement on
aggregation (NMI), but if we consider aggregation
and ordering jointly (7), the agreement between our
model’s plans and reference plans is comparable to
the agreement among reference plans.

6.3 Study of Alignment

In this study, we use the HMM model as an aligner

and assess its ability to align input triples with their

fact verbalizations on the human-annotated set.

Given the sequence of observed variables, a trained

HMM-based model is able to find the most likely

sequence of hidden states z* = arg max(z1.7|y;.7)
z

using Viterbi decoding. Similarly, given a set of
input triples and a factoid segmented text, we use
Viterbi with our model to align each fact with the
corresponding input triple(s). We then evaluate the
accuracy of the model-produced alignments against
the crowdsourced alignments.

The alignment evaluation results are shown in
Table 5. We compare the Viterbi (Vtb) alignments
with the ones calculated by a rule-based aligner
(RB) that aligns each triple to the fact with the
greatest word overlap. The precision of the Viterbi
aligner is higher than the rule-based aligner. How-

ever, the Viterbi aligner tends to miss triples, which
leads to a lower recall. Since HMMs are locally
optimal, the model cannot guarantee to annotate
input triples once and only once.

7 Conclusion and Future Work

We show that explicit sentence planning, i.e., input
ordering and aggregation, helps substantially to
produce output which is both semantically correct
as well as naturally sounding. Crucially, this also
enables us to directly evaluate and inspect both the
model’s planning and alignment performance by
comparing to manually aligned reference texts. Our
system outperforms vanilla seq2seq models when
considering semantic accuracy and word-overlap
based metrics. Experiment results also show that
AGGGEN is robust to noisy training data. We plan
to extend this work in three directions:

Other Generation Models. We plan to plug other
text generators, e.g. pre-training based approaches
(Lewis et al., 2020; Kale and Rastogi, 2020), into
AGGGEN to enhance their interpretability and con-
trollability via sentence planning and generation.
Zero/Few-shot scenarios. Kale and Rastogi
(2020)’s work on low-resource NLG uses a pre-
trained language model with a schema-guided rep-
resentation and hand-written templates to guide the
representation in unseen domains and slots. These
techniques can be plugged into AGGGEN, which al-
lows us to examine the effectiveness of the explicit
sentence planning in zero/few-shot scenarios.
Including Content Selection. In this work, we
concentrate on the problem of faithful surface re-
alization based on E2E and WebNLG data, which
both operate under the assumption that all input
predicates have to be realized in the output. In
contrast, more challenging tasks such as RotoWire
(Wiseman et al., 2017), include content selection
before sentence planning. In the future, we plan to
include a content selection step to further extend
AGGGEN’s usability.

Acknowledgments

This research received funding from the EPSRC
project AlSec (EP/T026952/1), Charles University
project PRIMUS/19/SCI/10, a Royal Society re-
search grant (RGS/R1/201482), a Carnegie Trust
incentive grant (RIG0O09861). This research also
received funding from Apple to support research at
Heriot-Watt University and Charles University. We
thank Alessandro Suglia, Jindfich Helcl, and Hen-
rique Ferrolho for their suggestions. We thank the
anonymous reviewers for their helpful comments.

1427

References

Zigiang Cao, Furu Wei, Wenjie Li, and Sujian Li. 2018.
Faithful to the Original: Fact Aware Neural Abstrac-
tive Summarization. In AAAI, New Orleans, LA,
USA. ArXiv: 1711.04434.

Thiago Castro Ferreira, Chris van der Lee, Emiel van
Miltenburg, and Emiel Krahmer. 2019. Neural data-
to-text generation: A comparison between pipeline
and end-to-end architectures. In 2019 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP) and 9th International Joint Con-
ference on Natural Language Processing (IJCNLP),
Hong Kong.

George Doddington. 2002. Automatic evaluation
of machine translation quality using n-gram co-
occurrence statistics. In Proceedings of the second
international conference on Human Language Tech-
nology Research, pages 138—145.

Pablo Duboue and Kathleen McKeown. 2002. Content
planner construction via evolutionary algorithms
and a corpus-based fitness function. In Proceed-
ings of the International Natural Language Genera-
tion Conference, pages 89—96, Harriman, New York,
USA. Association for Computational Linguistics.

Pablo A. Duboue and Kathleen R. McKeown. 2001.
Empirically estimating order constraints for content
planning in generation. In Proceedings of the 39th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 172—179, Toulouse, France.
Association for Computational Linguistics.

Ondrej Dusek, David M. Howcroft, and Verena Rieser.
2019. Semantic noise matters for neural natural lan-
guage generation. In Proc. of the 12th International
Conference on Natural Language Generation, pages
421-426, Tokyo, Japan. Association for Computa-
tional Linguistics.

