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Abstract

Extracting structured knowledge involving
self-reported events related to the COVID-19
pandemic from Twitter has the potential to in-
form surveillance systems that play a critical
role in public health. The event extraction chal-
lenge presented by the W-NUT 2020 Shared
Task 3 focused on the identification of five
types of events relevant to the COVID-19 pan-
demic and their respective set of pre-defined
slots encoding demographic, epidemiological,
clinical as well as spatial, temporal or subjec-
tive knowledge. Our participation in the chal-
lenge led to the design of a neural architec-
ture for jointly identifying all Event Slots ex-
pressed in a tweet relevant to an event of in-
terest. This architecture uses COVID-Twitter-
BERT as the pre-trained language model. In
addition, to learn text span embeddings for
each Event Slot, we relied on a special case
of Hopfield Networks, namely Hopfield pool-
ing. The results of the shared task evaluation
indicate that our system performs best when it
is trained on a larger dataset, while it remains
competitive when training on smaller datasets.

1 Introduction

With the outbreak of the COVID-19 pandemic, peo-
ple turned to social media platforms, such as Twit-
ter, to read and to share timely information about
their experiences with testing, treatment and deaths
caused by the virus. Extracting information about
these types of events has the potential to inform
COVID-19 surveillance systems, which play a crit-
ical role in the public health mission of agencies at
the international, national and local level.

The shared task organized by the 6-th Workshop
on Noisy User-generated Text (W-NUT) in 2020 fo-
cused on extracting COVID-19 events from Twitter
by targeting five types of events of interest, which
are illustrated in Table 1, and further detailed in
Zong et al. (2020). These five types of self-reported

Event Type Event Slots

TESTED POSITIVE age, close contact, employer,
gender, name, recent travel,

relation, when, where
TESTED NEGATIVE age, close contact, gender,

name, relation, when, where
CAN NOT TEST name, relation, symptoms,

when, where
DEATH age, name, relation, when, where
CURE opinion, what cure, who cure

Table 1: The Event Types and their corresponding
Event Slots defined in the W-NUT 2020 Shared Task
on COVID-19 Event Extraction.

events are typically expressed in Twitter postings
of people that indicate when they might be at in-
creased risk of COVID-19 due to a coworker or
other close contact testing positive for the virus, or
when they have symptoms but were denied access
to testing. Moreover, for each Event Type of in-
terest, a set of pre-defined slots were provided, to
account for information that may answer important
questions involving the events (e.g., Who tested
positive? Where did they recently travel? Who is
their employer?). The complete list of Event Slots
associated with each Event Type is illustrated in
Table 1.

Interestingly, events of type TESTED POSITIVE,
TESTED NEGATIVE, CAN NOT TEST and DEATH

have slots answering questions about when and
where, which help ground the events temporally
and spatially, potentially informing systems that try
to capture automatically trends of testing results for
the COVID-19 virus. Some slots for events of type
TESTED POSITIVE, TESTED NEGATIVE, also en-
code answers about demographic information, e.g.
age, gender as well as epidemiological information,
e.g. close contact or relation. Only events of the
type TESTED POSITIVE have a slot for employer.
Some clinical information is available through the
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slot symptoms of events of type CAN NOT TEST

or the slots what cure and who cure of the events
of type CURE. For the CURE type of events, a
slot capturing the opinion of the tweet reporter was
also annotated, providing a means for analyzing
the change in opinions throughout time.

The organizers of the W-NUT Shared Task 3
provided participants with a set of 7, 500 annotated
tweets, 7, 013 of which we were able to download.
The tweets are categorized by the type of event they
mention. In each category of tweets, every tweet
was annotated with (1) the text spans that can be
mapped in any of the slots corresponding to the
Event Type, as well as (2) the corresponding Event
Slot category. Moreover, in each tweet, text spans
that were not mapped to any Event Slot were also
provided. The training data we have used contains
3, 794 Event Type mentions and 10, 778 Event Slot
instances. This timely and richly-annotated twit-
ter dataset allowed participants to design and train
their event extraction systems, expecting to be
tested on a different set of tweets, which were la-
beled with the Event Type, probably a byproduct
of tweet retrieval using keywords proven to return
relevant posting for the events of interest. In the
test set, the tweet text spans are also provided.

