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Abstract

Twitter has acted as an important source of in-
formation during disasters and pandemic, es-
pecially during the times of COVID-19. In
this paper, we describe our system entry for
WNUT 2020 Shared Task-3. The task was
aimed at automating the extraction of a vari-
ety of COVID-19 related events from Twitter,
such as individuals who recently contracted
the virus, someone with symptoms who were
denied testing and believed remedies against
the infection. The system consists of separate
multi-task models for slot-filling subtasks and
sentence-classification subtasks while leverag-
ing the useful sentence-level information for
the corresponding event. The system uses
COVID-Twitter-Bert with attention-weighted
pooling of candidate slot-chunk features to
capture the useful information chunks. The
system ranks 1st at the leader-board with F1
of 0.6598, without using any ensembles or ad-
ditional datasets. The code and trained models
are available at this https url1.

1 Introduction

The World Health Organization declared COVID-
19, a global pandemic on March 11, 2020. As of
2020/09/21, there are over 30 million cases2 and
900,000 deaths due to the infection. With the im-
posed lockdown, work from home and physical dis-
tancing, social media like twitter saw an increased
usage. A large part of the use was posting and con-
suming information on the novel infection. These
information include potential reasons for contrac-
tion of the disease, such as via exposure to a family
member who tested positive, or someone who is
showing COVID symptoms but was denied testing.
Accompanying to the pandemic was an infodemic
of misinformation about COVID-19, including fake

1https://github.com/Ayushk4/extract covid entity
2https://coronavirus.jhu.edu/map.html

remedies, treatments and prevention-suggestions
in social media (Alam et al., 2020).

Zong et al. (2020) show the possibility to auto-
matically extract structured knowledge on COVID-
19 events from Twitter and released a dataset of
COVID related tweets across 5 event types. We
used this dataset in our experiments for the shared-
task. These tweets are annotated for whether
they belong to an event (we refer to this as the
event-prediction task in this paper) and their event-
specific questions (factual or opinion). We identify
these event-specific questions into two types of
subtasks, slot-filling and sentence classification.

Our system consists of separate multi-task
models for slot-filling subtasks and sentence-
classification subtasks. Our contribution comprises
improvement upon the baseline (mentioned in sec-
tion 2) in three ways:

• We incorporate the event-prediction task as
auxiliary subtask and fuse its features for all
the event-specific subtasks.

• We perform an attention-weighted pooling
over the candidate chunk span enabling the
model to attend to subtask specific cues.

• We use the domain-specific Bert of Covid-
Twitter Bert (Müller et al., 2020).

2 Related Works

Sentence classification tasks (such as opinion or
sentiment mining) as well as slot-filling tasks have
greatly progressed with deep learning advance-
ments such as LSTM (Hochreiter and Schmid-
huber, 1997), Tree-LSTM (Tai et al., 2015) and
transfer learning over pre-trained models (Peters
et al., 2018; Howard and Ruder, 2018; Devlin et al.,
2019). Among these, CT-Bert outperforms oth-
ers on COVID related twitter tasks (Müller et al.,
2020). Taking inspiration from the same, we use
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CT-Bert as part of our architecture. A variety of
slot-filling approaches have been built on top of
these deep learning advancements (Kurata et al.,
2016; Qin et al., 2019). The proposed baseline for
our task (Zong et al., 2020) modifies Bert model for
slot-filling problem inspired by Baldini Soares et al.
(2019). Due to the excellent performance offered
by Bert (Devlin et al., 2019) and Baldini Soares
et al. (2019), we build upon this baseline approach.

Extraction of structured knowledge from tweets
pertaining of events (Benson et al., 2011) has been
studied for disaster and crises management (Abhik
and Toshniwal, 2013; Rudra et al., 2018) and in
pandemic scenarios (Al-Garadi et al., 2016). Ex-
tracting such entities can be useful for epidemi-
ologists, deciding policies and preventing spread
(Al-Garadi et al., 2016; Zong et al., 2020).

Due to the fast-spreading nature of the infection,
it is also difficult to manually trace the spread of
the pandemic. However, with twitter event-specific
entity extraction and Geo-location, one could po-
tentially build a real-time pandemic surveillance
system (Lwowski and Najafirad, 2020; Al-Garadi
et al., 2020). Bal et al. (2020) show that health-
issues related misinformation is prevalent in social
media, while Alam et al. (2020) talks about covid-
specific misinformation. Such systems for extract-
ing structured knowledge over the tweets talking
about potential cures for COVID will help study
how users perceive the COVID misinformation.