Ondrej Dusek and Filip Jur¢i¢ek. 2016. Sequence-to-
sequence generation for spoken dialogue via deep
syntax trees and strings. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
45-51, Berlin, Germany. Association for Computa-
tional Linguistics.

Ondfej Dusek, Jekaterina Novikova, and Verena Rieser.
2020. Evaluating the State-of-the-Art of End-to-End
Natural Language Generation: The E2E NLG Chal-
lenge. Computer Speech & Language, 59:123—-156.

Ondrej Dusek and Filip Jur¢i¢ek. 2016. Sequence-to-
Sequence Generation for Spoken Dialogue via Deep
Syntax Trees and Strings. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
45-51, Berlin. Association for Computational Lin-
guistics.

Ondfej Dusek, Jekaterina Novikova, and Verena Rieser.
2020. Evaluating the state-of-the-art of end-to-end

natural language generation: The e2e nlg challenge.
Computer Speech & Language, 59:123 — 156.

Henry Elder, Jennifer Foster, James Barry, and Alexan-
der O’Connor. 2019. Designing a symbolic inter-
mediate representation for neural surface realization.
In Proceedings of the Workshop on Methods for Op-
timizing and Evaluating Neural Language Genera-
tion, pages 65-73, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Angela Fan, Mike Lewis, and Yann Dauphin. 2019.
Strategies for Structuring Story Generation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2650—
2660, Florence, Italy. Association for Computa-
tional Linguistics.

Joseph L Fleiss. 1971. Measuring nominal scale agree-
ment among many raters. Psychological bulletin,
76(5):378.

Hanning Gao, Lingfei Wu, Po Hu, and Fangli
Xu. 2020. RDF-to-Text Generation with Graph-
augmented Structural Neural Encoders. In Proceed-
ings of the Twenty-Ninth International Joint Con-
ference on Artificial Intelligence, pages 3030-3036,
Yokohama, Japan.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017a. Creating train-
ing corpora for NLG micro-planners. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 179-188, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017b. The WebNLG
Challenge: Generating Text from RDF Data. In
Proceedings of the 10th International Conference on
Natural Language Generation, pages 124—133, San-
tiago de Compostela, Spain. Association for Compu-
tational Linguistics.

Albert Gatt and Emiel Krahmer. 2018. Survey of the
state of the art in natural language generation: Core
tasks, applications and evaluation. Journal of Artifi-
cial Intelligence Research, 61:65-170.

Luheng He, Kenton Lee, Omer Levy, and Luke Zettle-
moyer. 2018. Jointly predicting predicates and argu-
ments in neural semantic role labeling. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 364-369, Melbourne, Australia.

Juraj Juraska, Panagiotis Karagiannis, Kevin K. Bow-
den, and Marilyn A. Walker. 2018. A Deep En-
semble Model with Slot Alignment for Sequence-
to-Sequence Natural Language Generation. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), pages 152-162, New Orleans,
LA, USA.

1428

http://arxiv.org/abs/1711.04434
http://arxiv.org/abs/1711.04434
https://www.aclweb.org/anthology/D19-1052/
https://www.aclweb.org/anthology/D19-1052/
https://www.aclweb.org/anthology/D19-1052/
https://dl.acm.org/doi/abs/10.5555/1289189.1289273
https://dl.acm.org/doi/abs/10.5555/1289189.1289273
https://dl.acm.org/doi/abs/10.5555/1289189.1289273
https://www.aclweb.org/anthology/W02-2112
https://www.aclweb.org/anthology/W02-2112
https://www.aclweb.org/anthology/W02-2112
https://doi.org/10.3115/1073012.1073035
https://doi.org/10.3115/1073012.1073035
https://doi.org/10.18653/v1/W19-8652
https://doi.org/10.18653/v1/W19-8652
https://doi.org/10.18653/v1/P16-2008
https://doi.org/10.18653/v1/P16-2008
https://doi.org/10.18653/v1/P16-2008
https://doi.org/10.1016/j.csl.2019.06.009
https://doi.org/10.1016/j.csl.2019.06.009
https://doi.org/10.1016/j.csl.2019.06.009
https://aclweb.org/anthology/P16-2008
https://aclweb.org/anthology/P16-2008
https://aclweb.org/anthology/P16-2008
https://doi.org/https://doi.org/10.1016/j.csl.2019.06.009
https://doi.org/https://doi.org/10.1016/j.csl.2019.06.009
https://doi.org/10.18653/v1/W19-2308
https://doi.org/10.18653/v1/W19-2308
https://doi.org/10.18653/v1/P19-1254
https://doi.org/10.1037/h0031619
https://doi.org/10.1037/h0031619
https://doi.org/10.24963/ijcai.2020/419
https://doi.org/10.24963/ijcai.2020/419
https://doi.org/10.18653/v1/P17-1017
https://doi.org/10.18653/v1/P17-1017
http://www.aclweb.org/anthology/W17-3518
http://www.aclweb.org/anthology/W17-3518
https://doi.org/10.1613/jair.5477
https://doi.org/10.1613/jair.5477
https://doi.org/10.1613/jair.5477
https://www.aclweb.org/anthology/P18-2058/
https://www.aclweb.org/anthology/P18-2058/
https://www.aclweb.org/anthology/N18-1014/
https://www.aclweb.org/anthology/N18-1014/
https://www.aclweb.org/anthology/N18-1014/