Figure 1: (a) The Task of Event Slot Filling; (b) Multi-
Task Binary Classification of Tweet Text Spans.

The challenge of event extraction from Twitter

texts was defined as an Event Slot filling task, as
illustrated in Figure 1(a). Each tweet text is as-
sociated with one of the five Event Typei listed
in Table 1 and its defined Event Slots ESi =
(ESi

1, ESi
2, , , ESi

n(i)). In addition, a set of text
spans from the tweet, (Span1

i , Span
2
i , ...Span

k
i )

are provided. Filling the slots of the mention(s)
of an event of Event Typei is made possible by as-
signing to each tweet text span either to one of the
Event Slots ESi

j for the Event Typei or to none of
these Event Slots. To be noted that this is a many-
to-many assignment, as (1) the same Span1

i may
be assigned to more than one Event Slot from ESi

and (2) more than one text span can be assigned
to the same Event Slot from ESi. This is because,
the notion of event mention is avoided, thus when
multiple mentions of the same Event Type are ex-
pressed in the same tweet, some of the Event Slots
that are filled for one of the mention, whereas other
are filled for different mentions.

Casting the Event Slot filling as a binary classifi-
cation problem, as suggested in Zong et al. (2020),
is illustrated in Figure 1(b), where we show how
a separate recognition task is considered for each
of the Event Slots from ESi. In this case, for each
tweet text span, the recognition task of Event Slot
ESi

j is identifying whether any of the provided
text spans can fill that slot or not. In this way, the
Event Slot filling task is cast as a Multi-Task binary
classification problem. As before, the same text
span may fill different Event Slots, pertaining to
different event mentions.

Because event extraction in this challenge is
based on a mapping operation from tweet text spans
to Event Slots, we contemplated methods of rep-
resenting these spans that could take into account
more than deep contextual information. We hypoth-
esized that the representation of the tweet text spans
should be specific to each of the Event Slot recog-
nition tasks depicted in Figure 1(b). While contex-
tual span representations based on the widely used
BERT model (Devlin et al., 2019) have been suc-
cessful in many applications, e.g. end-to-end rela-
tion extraction (Eberts and Ulges, 2020) or corefer-
ence resolution (Joshi et al., 2020), we believe that
representing tweet text spans could be improved
when considering modern Hopfield Networks in
which the update rule is the attention mechanism
used in the transformer and BERT, an idea recently
advocated in Ramsauer et al. (2020). These ideas
led the design of our Multi-Task, Event-specific Ex-
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Figure 2: The Multi-Task Event-specific Extraction system using BERT and Hopfield Pooling (MT-EsE.BHP).

traction system using BERT and Hopfield Pooling
(MT-EsE.BHP).

2 Related Work

Zong et al. (2020) introduced the collection of
tweets used for training in this shared-task along
with the annotation schema and provided two base-
lines: a logistic regression model and a multi-
task BERT model. Their multi-task BERT model
utilized the contextual embedding for the token
<E> as their span embedding, while we expand
on this span embedding representation with width
embeddings and a slot-specific Hopfield pooling
embedding. We also make use of COVID-Twitter-
BERT, as opposed to BERT-base used by Zong
et al. (2020).

Mackey et al. (2020) utilized an unsupervised
approach to cluster tweets in which users discuss
experiences associated with possible COVID-19
symptoms. They used the biterm topic model
(BTM) (Yan et al., 2013) to identify tweet topic
clusters, and then manually annotated tweets which
fell within relevant topic clusters. In contrast, we
made use of the annotated tweets which discuss
relevant COVID-19 events, as provided by the W-
NUT 2020 Shared Task-3, designing a supervised
approach capable to extract events and their slots,
not only symptom discussions.

