
Proceedings of the 2020 EMNLP Workshop W-NUT: The Sixth Workshop on Noisy User-generated Text, pages 480–484
Online, Nov 19, 2020. c©2020 Association for Computational Linguistics

480

Dartmouth CS at WNUT-2020 Task 2: Informative COVID-19 Tweet
Classification Using BERT

Dylan Whang
Dartmouth College

Hanover, NH
dylanmwhang@gmail.com

Soroush Vosoughi
Dartmouth College

Hanover, NH
soroush@dartmouth.edu

Abstract

We describe the systems developed for the
WNUT-2020 shared task 2, identification of in-
formative COVID-19 English Tweets. BERT
is a highly performant model for Natural Lan-
guage Processing tasks. We increased BERT’s
performance in this classification task by fine-
tuning BERT and concatenating its embed-
dings with Tweet-specific features and training
a Support Vector Machine (SVM) for classifi-
cation (henceforth called BERT+). We com-
pared its performance to a suite of machine
learning models. We used a Twitter specific
data cleaning pipeline and word-level TF-IDF
to extract features for the non-BERT models.
BERT+ was the top performing model with an
F1-score of 0.8713.

1 Introduction

In an effort to aid automated the development of
COVID-19 related monitoring systems, the WNUT-
2020 shared task 2: Identification of informa-
tive COVID-19 English Tweets tasked participants
with developing systems to automatically classify
Tweets as INFORMATIVE or UNINFORMATIVE.
The WNUT task organizers have constructed and
provided a data set of 10,000 Tweets related to
Covid-19 for this task. (Nguyen et al., 2020b).

For this language processing task, we used
Google’s Bidirectional Encoder Representations
from Transformers (BERT) to achieve performant
results. BERT uses the now ubiquitous Trans-
former neural network architecture as explained
in depth in the article, “Attention is All You Need,”
(Vaswani et al., 2017) and garnered acclaim for
obtaining new state-of-the-art results on eleven nat-
ural language processing tasks, including pushing
the GLUE score to 80.5%. (Devlin et al., 2019)

To optimize BERT for this task, we fine-
tuned the BERT-large-uncased pretrained
language model on the WNUT-2020 shared task 2

data set. We then further improved performance
by concatenating the fine-tuned BERT embedding
vectors with Tweet-specific features and using a
Support Vector Machine (SVM) for classification
(BERT+).

To benchmark the performance of the BERT+
model, we compared its performance to five tra-
ditional classifiers. We also developed a prepro-
cessing pipeline for data cleaning and used Text
Frequency Inverse Document Frequency (TF-IDF)
to extract features for the traditional classifiers.

1.1 Pretrained BERT model

We used the BERT-large-uncased pretrained
language model. This BERT model contains an en-
coder with 24 Transformer blocks, 16 self-attention
heads, with the hidden size of 1024.

BERT generates its pretrained word and sentence
level embeddings by using two objectives: Masked
Language Modeling (MLM) and Next Sentence
Prediction (NSP).

During pretraining, BERT utilizes MLM by first
selecting 15% of the inputted tokens for potential
masking. Our of this 15%, 80% are replaced with
the [MASK] Token, 10% are replaced by a ran-
domly selected word, and the remaining 10% are
not manipulated. The MLM Objective is a cross-
entropy loss on predicting the masked tokens.

BERT also uses NSP in its pretraining. The NSP
objective is a binary classification loss for predict-
ing if two sequences follow each other. NSP uses
an equal proportion of consecutive sentences for
the text corpus as positive examples and randomly
paired sentences as negative examples. (Liu et al.,
2020)

The “BERT for sequence classification” model
utilizes the special [CLS] classifier token as the
first token in every sequence. This token con-
tains the classification embedding of the sequence.
BERT uses the final hidden state of the [CLS] to-



481

ken as the aggregated sequence representation for
classification tasks. (Devlin et al., 2019)

2 Data

The data set provided consists of 10,000 English
Tweets related to COVID-19. Each Tweet is labeled
either INFORMATIVE or UNINFORMATIVE.
The Tweets were annotated by three indepen-
dent annotators with an inter-annotator agree-
ment score of Fleiss’ Kappa at .818. The
dataset is partitioned into training, validation,
and test sets at a ratio of 7:1:2. The train-
ing set contains 3,303 INFORMATIVE and
3,697 UNINFORMATIVE Tweets. The vali-
dation set contains 472 INFORMATIVE and
528 UNINFORMATIVE Tweets. The unlabeled
Test set contains 944 INFORMATIVE, 1,056
UNINFORMATIVE, and 10,000 unlabeled Tweets
as noise.

3 Preprocessing

To clean the raw Tweets we created a data process-
ing pipeline to: 1) remove non-alphanumeric char-
acters, 2) remove stop-words, 3) convert words to
their lemmas, and 4) convert words to lower case.
We used the Natural Language Toolkit (NLTK)
Python package (Bird and Loper, 2004) for these
methods.

To handle the unique lexicon of Twitter, we im-
plemented additional preprocessing methods to: 1)
remove @USER tokens, 2) remove HTTPURL to-
kens, 3) remove the "#" character, 4) compress re-
peated characters, and 5) represent emojis as words.