Mihir Kale and Abhinav Rastogi. 2020. Text-to-text
pre-training for data-to-text tasks. In Proceedings of
the 13th International Conference on Natural Lan-
guage Generation, pages 97-102, Dublin, Ireland.
Association for Computational Linguistics.

Chris Kedzie and Kathleen McKeown. 2019. A Good
Sample is Hard to Find: Noise Injection Sampling
and Self-Training for Neural Language Generation
Models. In INLG, Tokyo, Japan.

Maurice G Kendall. 1945. The treatment of ties in rank-
ing problems. Biometrika, pages 239-251.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In Proceed-
ings of the 3rd International Conference on Learn-
ing Representations, San Diego, CA, USA. ArXiv:
1412.6980.

Ioannis Konstas and Mirella Lapata. 2013. Induc-
ing document plans for concept-to-text generation.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1503-1514, Seattle, Washington, USA. Association
for Computational Linguistics.

Alon Lavie and Abhaya Agarwal. 2007. Meteor: An
automatic metric for mt evaluation with high levels
of correlation with human judgments. In Proceed-
ings of the second workshop on statistical machine
translation, pages 228-231.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871-7880, Online. Association
for Computational Linguistics.

Xiang Lisa Li and Alexander Rush. 2020. Posterior
control of blackbox generation. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 2731-2743, On-
line. Association for Computational Linguistics.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

Robert Logan, Nelson F. Liu, Matthew E. Peters, Matt
Gardner, and Sameer Singh. 2019. Barack’s Wife
Hillary: Using Knowledge Graphs for Fact-Aware
Language Modeling. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 5962-5971, Florence, Italy. Asso-
ciation for Computational Linguistics.

Diego Marcheggiani and Laura Perez-Beltrachini.
2018. Deep Graph Convolutional Encoders for

Structured Data to Text Generation. In Proceed-
ings of the 11th International Conference on Natu-
ral Language Generation, pages 1-9, Tilburg Uni-
versity, The Netherlands. Association for Computa-
tional Linguistics.

Amit Moryossef, Ido Dagan, and Yoav Goldberg.
2019a. Improving Quality and Efficiency in Plan-
based Neural Data-to-Text Generation. In INLG,
Tokyo, Japan.

Amit Moryossef, Yoav Goldberg, and Ido Dagan.
2019b. Step-by-Step: Separating Planning from
Realization in Neural Data-to-Text Generation. In
NAACL, Minneapolis, MN, USA.

Kevin P Murphy. 2012. Machine learning: a proba-
bilistic perspective. MIT press.

Feng Nie, Jin-Ge Yao, Jinpeng Wang, Rong Pan, and
Chin-Yew Lin. 2019. A Simple Recipe towards
Reducing Hallucination in Neural Surface Realisa-
tion. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics,
pages 2673-2679, Florence, Italy.

Jekaterina Novikova, Ondrej Dusek, and Verena Rieser.
2017. The E2E dataset: New challenges for end-
to-end generation. In Proceedings of the 18th An-
nual SIGdial Meeting on Discourse and Dialogue,
pages 201-206, Saarbriicken, Germany. Association
for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019.
Data-to-text generation with content selection and
planning. In Proceedings of the 33rd AAAI Confer-
ence on Artificial Intelligence, Honolulu, Hawaii.

Raheel Qader, Francois Portet, and Cyril Labbe. 2019.
Semi-Supervised Neural Text Generation by Joint
Learning of Natural Language Generation and Nat-
ural Language Understanding Models. In INLG,
Tokyo, Japan.

Lawrence R Rabiner. 1989. A tutorial on hidden
Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257—
286.