Zhang et al. (2020) manually identified twitter
users which appeared depressed and retrieved his-
torical tweets from these users. They attempted to
identify whether a twitter user may be depressed
based on their public tweet history using the lan-
guage model XLNet (Yang et al., 2019) and they

perform user-level classification using a Support
Vector Machine (SVM). They apply this system to
detect and monitor trends of depression during the
COVID-19 pandemic. We differ from this system
by utilizing a domain-specific language model with
COVID-Twitter-BERT is trained to extract several
types of events and their corresponding slots from
tweets related to COVID-19.

3 The Approach

3.1 The MT-EsE.BHP

The overall architecture of the MT-EsE.BHP is
illustrated in Figure 2. Given a tweet in which
events of type Event Typei are discussed, along with
the text spans that can be potentially mapped into
any of the events slots from ESi, the pre-trained
domain-specific language model COVID-Twitter-
BERT (Müller et al., 2020) is used to produce for
each word-piece token in the tweet a contextual em-
bedding. COVID-Twitter-BERT was pre-trained
on a large corpus of Tweets related to COVID-
19, and it also contains learned embeddings for
URLs (<url>) and @ mentioned Twitter users
(@<user>) which are used in place of URLs and
usernames.

The contextual embeddings are used to learn em-
bedding representations for each text span from
the tweet that can be potentially mapped to any of
the Event Slots of the events of Event Typei dis-
cussed in the tweet. In the MT-EsE.BHP a separate
text-span embedding is learned for each Event Slot
from ESi. A special case of a Hopfield Network,
namely Hopfield Pooling is used for learning each
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Figure 3: Hopfield Pooling for an Event Slot ESk
i of any Event Typei.

Event Slot-specific text-span embedding. Details
of how Hopfield Pooling works are provided in Sec-
tion 3.2. As Figure 2 shows, because the text-span
embeddings have the same dimension, regardless
of the width of the text span, the text-span embed-
dings were augmented by concatenating an embed-
ding corresponding to the width information for
each text span. The augmented text-span embed-
dings are used by each Event Slot Binary classifier,
which decides the mapping of each text span from
the tweet to any of the Event Slots from ESi. The
binary classifier is implemented as a single-layer
Softmax classifier.

3.2 Hopfield Pooling

Continuous Hopfield Networks have recently been
shown to be equivalent to iterative attention (Ram-
sauer et al., 2020), where current attention systems
are equivalent to a Hopfield Network with no up-
date steps. Hopfield pooling is a special case of
a Hopfield Network, where the query for the net-
work is a single vector. Hopfield pooling provides
a way to summarize k embeddings into a single
fixed-length embedding in an iterative way. Addi-
tionally, the single query vector can be a learned
embedding, and this embedding can be different
for different tasks in a multi-task system, which is
useful when the semantics for each task are differ-
ent. For each Event Slot ESj

i from the set of Event
Slots ESi defined for Event Typei (with i = 1, ..., 5
corresponding to the Event Types and their slots

listed in Table 1), Hopfield pooling enables the MT-
EsE.BHP to learn text-span embeddings. For exam-
ple, when learning the text-span embedding for the
span ”my sister” while considering the Event Slot
gender, the pooling will likely entirely focus on
the contextual embedding for ”sister”, while when
considering the relation Event Slot, the pooling
will likely focus equally on both contextual embed-
dings for the words ”my” and ”sister, as they are
both relevant to identify that the author of the tweet
has a relationship with someone mentioned in that
tweet text span.