In §3, we describe the dataset and the problem
statement. Then in §4, we discuss the details of our
two multi-task models followed by experiments,
results and conclusion.

3 Dataset and Problem statement

Now, we will briefly go over the dataset. The reader
may refer (Zong et al., 2020) for full details. Each
of the 7500 tweets in the dataset belongs to one of
the 5 event types: tested-positive, tested-negative,
can-not-test, death, and cure. The first four events
aimed at extracting structured reports of coron-
avirus related events, such as self-reported cases or
news stories about public figures who were exposed
to the virus. Each tweet was first annotated for
whether it belongs to its respective event (e.g. Is the
tweet belonging to the tested-positive event talking
about someone who tested positive?). Throughout
this paper, we refer to this as the Event-Prediction
task. The tweets that correspond to its event were
then annotated for event-specific questions or sub-

Event # Tweets
Tested positive 2397
Tested negative 1144
Can Not Test 1128

Death 1231
Cure/Prevention 1244

Total 7144

Table 1: Dataset statistics, scraped during early July.

Figure 1: An example tweet from tested negative event.

tasks about factual information and user’s opin-
ions. All annotations are done by multiple Amazon
Mechanical Turks with inter-annotation agreement.
The event-specific questions or subtasks (e.g. name,
age, gender of the person tested positive) varies
depending on the event. These subtasks are of
two categories: slot-filling (e.g., Who tested posi-
tive/negative?, Where are they located?, Who is in
close contact with person contracting the disease?)
and sentence classification (e.g. Is author related
to infected person?, Does the author experience any
symptoms?, Does the author believe a cure method
is effective?).

The dataset released tweet IDs and their annota-
tions. We obtain our text corresponding to tweets
using the official Twitter API3. Table 1 shows the
statistics for the dataset we scrapped in early July.4

Figure 1 shows an annotated example from the
dataset. We identify the event-specific subtasks
into two categories shown in Table 2.

We now formally describe the two types of event-
specific subtasks:

Slot-filling subtasks: Assume n slot-filling sub-
tasks {S1, S2...Sn}. We set up each slot-filling sub-
task Si as a supervised binary classification prob-
lem. Given the tweet t and the candidate slot s,
the model f(t, s)→ {0, 1} predicts whether s an-
swers its designated question. We extract a list of

3https://developer.twitter.com/
4We get about 350 fewer tweets than the corpus. Some

tweets are not obtainable over time as the accounts/tweets get
deleted, renamed, banned, or change-visibility etc.
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Event Sentence Classification Slot-Filling task
Tested positive gender, relation who,age,recent-visit,when,where,employer,c.-contact
Tested negative gender, relation who,age,when,where,duration,close-contact
Can Not Test relation, symptoms who,when,where
Death relation, symptoms who,age,when,where
Cure opinion what is the cure, who is promoting cure

Table 2: The proposed event-specific subtasks split into two subtask types: slot-filling and sentence classification

candidate slot of all noun chunks and name entities
in each of the tweets by using a Twitter tagging
tool (Ritter et al., 2011) same as the baseline.

Sentence classification subtasks: Assume m
sentence classification subtasks {C1, C2...Cm, }.
Given a sentence classification subtask Ci aims to
learn a model g(t) → {l1, l2...lk}, where t is a
tweet and lj is a label. Here the number of labels
can vary depending on the subtask, for example,
gender is labelled with {Male, Female, Others/Not
Specified}, Relation with {Yes, No}, Opinion with
{effective, no cure, not effective, no opinion} and
so on. All these subtasks are ‘supervised’ classifi-
cation problems.

The dataset is also annotated with whether a
tweet corresponds to its respective event or not. We
treat this as an additional Event-Prediction task.
This is a binary classification task that aims to learn
a model h(t)→ 0, 1 where t is a tweet.

4 Approach

In the following subsections §4.1 and §4.2, we
describe our multi-task model for slot-filling and
sentence-classification respectively.