Jinfeng Rao, Kartikeya Upasani, Anusha Balakrish-
nan, Michael White, Anuj Kumar, and Rajen Subba.
2019. A Tree-to-Sequence Model for Neural NLG
in Task-Oriented Dialog. In INLG, Tokyo, Japan.

Lena Reed, Shereen Oraby, and Marilyn Walker. 2018.
Can neural generators for dialogue learn sentence

1429

https://www.aclweb.org/anthology/2020.inlg-1.14
https://www.aclweb.org/anthology/2020.inlg-1.14
https://www.aclweb.org/anthology/W19-8672/
https://www.aclweb.org/anthology/W19-8672/
https://www.aclweb.org/anthology/W19-8672/
https://www.aclweb.org/anthology/W19-8672/
https://doi.org/10.2307/2332303
https://doi.org/10.2307/2332303
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/D13-1157
https://www.aclweb.org/anthology/D13-1157
https://www.aclweb.org/anthology/W07-0734
https://www.aclweb.org/anthology/W07-0734
https://www.aclweb.org/anthology/W07-0734
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.243
https://doi.org/10.18653/v1/2020.acl-main.243
https://www.aclweb.org/anthology/W04-1013/
https://www.aclweb.org/anthology/W04-1013/
https://doi.org/10.18653/v1/P19-1598
https://doi.org/10.18653/v1/P19-1598
https://doi.org/10.18653/v1/P19-1598
http://aclweb.org/anthology/W18-6501
http://aclweb.org/anthology/W18-6501
https://www.aclweb.org/anthology/W19-8645/
https://www.aclweb.org/anthology/W19-8645/
https://www.aclweb.org/anthology/N19-1236/
https://www.aclweb.org/anthology/N19-1236/
https://www.aclweb.org/anthology/P19-1256
https://www.aclweb.org/anthology/P19-1256
https://www.aclweb.org/anthology/P19-1256
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1609/aaai.v33i01.33016908
https://doi.org/10.1609/aaai.v33i01.33016908
https://www.aclweb.org/anthology/W19-8669/
https://www.aclweb.org/anthology/W19-8669/
https://www.aclweb.org/anthology/W19-8669/
https://doi.org/10.1109/5.18626
https://doi.org/10.1109/5.18626
https://doi.org/10.1109/5.18626
https://www.aclweb.org/anthology/W19-8611/
https://www.aclweb.org/anthology/W19-8611/
https://doi.org/10.18653/v1/W18-6535

planning and discourse structuring? In Proceed-
ings of the 11th International Conference on Natu-
ral Language Generation, pages 284-295, Tilburg
University, The Netherlands. Association for Com-
putational Linguistics.

Ehud Reiter and Robert Dale. 2000. Building natural
language generation systems. Cambridge university
press.

Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns,
Trevor Darrell, and Kate Saenko. 2018. Object Hal-
lucination in Image Captioning. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4035-4045, Brus-
sels, Belgium.

Zhihong Shao, Minlie Huang, Jiangtao Wen, Wenfei
Xu, and Xiaoyan Zhu. 2019. Long and diverse text
generation with planning-based hierarchical varia-
tional model. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3257-3268, Hong Kong, China. As-
sociation for Computational Linguistics.

Xiaoyu Shen, Ernie Chang, Hui Su, Jie Zhou, and Di-
etrich Klakow. 2020. Neural data-to-text generation
via jointly learning the segmentation and correspon-
dence. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of the 7th Conference of the Associa-
tion for Machine Translation in the Americas, pages
223-231, Cambridge, MA, USA.

Alexander Strehl and Joydeep Ghosh. 2002. Cluster
ensembles—a knowledge reuse framework for com-
bining multiple partitions. Journal of machine learn-
ing research, 3(Dec):583-617.

Shang-Yu Su, Kai-Ling Lo, Yi-Ting Yeh, and Yun-
Nung Chen. 2018. Natural language generation by
hierarchical decoding with linguistic patterns. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 61-66, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998—6008.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. CIDEr: Consensus-based image de-
scription evaluation. In Proceedings of the IEEE

conference on computer vision and pattern recogni-
tion, pages 4566-4575.

Tsung-Hsien Wen, Milica Gasic, Dongho Kim, Nikola
Mrksic, Pei-Hao Su, David Vandyke, and Steve
Young. 2015a. Stochastic Language Generation
in Dialogue using Recurrent Neural Networks with
Convolutional Sentence Reranking. In Proceedings
of the 16th Annual Meeting of the Special Interest
Group on Discourse and Dialogue, pages 275-284,
Prague, Czech Republic. Association for Computa-
tional Linguistics.