Figure 3 illustrates the process of performing
Hopfield pooling for an Event Slot ESk

i of any
Event Typei, resulting in the text-span embedding
for a tweet span. This process is based on the learn-
ing of an embedding for the Event Slot ESk

i of
Event Typei, denoted as emb(ESk

i ). As shown in
Figure 3, emb(ESk

i ) is randomly initialized. At
each iteration, a vector multiplication between the
contextual embeddings of the words from the tweet
text span and the current Event Slot embedding
emb(ESk

i (t)) takes place. The vector product is
producing unnormalized scores, which we normal-
ize into wi

1, w
i
2, . . . , w

i
k with the Softmax operation.

These scores are then multiplied by their respec-
tive contextualized embeddings c1, c2, . . . , ck and
point-wise added together to produce a new single
embedding. If we have not yet performed the re-
quired number of Hopfield update iterations, then
the new embedding becomes emb(ESk

i (t+1)) and
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Figure 4: Example of Event Extraction for the relation Event Slot of the TESTED POSITIVE Event Type.

we repeat the whole process again. Otherwise, the
update iterations are finished, which results in the
final Event Slot-specific Hopfield span embedding.

3.3 A Detailed Example

Figure 4 provides a detailed description of how
the MT-EsE.BHP operates on a sentence from a
tweet categorized under the TESTED POSITIVE

Event Type, when mapping the text span ”My sis-
ter” into the relation Event Slot. First, the text span
is surrounded by special tokens (<E> . . . </E>).
These tokens provide the language model contex-
tual information as to where the text span is located
in the sentence. Next, the sentence is word-piece
tokenized (Devlin et al., 2019) and provided as
an input to the COVID-Twitter-BERT language
model. The language model generates a contextual-
ized embedding for each word-piece token, which
provides a representation of the word-piece token
with respect to the whole sentence. Next, we per-
form Event Slot-specific Hopfield pooling for every
Event Slot associated with the TESTED POSITIVE

Event Type to produce the embedding of the text
span, in the same manner as detailed in Section 3.2
and illustrated in Figure 3. As we have discussed
Section 3.2, Hopfield pooling also learns an em-
bedding for each Event Slot of TESTED POSITIVE.

In Figure 4 the embedding of the Event Slot rela-
tion is illustrated, as well as embeddings learned
for other Event Slots, e.g. ES1

i or ESk
i . These

embeddings are concatenating together a learned
width embedding which represents the width of
the text span that may be potentially mapped into
the Event Slots. The width embedding provides
information to each Event Slot classifier as to the
width of the text span, since this information is
lost when performing Hopfield pooling. Finally, a
binary Event Slot Classifier for every Event Slot of
TESTED POSITIVE decides whether the text span
can be mapped in its corresponding Event Slot. Fig-
ure 4 shows the illustrated text span is mapped in
the relation Event Slot.

4 Results

We trained five separate models, for each of the
five Event Types, and they all share the same train-
ing schedule and settings: We use an initial learn-
ing rate of 2e−5, warmed up to from 0 over the
first epoch and then decayed to 0 linearly for the
9 remaining epochs, with the ADAM optimizer
(Kingma and Ba, 2015). We train with gradient
accumulation, where we accumulate the gradients
for a batch size of 32 with 4 batches of size 8. We
initialize the span width embeddings with a nor-
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Overall Precision Recall F1

Best 75.32 71.18 65.98
Median 68.14 56.30 62.76
Worst 53.77 42.77 51.14
MT-EsE.BHP 75.32 56.79 64.76

TESTED POSITIVE Precision Recall F1

Best 85.69 62.67 69.73
Median 78.32 57.54 67.67
Worst 44.32 44.71 44.52
MT-EsE.BHP 82.98 60.13 69.73

TESTED NEGATIVE Precision Recall F1

Best 71.07 71.94 70.30
Median 66.14 64.30 63.98
Worst 53.91 40.83 50.56
MT-EsE.BHP 71.07 61.87 66.15

CAN NOT TEST Precision Recall F1

Best 68.63 72.40 65.23
Median 64.13 52.11 55.79
Worst 46.46 43.51 45.19
MT-EsE.BHP 68.63 56.82 62.17