4.1 Slot-filling

We improve upon the baseline (Zong et al., 2020)
by using domain-specific Bert, using attention-
weighted pooling over the candidate chunk feature
sequence, incorporating auxiliary Event-Prediction
task and utilizing its logits for all the slot-filling
subtasks. Before describing the approach, we first
describe the Bert baseline. Our slot-filling model
can be seen in figure 2.

The baseline consists of Bert based classifier. It
takes a tweet t as input and encloses the candidate
slot s, within the tweet, inside special entity start
< E > and end< /E >markers. The Bert hidden
representation of token < E > is then processed
through a fully connected layer with softmax acti-
vation to make the binary prediction for a task (Bal-
dini Soares et al., 2019). Since many slot-filling

Tweet

CT-Bert

[CLS] ...

MLP

Event Prediction
Logit

Attention Weighted
Pool

Subtask Logit

n

n

TOK 1 <E> </E>... ... [SEP]

MLP

Linear

Vector
Addition

Figure 2: Slot-Filling Model, described in Section §4.1.
Here n is the number of slot-filling subtasks.

tasks within an event are semantically related to
each other, they jointly trained the final softmax
layers of all the subtasks Si in an event by sharing
their Bert model parameters.

COVID Twitter Bert (CT-Bert) is a Bert-Large
model pretrained on Twitter Corpus on COVID-
19 topics, leading to marginal improvements from
Bert on tasks based on Twitter datasets(Müller
et al., 2020). This motivates us to use CT-Bert
instead of Bert from the baseline model.

The baseline, uses the Bert hidden representa-
tion of token < E > for classification. Here,
however, we use attention-weighted pool of the
CT-Bert hidden representation of tokens between
< E > and< /E > (both inclusive). Formally, let
{x0, ...xp, ...xq, ...xn} be the output vectors from
the hidden representation of CT-Bert where p and
q are indices of < E > and < /E > respectively,
then for any of the slot-filling subtask Sj , we get
its pooled vector as follows:

x̃Sj =

q∑
i=p

α
Sj

i xi (1)
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α
Sj

i = Softmaxp to q(x
T
i a

Sj )

where xiT denotes the transpose of xi, aSj is
a trainable vector. The motivation for attention
weighted pooling is that depending on the task,
model can attend to different portions of the candi-
date slot chunk. Next we obtain the binary classifi-
cation score vector:

hSj =WSj x̃Sj + bSj (2)

Here WSj and bSj are trainable parameters.
We treat the Event-Prediction task as an auxiliary

task and then fuse its logits to each of the other
slot-filling subtasks. The motivation is that a task-
specific entity shall be present in a tweet only if the
tweet belongs to its respective event.

To predict the label for Event-Prediction task,
we take the CT-Bert features of [CLS] token and
pass it through a MultiLayer Perceptron (MLP) to
get logits hces.

We fuse hces prediction over each subtasks Sj
by adding it to hSj (from (2)) to get the logits hSj

f :

h
Sj

f = hSj +MLPSj (hces) (3)

In practice, we share the parameters of theMLPSj

across all the slot-filling subtasks Sj .
Given a tweet t and slot s, our loss for slot-filling

model over n slot-filling subtasks {S1, S2...Sn}
and Event-Prediction task looks like:

Loss(t, s, yces, (y1, y2...yn))

= λ1CELoss(hces, yces) +
n∑

k=1

CELoss(h
Sk
f , yk)

(4)
where CEloss is softmax cross entropy loss, yces

is ground truth label for Event-Prediction task and
(y1, y2...yn) are the labels for the candidate slot s
of tweet t for the subtasks {S1, S2...Sn}. We keep
λ1 = 1.

Our preprocessing for this is same as baseline.

4.2 Sentence classification
Our Sentence classification model is shown in fig-
ure 3. We use a Bert based sentence classifier and
improve it by using CT-Bert, incorporating the aux-
iliary Event-Prediction task and attention-weighted
pooling over the entire sequence.

This model uses CT-Bert instead of Bert and the
auxiliary Event-Prediction task for same reason as
the slot-filling model.

Tweet

CT-Bert

[CLS] TOK 1 ...  [SEP]

Linear

Linear

Event Prediction
Task Logit

Attention Weighted Pool

Concat

Linear

Subtask Logit

m

m

Figure 3: Sentence Classification model, described in
section. §4.2. Here m is the number of Sentence Clas-
sification subtasks.