Tsung-Hsien Wen, Milica Gasi¢, Nikola Mrksié, Pei-
Hao Su, David Vandyke, and Steve Young. 2015b.
Semantically conditioned LSTM-based natural lan-
guage generation for spoken dialogue systems. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
1711-1721, Lisbon, Portugal. Association for Com-
putational Linguistics.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253-2263, Copenhagen, Denmark. Association for
Computational Linguistics.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2018. Learning neural templates for text genera-
tion. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3174-3187, Brussels, Belgium. Association
for Computational Linguistics.

Xinnuo Xu, Ondfej DuSek, Jingyi Li, Verena Rieser,
and Joannis Konstas. 2020. Fact-based content
weighting for evaluating abstractive summarisation.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
5071-5081.

Chao Zhao, Marilyn Walker, and Snigdha Chaturvedi.
2020. Bridging the Structural Gap Between Encod-
ing and Decoding for Data-To-Text Generation. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2481—
2491, Online. Association for Computational Lin-
guistics.

1430

https://doi.org/10.18653/v1/W18-6535
https://aclweb.org/anthology/D18-1437/
https://aclweb.org/anthology/D18-1437/
https://doi.org/10.18653/v1/D19-1321
https://doi.org/10.18653/v1/D19-1321
https://doi.org/10.18653/v1/D19-1321
https://doi.org/10.18653/v1/2020.acl-main.641
https://doi.org/10.18653/v1/2020.acl-main.641
https://doi.org/10.18653/v1/2020.acl-main.641
https://www.aclweb.org/anthology/2006.amta-papers.25/
https://www.aclweb.org/anthology/2006.amta-papers.25/
https://www.jmlr.org/papers/v3/strehl02a.html
https://www.jmlr.org/papers/v3/strehl02a.html
https://www.jmlr.org/papers/v3/strehl02a.html
https://doi.org/10.18653/v1/N18-2010
https://doi.org/10.18653/v1/N18-2010
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1411.5726
https://arxiv.org/abs/1411.5726
http://aclweb.org/anthology/W15-4639
http://aclweb.org/anthology/W15-4639
http://aclweb.org/anthology/W15-4639
https://doi.org/10.18653/v1/D15-1199
https://doi.org/10.18653/v1/D15-1199
https://doi.org/10.18653/v1/D17-1239
https://doi.org/10.18653/v1/D18-1356
https://doi.org/10.18653/v1/D18-1356
https://www.aclweb.org/anthology/2020.acl-main.455/
https://www.aclweb.org/anthology/2020.acl-main.455/
https://doi.org/10.18653/v1/2020.acl-main.224
https://doi.org/10.18653/v1/2020.acl-main.224

A Examples of input and system-generated target text

Table 6: Examples of input and system-generated target text for E2E NLG dataset.

Input

the cricketers [customerrating] high
the cricketers [eattype] restaurant
the cricketers [near] express by holiday inn

Transf

Predicted Text: the cricketers is a highly rated restaurant near express by holiday inn.

AGGGEN

Sentence Planing: [eatType] [customerrating near]
Predicted Text: the cricketers is a highly rated restaurant located near express by holiday inn.

AGGGEN_g

Sentence Planing: [eatType] [near| [customerrating]
Predicted Text: the cricketers is a restaurant located near express by holiday inn . it has a high customer
rating.

AGGGEN_gp

Sentence Planing: [eatType near]| [customerrating]
Predicted Text: the cricketers is a restaurant near express by holiday inn . it has a high customer rating.

Input

blue spice [eattype] pub

blue spice [familyfriendly] yes

blue spice [food] english

blue spice [near] rainbow vegetarian café

Transf

Predicted Text: the blue spice is a family friendly pub near the rainbow vegetarian café. it serves english
food in the higher price range.

AGGGEN

Sentence Planing: [eatType familyFriendly] [food near]|
Predicted Text: blue spice is a family friendly pub serving english food near the rainbow vegetarian café.

AGGGEN_ g

Sentence Planing: [eatType] [familyFriendly] [food] [near]
Predicted Text: blue spice is a mid - priced pub that is family friendly and serves british food . it is located
near the rainbow vegetarian café.

AGGGEN_gp

Sentence Planing: [near familyFriendly eatType] [food]
Predicted Text: blue spice is a family friendly pub near the rainbow vegetarian café . it serves english food.

Input

the cricketers [area] riverside

the cricketers [customerrating] 5 out of 5
the cricketers [eattype] restaurant

the cricketers [familyfriendly] yes

the cricketers [food] chinese

the cricketers [near] all bar one

Transf

Predicted Text: the cricketers is a family friendly chinese restaurant near all bar one in the riverside area . it
has a customer rating of 5 out of 5.