DEATH Precision Recall F1

Best 72.40 78.55 69.42
Median 57.42 64.36 61.16
Worst 49.17 52.15 52.12
MT-EsE.BHP 61.64 62.05 61.84

CURE Precision Recall F1

Best 84.05 78.43 62.05
Median 76.96 46.61 59.76
Worst 49.61 34.82 45.11
MT-EsE.BHP 83.52 45.30 58.74

Table 2: Overall results and results from each Event
Type for the MT-EsE.BHP in the official shared-task
evaluation.

mal distribution, an embedding size of 25, and 100
embeddings for widths 0− 99, where spans above
width 99 are represented by the width 99 embed-
ding. We apply a dropout rate of 0.10 to the output
of the Slot-specific Hopfield span embedding, and
we found best development performance when the
number of update steps for Hopfield pooling was 2
with only 1 attention head. We split the provided
collection of tweets into train (60%), dev (15%),
and test (25%) sets for model development and
assessment. We select threshold values for each
binary slot classifier based on maximum F1-score1

performance on the dev set. We selected this train-
ing schedule and these hyper-parameters based on
initial experiments of our system on the TESTED

POSITIVE collection of tweets. We discuss the
impact of this decision further in Section 5.

1F1-score is defined as F1 = 2 × Precision ×
Recall/(Precision+Recall)

Performance on the shared-task was determined
based on micro F1 score for the mapping of text
spans into Event Slots, computed for each Event
Type and overall, on an unseen evaluation set of
2500 tweets with 500 tweets per Event Type. Partic-
ipating teams were provided the evaluation tweets
5 days in advance of the run submission deadline,
and only one submission was allowed per team.
Our team name and single submission were titled
”HLTRI” and utilized the MT-EsE.BHP described
in this paper. Our system produced an overall F1

score of 64.76% for mapping Event Slots across
all Event Types, which accounts for the 2nd-best
overall results in the official shared-task evalua-
tion. Our system obtained the best results for map-
ping tweets text spans in the Event Slots of the
TESTED POSITIVE Event Type, and 3rd-best for
the TESTED NEGATIVE Event Type, 2nd-best for
the CAN NOT TEST Event Type, 3rd-best for the
DEATH Event Type, and 4th for CURE Event Type.
Overall the precision, recall, and F1 scores for the
mapping of text spans into Event Slots in the offi-
cial shared-task evaluation are provided in Table 2.
In the Table, we also show the best, median, and
worst precision, recall, and F1 scores across all
team submissions. We believe that our system per-
formed best on the mapping into Event Slots for
the TESTED POSITIVE Event Type, because in the
training data, we were provided with the most anno-
tated tweets for this Event Type. We also performed
well on mapping into the Event Slots of the CAN

NOT TEST Event Type, out-performing the median
F1 score by 6.38%. Our system was competitive
on all but the CURE Event Type, scoring above the
median F1 scores and coming close to the best F1

scores on all other Event Types.

Detailed results are provided in Table 3 for each
mapping of a text span into an Event Slot when
using the official shared-task evaluation script. As
seen, with the exclusion of the CURE Event Type,
we largely score well on mapping into Event Slots
for which more training examples were provided,
and even score well for mapping into Event Slots
for which much less training data was available,
due to our multi-task learning framework setting for
learning how to map jointly text spans into Event
Slots. We explain our poor performance for map-
ping into the Event Slots pertaining to the CURE

Event Type because our system obtained poor re-
call across all three Event Slots, but particularly in
the who cure Event Slot.
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TESTED POS. Precision Recall F1 #

age 66.67 40.00 50.00 5
close contact 71.43 32.79 44.94 61
employer 75.93 33.88 46.86 121
gender 91.23 51.49 65.82 101
name 86.93 81.60 84.18 375
recent travel 62.50 18.52 28.57 27
relation 50.00 55.00 52.38 20
when 60.00 40.91 48.65 22
where 84.03 56.82 67.80 176