An attention-weighted pooling is done over
the feature sequences from CT-Bert to extract
the most relevant information. Formally, let
{x0, x1, ......xn} be the output vectors from CT-
Bert (here 0 and n are indices of [CLS] and [SEP ]
respectively). Then for any of the sentence classifi-
cation subtask Cj , we get its pooled vector x̃Cj as
follows:

x̃Cj =
n∑

i=0

β
Cj

i xi (5)

β
Cj

i = Softmaxi(x
T
i a

Cj + cCj )

where aCj , cCj are trainable vector and scalar
respectively.

For the Event-Prediction task, we take the CT-
Bert vector representation of [CLS] token and pass
it through a MLP. Assume the MLP’s final and
hidden states to be vces and h′ces.

Next, we incorporate information from Event-
Prediction task into sentence classification sub-
task Cj . Since the sentence classification sub-
tasks aren’t binary classification, so, unlike the
slot-filling model, we cannot merely add the Event-
Prediction logits to all tasks. Additionally, we de-
sire sentence-level event specific features for each
of the sentence level predictions. Hence, we con-
catenate the hidden state features from the MLP
of Event-Prediction task h′ces to pooled vector x̃Cj
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from 5 to get the logits hCj

f for each subtask Cj , as
follows:

h
Cj

f = [x̃Cj ;h′ces]
TWCj + bCj (6)

Here T denotes transpose, [; ] denotes vector con-
catenation. WCj and bCj are trainable.

Given a tweet t, our loss for sentence classifica-
tion model over m sentence classification subtasks
{C1, C2...Cm} and Event-Prediction task is:

Loss(t, yces, (y1, y2...ym))

= λ2CELoss(vces, yces) +
m∑
k=1

CELoss(h
Ck
f , yk)

(7)
where CELoss is softmax cross entropy loss,

yces is ground truth label for Event-Prediction task
and (y1, y2...ym) are the labels for tweet t for the
subtasks {C1, C2...Cm}. We keep λ2 = 1.

Preprocessing for sentence classification is done
using ekphrasis library (Baziotis et al., 2017). We
remove Emoji, URL, Email, punctuation and nor-
malize text by word segmenting, lower-casing and
word decontraction.

5 Experiments

All the experiments were performed using PyTorch
(Paszke et al., 2019) and Hugging Face’s trans-
formers (Wolf et al., 2019). We use git and wandb
(Biewald, 2020) for experiment tracking. Optimiza-
tion is done using Adam (Kingma and Ba, 2014)
with a learning rate of 2e-5. Slot-filling models
are trained for 8 epochs and sentence classification
model for 10 epochs. Average training time per
epoch on Tesla P100 is ≈ 4 minutes for slot-filling,
and ≈ 30 second for sentence classification.

We use a 70-30 split for train-valid set. The
valid set is used to obtain the best threshold for
each of the slot classification tasks over the grid
{0.1, 0.2, ..., 0.9}. We exclude labels with “No
consensus” from our data.5

All the MLP have 1 hidden layer and 0.1 dropout.
MLPSj has 4 hidden size, LeakyReLU activation
(Maas et al., 2013) with 0.1 negative slope, rest of
the MLP have 50 hidden size and Tanh activation.

5As per the submission guidelines, some subtasks like
opinion had their label classes merged. We incorporate these
changes in our model.

Event F1 P R
Tested Positive .68 .80 .58
Tested Negative .66 .66 .67
Can Not Test .65 .67 .64
Death .69 .72 .67
Cure/Prevention .63 .75 .53
Overall .66 .73 .60

Table 3: Micro averaged scores on the held out test set
for our final submission.

6 Results

Our performance on the held-out test set is shown
in Table 3. Our system ranks 1st position in the
W-NUT 2020 Shared Task-3 (Zong et al., 2020).
We also independently rank 1st for 3 of the 5 events:
‘Can Not Test’, ‘Death’, and ‘Cure’.

Now we discuss our various experiments.

Slot-filling: We experimented with a variety of
architectures for slot-filling model. Our (SF) is
our Slot-Filling Model from §4.1. Our (SF) w/o
pool is our slot-filling model that uses the CT-Bert
hidden representation of token < E > to clas-
sify instead of doing an attention-weighted pool-
ing. Our (SF) w/o CES is our slot-filling model
without Event-Prediction task. CT-Bert and Bert-
large are baseline models using CT-Bert and Bert-
large instead of Bert-base.