AGGGEN

Sentence Planing: [eatType familyFriendly] [food area near| [customerrating]
Predicted Text: the cricketers is a family friendly chinese restaurant located in the riverside area near all bar
one . it has a customer rating of 5 out of 5.

AGGGEN_xg

Sentence Planing: [eatType] [food] [area] [customerrating] [familyFriendly] [near]
Predicted Text: the cricketers is a restaurant that serves chinese food. it is located in the riverside area and
has a customer rating of 5 out of 5 and is children friendly. the coffee shop is near all bar one.

AGGGEN_gp

Sentence Planing: [customerrating] [familyFriendly eatType] [food near area]
Predicted Text: the cricketers is a 5 out of 5 rated , family friendly chinese restaurant located in riverside
near all bar one.

Input

the cricketers [area] city centre

the cricketers [customerrating] average
the cricketers [eattype] restaurant

the cricketers [familyfriendly] yes

the cricketers [food] chinese

the cricketers [near] all bar one

the cricketers [pricerange] high

Transf

Predicted Text: the cricketers is a chinese restaurant near all bar one in the city centre . it is children friendly
and has an average customer rating.

AGGGEN

Sentence Planing: [eatType priceRange] [food customerrating] [familyFriendly area near]
Predicted Text: the cricketers is a chinese restaurant with a high price range . it has an average customer
rating and is children friendly near all bar one in the city centre.

AGGGEN_q

Sentence Planing: [eatType] [priceRange] [food] [customerrating] [familyFriendly] [area] [near]
Predicted Text: the cricketers is a chinese restaurant that is children friendly, has a high price range, a
customer rating of 3 out of 5, is located near the portland arms and is in the city centre. it has an average
customer rating. is also a children-friendly . you can find it is called the cricketers.

AGGGEN_gp

Sentence Planing: [area] [familyFriendly priceRange] [eatType food near] [customerrating]
Predicted Text: located in the city centre, the cricketers is a child friendly chinese restaurant with a high
price range. it is near all bar one. its customer rating is average.

1431

Table 7: Examples of input and system-generated target text for WebNLG dataset.

11th mississippi infantry monument [category] contributing property
11th mississippi infantry monument [country] united states

Input 11th mississippi infantry monument [established] 2000
1 1th mississippi infantry monument [location] seminary ridge
11th mississippi infantry monument [municipality] gettysburg, pennsylvania

Transf Predicted Text: the 11th mississippi infantry monument is located at seminary ridge, gettysburg, pennsylva-
nia, united states. it was established in 2000 and falls under the category of contributing property.

AGGGEN Sentence Planing: [location country established] [category] [municipality]

Predicted Text: the 11th mississippi infantry monument, established in 2000, is located at seminary ridge,
gettysburg, pennsylvania, united states. it is categorized as a contributing property and is in the municipality
of gettysburg pennsylvania.

AGGGEN_ac Sentence Planing: [country] [established] [category]| [municipality] [location]

B Predicted Text: the 11th mississippi infantry monument is located in gettysburg, pennsylvania, united states.
the monument was established in 2000 and falls under the category of contributing property. it can be found
in the municipality of gettysburg in pennsylvania and is in the seminary ridge.

AGGGEN_op Sentence Planing: [municipality] [category] [country established] [location]

B Predicted Text: the 11th mississippi infantry monument is in the municipality of gettysburg, pennsylvania.
it is categorized as a contributing property. the monument was established in the year 2000 in the united
states and is located at seminary ridge.
apollo 8 [backup pilot] buzz aldrin
apollo 8 [crewmembers] frank borman

Input apollo 8 [operator] nasa
william anders [birthplace] british hong kong
william anders [dateofretirement] 1969-09-01
william anders [was_a_crew _member_of] apollo 8

Transf Predicted Text: william anders (born in british hong kong) was a crew member of nasa’s apollo 8 alongside
frank borman. william anders retired on september 1st, 1969.

AGGGEN Sentence Planing: [birthPlace] [was_a_crew _member_of] [operator crewMembers] [backup pilot] [date-
OfRetirement]

Predicted Text: william anders was born in british hong kong and served as a crew member on apollo 8.
frank borman was a crewman aboard the nasa operated apollo 8 mission. the backup pilot was buzz aldrin.
william anders retired on september 1st, 1969.

AGGGEN_ac Sentence Planing: [birthPlace] [was_a_crew_member_of] [operator]| [crewMembers] [backup pilot] [da-

B teOfRetirement]

Predicted Text: william anders (born in british hong kong) was a crew member of apollo 8 operated by
nasa, where buzz aldrin was a backup pilot. frank borman was also a crewman aboard apollo 8. buzz aldrin’s
backup pilot was buzz aldrin. william anders retired on september 1st, 1969.