TESTED NEG. Precision Recall F1 #

age 100.00 55.56 71.43 9
close contact 20.00 14.81 17.02 27
gender 75.53 60.17 66.98 118
name 76.01 75.18 75.60 274
relation 75.00 51.92 61.36 52
when 40.00 29.63 34.04 27
where 60.53 46.94 52.87 49

CAN NOT TEST Precision Recall F1 #

relation 90.62 46.77 61.70 62
symptoms 71.79 60.87 65.88 46
name 65.38 66.67 66.02 153
when 66.67 11.76 20.00 17
where 56.00 46.67 50.91 30

DEATH Precision Recall F1 #

age 83.33 90.91 86.96 33
name 57.93 60.43 59.15 139
relation 100.00 30.30 46.51 33
when 57.14 72.73 64.00 33
where 55.56 61.54 58.39 65

CURE Precision Recall F1 #

opinion 83.70 50.66 63.11 152
what cure 84.85 53.44 65.57 262
who cure 81.05 32.77 46.67 235

Table 3: Detailed results produced by the MT-
EsE.BHP.

5 Discussion

The event organizers released the annotated evalu-
ation tweets at the same time they released evalu-
ation results, therefore we were able to analyze
Event Slot-specific performance and perform a
qualitative error analysis on specific tweets and
Event Slots which were incorrectly classified.

We found that our system performed best on
mapping text spans into Event Slots for the largest
Event Type: TESTED POSITIVE, and within that
Event Type also performed better on average on
Event Slots which had more examples in the train-
ing data. While this is partially due to the fact
that the TESTED POSITIVE Event Type has the
largest collection of annotated tweets, approxi-
mately double that of all other Event Types, this is
also likely due to the fact that most of the training
hyper-parameters, listed in Section 4, were selected

based on initial experimental performance on the
training TESTED POSITIVE collection. This hyper-
parameter selection decision likely biased our over-
all architecture towards improved performance on
mapping of a text span into an Event Slot for the
TESTED POSITIVE Event Type at the cost of re-
ducing performance in other Event Types. This hy-
pothesis is supported by our shared-task evaluation
ranking, where we came in 1st in TESTED POSI-
TIVE but placed lower in all other Event Types.

Table 3 provides detailed performance for each
Event Slot along with the number of examples
in the evaluation dataset. We see that our multi-
task learning framework maintains performance
for some Event Slots that were provided with a
small set of examples, such as age, while other
for Event Slots, provided also with a small set of
examples, such as when, there is clearly room for
improvement. We believe that sharing a learned lan-
guage model informed by COVID-Twitter-BERT
contributes to this baseline level of performance,
while the slot-specific span representation using
Hopfield pooling improves performance upwards
when performing mapping into Event Slots that
were provided with a larger set if examples. Hop-
field pooling provides the system a mechanism by
which to learn how to best merge the shared contex-
tual representation produced by COVID-Twitter-
BERT into a slot-specific representation useful for
slot-specific classification. We also see that map-
ping text spans into Event Slots for the CURE Event
Type had high precision, but very poor recall even
with a relatively large number of provided exam-
ples, leading to our poor F1 scores for this Event
Type. More specifically, we see that the recall of
the who cure slot is extremely poor, therefore we
investigate this further in our error analysis.

Table 4 lists tweets in which our system was
incorrect. Example 1 demonstrates the failure of
the MT-EsE.BHP to identify that “Vice President
Mike Pence” is an employer who’s staff member
tested positive for coronavirus. This is likely due
to the fact that, in the collection of tweets, it is
atypical to list a single person as an employer as
opposed to the organization they employ the em-
ployee through. More tweets which follow this
pattern would likely be necessary to learn this use
of employer. A typical mistake made by the MT-
EsE.BHP on the close contact slot is visible in
Example 2, where the system fails to recognize
the implication that “the mother” was not a close
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Event Type Tweet with Text Span MT-EsE.BHP Annotation

TESTED POS. “Staffer for [Vice President Mike Pence] × employer
tests positive for coronavirus <url>”

TESTED NEG. ”Reports coming out that the infant child of close contact ×
[the mother] who died of Covid-19 tested negative
for Covid-19. The Sars-COV-2 is mysterious.”