Table 4 shows the performance of these mod-
els. There is a considerable performance differ-
ence by using CT-Bert instead of Bert, demon-
strate the benefits of domain specific pre-training.
Our (SF) w/o pool and Our (SF) w/o CES out-
perform CT-Bert demonstrating the importance
of Event-Prediction task and attention-weighted
pooling over slot-chunk respectively. Our (SF)
using CT-Bert with Event-Prediction and attention-
weighted pooling performs the best among these
models.

Sentence level tasks: We experimented with var-
ious architectures for sentence level tasks. Our
(SC) is our Sentence Classification architecture
from §4.2. Our (SC) w/o CES is our Sentence
Classification without Event-Prediction task. Bert
multitask model predicts using the [CLS] repre-
sentation from Bert (Devlin et al., 2019). We also
build an LSTM model (Hochreiter and Schmid-
huber, 1997) with GloVe embedding (Pennington
et al., 2014), and twitter-tokenization using Word-



527

Model Micro F1 Macro F1
Our (SF) .684 .558
Our (SF) w/o pool .678 .557
Our (SF) w/o CES .665 .552
CT-Bert .662 .551
Bert (large) .610 .529
Bert (baseline) .612 .528

Table 4: Results of slot-filling models on our 70-30
split. We report results on the valid set across all slot
filling subtasks across the 5 events.

Model Micro F1 Macro F1
Our (SC) .788 .767
Our (SC) w/o CES .777 .731
CT-Bert multitask .760 .717
Bert multitask .715 .612
LSTM multitask .614 .543

Table 5: Results sentence classification models on our
70-30 split. We report results on the valid set across all
sentence classification subtasks across the 5 events.

Tokenizers package (Kaushal et al., 2020).
Table 5 shows the performance of these architec-

tures. Our (SC) outperforms others on macro F1
and micro F1, followed by Our (SC) w/o CES. The
performance difference between these two, shows
the benefits of including the Event-Prediction task.
While the performance difference between CT-Bert
multitask and Our (SC) w/o CES shows the gains
from attention weighted pooling. CT-Bert also out-
performs Bert multitask, showing its usefulness in
our proposed system over using Bert. Lastly, Bert
multitask, and all the models using Bert/CT-Bert
outperform LSTM by a very large margin demon-
strating the superiority of these pretrained language
models.

Separate Sentence classification and slot filling
models: Consider Bert separate, a simple sys-
tem treating the two categories of tasks separately.
It has the Bert baseline as its slot filling model
and a simple Bert sentence classifier using features
from [CLS] for sentence prediction. Bert separate
does not have the event-prediction auxilliary task or
any attention weighted pooling. Table 6 shows the
performance of Bert separate against the baseline.
Bert separate outperforms the Bert baseline by a
considerable margin, thus showing the importance
of treating the two subtasks differently.

Model Micro F1 Macro F1
Bert Separate .631 .545
Bert Baseline .608 .512

Table 6: Results comparing the systems treating the
sentence classification and slot-filling subtasks sepa-
rately vs those treating it similarly. We report results on
the valid set across all the subtasks of both categories
across the 5 events.

7 Conclusion and Future Work

In this paper, we presented our system that bagged
1st position in the WNUT-2020 Shared Task-3 on
Extracting COVID Entities from Twitter. We di-
vided the event-specific subtasks into slot-filling
and sentence classification subtasks, building sep-
arate architectures for the two. For both archi-
tectures, we used COVID-Twitter Bert, weighted-
attention pooling over chunk-spans/sentence and
fused logits and features from auxiliary Event-
Prediction task. Our ablation studies demonstrated
the usefulness of each component in our system.

There is a lot of scope of improvement for sub-
tasks with few positive labels. Pretraining on rele-
vant data (such as COVID-misinformation datasets
for event cure) is a promising direction.

Another direction would be to reduce the train-
ing and inference time of slot-filling model by not
enclosing the candidate chunk within special start
< E > and special end < /E > tokens. We
can instead use the attention-weighted pooling over
candidate slot chunks. This will reduce the number
of Bert forward passes from O(k) to O(1), where
k is the number of candidate chunks in a tweet.
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