AGGGEN_op Sentence Planing: [backup pilot] [was_a_crew_member_of] [|birthPlace] [dateOfRetirement operator]

- [crewMembers]

Predicted Text: buzz aldrin was a crew member of apollo 8 with buzz aldrin as backup pilot and frank
borman as buzz aldrin. william anders was a crewman aboard apollo 8. british hong kong born william
anders retired. he was a backup pilot on the apollo 8 mission was operated by nasa. frank borman was also a
crewman.

school of business and social sciences at the aarhus university [affiliation] european university association
school of business and social sciences at the aarhus university [city] aarhus

school of business and social sciences at the aarhus university [country] denmark

Input school of business and social sciences at the aarhus university [dean] thomas pallesen
school of business and social sciences at the aarhus university [established] 1928
school of business and social sciences at the aarhus university [latinname] universitas aarhusiensis
school of business and social sciences at the aarhus university [numberofstudents] 16000

Transf Predicted Text: the school of business and social sciences at the aarhus university in aarhus, denmark was
established in 1928. it has 737 academic staff and 16,000 students. its dean is thomas pallesen and it is
affiliated with the european university association.

AGGGEN Sentence Planing: [country established city] [affiliation latinName numberOfStudents] [dean]
Predicted Text: the school of business and social sciences at the aarhus university in aarhus, denmark was
established in 1928. it has 737 academic staff and 16,000 students. its latin name is “universitas aarhusiensis”
and it is affiliated with the european university association. its dean is thomas pallesen.

AGGGEN_xG Sentence Planing: [country] [established] [city] [affiliation] [latinName] [numberOfStudents] [dean]

B Predicted Text: the school of business and social sciences at the aarhus university in denmark is affiliated
with the european university association in brussels. the school was established in 1928 and is located in
the city of aarhus. it is affiliated to the european univerrsity in the school the latin name of "universitas
aarhusiensis”. and there are 16000 students. its dean is thomas pallesen”.

AGGGEN_op Sentence Planing: [latinName numberOfStudents] [country established] [dean affiliation] [city]

Predicted Text: the school of business and social sciences at the aarhus university in aarhus, denmark has
16,000 students and its latin name is “universitas aarhusiensis”. it was established in 1928 in the country of
denmark and it is affiliated with the european university association. the current dean is thomas pallesen and
it has strong connections with the school also affiliated to its dean of business. and it also home to the school.

1432

B Factoid Sentence Segmentation

In order to align meaningful parts of the human-written target text to semantic triples, we first segment
the target sentences into sequences of facts using SRL, following Xu et al. (2020). The aim is to break
down sentences into sub-sentences (facts) that verbalize as few input triples as possible; the original
sentence can still be fully recovered by concatenating all its sub-sentences. Each fact is represented by a
segment of the original text that roughly captures “who did what to whom” in one event. We first parse
the sentences into SRL propositions using the implementation of He et al. (2018).'* We consider each
predicate-argument structure as a separate fact, where the predicate stands for the event and its arguments
are mapped to actors, recipients, time, place, etc. (see Figure 5). The sentence segmentation consists of
two consecutive steps:

(1) Tree Construction, where we construct a hierarchical tree structure for all the facts of one sentence,
by choosing the fact with the largest coverage as the root and recursively building sub-trees by replacing
arguments with their corresponding sub-facts (ARGI1 in FACT1 is replaced by FACT?2).

(2) Argument Grouping, where each predicate (FACT in tree) with its leaf-arguments corresponds to a
sub-sentence. For example, in Figure 5, leaf-argument “was” and “a crew member on Apollo 8” of FACT1
are grouped as one sub-sentence.

William Anders, who retired on September 1st, 1969, a crew member on Apollio 8.

SRL Representation

was a crew member on Apollo 8

Tree MR

FACT1-was |
i —
B N o 1.
| ARG1 | Y ARG2
e R 4 - e T
FACT2-retired was a crew member on Apollo 8
,,,,, [— PR — P o
| ARGO ! | R-ARGO | LoV {ARGM-TMP

D T ' I A I :
William Anders who retired on September 1st, 1969

Sentence Segmentation:

Figure 5: Semantic Role Labeling based tree meaning representation and factoid sentence segmentation for text
“William Anders, who retired on September 1st, 1969, was a crew member on Apollo 8.”