CAN NOT TEST “[@LouisianaGov] @LADeptHealth Still can’t × where
get tested though.”

DEATH ”@FALLOFTHECABAL [I] personally know 3 1ST × relation
respknders and 2 nurses who have died from complications of
COVID-19. i have no horse in this race so to speak.”

CURE ”At @WhiteHouse briefing today, a so-called reporter said that who cure ×
[Biden] recommends flying our flag at half-staff. Well,, That
sure must be the cure for #COVID19. My suggestion: Wait till
AFTER the PANDEMIC is OVER, then, in honor of those who
died, fly the mast at half-staff.”

CURE ”@DonaldJTrumpJr [You] advocate drinking bleach to cure covid-19. × who cure
We are all aware of how much you understand disease.”

Table 4: Tweets and text spans where the MT-EsE.BHP incorrectly classifies an Event Slot.

contact, since she had COVID-19 and died from
it, but the “infant child” was a close contact due
to the implied closeness of a mother to her infant
child. Example 3 shows the difficulty of notic-
ing that an author tweeting “@LouisianaGov” due
to their inability to get tested likely lives in the
location of Louisiana. Typos are prevalent in user-
generated text, and Example 4 demonstrates a typo
with “1st respknders” which likely causes the lan-
guage model to miss the contextual clues that the
author of the tweet has some relation with first re-
sponders and nurses who have contracted and died
from complications due to COVID-19. Example 4
and 5 demonstrate one of the primary reasons we
believe our system performs poorly on the CURE

Event Type, and specifically the who cure Event
Slot. We see sarcasm demonstrated in Example 4,
where the author of the tweet is sarcastically stat-
ing that Biden’s recommendation of flying a flag at
half-staff is an actual potential cure for COVID-19.
Tay et al. (2018) discuss the ”sophisticated speech
act” of sarcasm in the context of social commu-
nities such as Twitter and Reddit, and they note
that sarcasm can severely disrupt opinion mining
systems. Sarcasm can be very difficult to identify
(Joshi et al., 2017), and many of the tweets dis-
cussing COVID-19 cures contain sarcastic content
which can be difficult to distinguish. Our system
mistakenly identified Biden as who cure, while the
annotator picked up on the sarcasm and did not
annotate this instance. Example 5 demonstrates
a debatable instance of sarcasm on the other side,
where the annotation states that “You”, being Don-
ald Trump Jr., advocates for drinking bleach as a

cure for COVID-19. Our system does not identify
that Donald Trump Jr. advocates for the cure of
drinking bleach, but the annotator agrees that, in
this instance, the author of the tweet is legitimately
making the claim that Donald Trump Jr. advocates
for this cure.

6 Conclusion

In this paper we described the Multi-Task Event-
specific Extraction system using BERT and Hop-
field Pooling (MT-EsE.BHP) that was developed
for the W-NUT 2020 Shared Task 3. Our system
learned how to take advantage of contextual embed-
dings such that embeddings for text spans can be
learned, while also learning embeddings for each
Event Slot of each Event Type. This was made pos-
sible by using Hopfield Pooling. The text span em-
beddings informed binary classifiers (one for each
Event Slot) that decided whether tweet text spans
can be mapped into an Event Slot or not. Separate
such binary classifiers were trained for each Event
Type. The results that we obtained are promising.
These results could be further used to learn how to
associate Event Slots for each mention of an Event
Type in tweets, instead of producing only a bag of
filled Event Slots. This would be a requirement for
knowledge extraction from COVID-relevant tweets
useful for Public Health applications.
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