C Datasets

WebNLG. The corpus contains 21K instances (input-text pairs) from 9 different domains (e.g., as-
tronauts, sports teams). The number of input triples ranges from 1 to 7, with an average of 2.9. The
average number of facts that each text contains is 2.4 (see Appendix B). The corpus contains 272 distinct
predicates. The vocabulary size for input and output side is 2.6K and 5K respectively.

E2E NLG. The corpus contains 50K instances from the restaurant domain. We automatically convert
the original attribute-value pairs to triples: For each instance, we take the restaurant name as the subject
and use it along with the remaining attribute-value pairs as corresponding predicates and objects. The
number of triples in each input ranges from 1 to 7 with an average of 4.4. The average number of facts
that each text contains is 2.6. The corpus contains 9 distinct predicates. The vocabulary size for inputs and
outputs is 120 and 2.4K respectively. We also tested our approach on an updated cleaned release (Dusek
et al., 2019).

D Hyperparameters

WebNLG. Both encoder and decoder are a 2-layer 4-head Transformer, with hidden dimension of
256. The size of token embeddings and predicate embeddings is 256 and 128, respectively. The Adam
optimizer (Kingma and Ba, 2015) is used to update parameters. For both the baseline model and the
pre-train of the HMM-based model, the learning rate is 0.1. During the training of the HMM-based model,

'4The code can be found in https://allennlp.org with 86.49 test F1 on the Ontonotes 5.0 dataset.

1433

https://allennlp.org

the learning rate for the encoder-decoder fine-tuning and the training of the transition distributions is set
as 0.002 and 0.01, respectively.

E2E. Both encoder and decoder are a Transformer with hidden dimension of 128. The size of token
embeddings and predicate embeddings is 128 and 32, respectively. The rest hyper-parameters are same
with WebNLG.

E Parameterization: Emission Distribution

Transformer Decoder
Contextual Embeddings

:’IT[CLS] H(Tapono |[Top |[Tnasa | Tiser) |i TApouo Ty, i o || Taraes

Transformer Encoder

Input Triples

[cLS] || Apolio ||operator|| NASA || [SEP] || Apollo b‘;?l‘;‘:p Buzz || Aldrin || [SEP]

Figure 6: The Transformer encoder takes linearized triples and produces contextual embeddings We assume that,
at time step ¢, the Transformer decoder is generating fact y; conditioned on z;. The number of latent variables L,
is 1. In other words, z; = o;1. If the value of 0,7 is the predicate of the first triple (solid borders), then the second
triple (dashed borders) is masked out for the encoder-decoder attention during decoding.

F Full Experiment Results on E2E

Model [Train Test BLEU NIST MET R-L CIDer | Add Miss Wrong SER
TGen®* — 39.23 6.0217 3697 55.52 1.7623 | 0040 03.59 00.07 04.05
Transformer g g 38.57 5.7555 3592 5545 1.6676 | 02.13 05.71 00.51 08.35
AGGGEN 0 K 41.06 6.2068 3791 55.13 1.8443 | 02.04 03.38 00.64 06.06
AGGGEN_op 5 © 38.24 59509 36.56 51.53 1.6525 | 02.94 03.67 02.18 08.80
AGGGEN _g 30.44 4.6355 3799 4994 09359 | 08.71 01.60 00.87 11.24
TGen® 40.73 6.1711 37.76 56.09 1.8518 | 00.07 00.72 00.08 00.87
Transformer g o 38.62 6.0804 36.03 54.82 1.7544 | 03.15 04.56 01.32 09.02
AGGGEN 2 2 39.88 6.1704 3735 54.03 1.8193 | 01.10 01.85 01.25 04.21
AGGGEN_op © © 38.28 6.0027 3694 5155 1.6397 | 01.74 0274 00.62 05.11
AGGGEN_xg 26.92 42877 36.60 4795 0.9205 | 0599 01.54 02.31 09.98

Table 8: Evaluation of Generation (middle) and Factual correctness (right) on the E2E NLG data (see Section 5
for metrics decription).

G Annotation interface

e Each triple must be selected once and only once in the entire questionnaire
o In each section, all triples that are verbalized by the highlight need to be selected.
o Each section must have at least one selected triple.

V£ Highlight Section 1:
Cookies and Binignit are types of dessert . A key ingredient of Binignit is Sago .

~{ Candidate triples:
Binignit [ingredient] Sago
Binignit [course] Dessert
Dessert [dishVariation] Cookie

V£ Highlight Section 2:
Cookies and Binignit are types of dessert . A key ingredient of Binignit is Sago .
#{ Candidate triples:

Binignit [ingredient] Sago

Binignit [course] Dessert
Dessert [dishVariation] Cookie

Figure 7: An example of the fact-triple alignment task (highlights correspond to facts).

1434