The data set provided replaced URLs and in-
Tweet mentions of other users with the HTTPURL
and @USER tokens respectively. Our data-cleaning
pipeline removes these tokens when cleaning the
data to avoid the models over-fitting to these tokens
that do not reflect their original usage within the
Tweet. Similarly, we removed the # character from
Tweets.

We converted emojis into word tokens so that
the models would interpret the emojis as words.
When using BERT, this allowed the BERT model
to generate word embeddings for these emojis

Tweets occasionally contain repeated characters
with the purpose of emphasizing a word. For ex-
ample, "yesssss" instead of "yes". In order
to consistently capture this kind of emphasis as a
separate feature from the original word, we com-
pressed the repetition of a single character into two

repetitions of that character.

4 Methods

4.1 Traditional ML models

Using the Sklearn Python package, we gener-
ated two separate feature vectors from the prepro-
cessed Tweets. The first method generated feature
vectors based on the raw counts of word level un-
igrams in each Tweet. The second method used
TF-IDF to extract word-level unigrams, bigrams,
and trigrams features. TF-IDF is a numerical statis-
tic that captures the frequency of a term against the
frequency of the documents it appears in. TF-IDF
reduces the weight of common words and increases
the weight of less frequent words. (Ramos, 1999)

We used the Sklearn to implement five tradi-
tional machine learning models using the features
described above: Logistic Regression, Multinomial
Naı̈ve-Bayes, Decision Tree, Random Forest, and
K-Neighbors (Pedregosa et al., 2011), using the
default hyper-parameters.

4.2 Fine-tuned BERT model

We first partitioned each Tweet into an array of
word tokens. The BERT model requires that each
document is the same length, so we padded each
array with the embedding 0 so that the length of
each entry was 128 tokens. The length of 128
tokens was selected, because the maximum num-
ber of words a Tweet could contain within the
255 characters limit is 128 words. We added
the ‘[SEP]’ token to the end of each array
to denote the end of a sequence. Because we
used BERTForSequenceClassification,
we also added the special ‘[CLS]’ classifier to-
ken to the beginning of the array. (Devlin et al.,
2019)

For our fine-tuning optimizer, we utilized the
Adam algorithm with weight decay (AdamW) as
introduced in ”Decoupled Weight Decay Regular-
ization.” (Loshchilov and Hutter, 2019) We used
the default parameters β1 = 0.9, β2 = 0.999, and
epsilon = .1e− 8. We chose a learning weight
of 2e-5 as it offered the lowest training and vali-
dation loss when compared to other learning rates
between 1e-5 and 1e-4. As fine-tuning BERT re-
quired extensive computational resources, we used
a Google Colab Research notebook for implemen-
tation as it allowed for high-RAM GPU process-
ing. This fine-tuning approach follows the original
BERT paper. (Devlin et al., 2019)



482

4.3 Fine-tuned BERT+ model

In an attempt to capture additional differ-
ences in the language of INFORMATIVE and
UNINFORMATIVE Tweets that would not be ob-
served by BERT, we extracted 1024 dimensional
embeddings from the the last, non-softmax layer of
our fine-tuned BERT and concatenated those with
seven Twitter-specific features. We then trained a
SVM classifier on these concatenated feature vec-
tors using Sklearn’s SVM implementation with
default hyper-parameters.

The Twitter-specific features for each Tweet
were: 1) Count of the following in the Tweet:
HTTPURL token, #, @USER token, and emoji 2)
word count, 3) syllable count, and 4) a Boolean
specifying whether the Tweet contains profan-
ity. To generate some of these features, we used
PyPI’s profanity-check, syllables,
and emojis packages (https://pypi.org/).

5 Results

The results reported in subsections 5.1 and 5.2 were
generated using 8-fold cross validation on the com-
bined train and validation data sets.

5.1 Preprocessing experiments

Our best performing combination of data-cleaning
methods, called the Optimal Preprocessor (OP),
utilized the Twitter lexicon specific methods we
created: 1) @USER token removal, 2) HTTPURL
token removal, 3) "#" character removal, 4) re-
peated character compression, and 5) word repre-
sentation of emojis. The performance of the OP
combined with other preprocessing methods can
be seen in Table 1.

To compare the performances of the
TfidfVectorizer and CountVectorizer
for feature extraction, we used the OP for data
cleaning and Logistic Regression model for pre-
dictions. The TfidfVectorizer consistently
outperformed the CountVectorizer with the
average F1-scores of .8422 and .8279 respectively.

5.2 Traditional ML models

Using data processed through our OP with features
extracted with TF-IDF, we achieved the F1-scores
seen in Table 2 for our suite of machine learning
models. Logistic Regression consistently outper-
formed the other methods. Table 3 displays se-
lected features with the highest and lowest weights
from the Logistic Regression model.

Preprocessing Pipeline F1-score
Optimal Preprocessor (OP) .8424
OP with Stop-word removal .8320
OP with Alpha Numeric filter .8384
OP with forced lowercase .8351
OP with word lemma conversion .8337
No preprocessing of data .8339

Table 1: Average F1-score from 8-fold cross validation
using Logistic Regression model with TF-IDF.

Model/Classifier F1-score
Logistic Regression .8422
Multinomial Naı̈ve-Bayes .8356
Random Forest .8201
K-Neighbors .8201
Decision Tree .7313
Baseline Stratified Dummy .4723

Table 2: Averaged F1-score across K-fold cross valida-
tion (k=8) with TF-IDF.

5.3 BERT models

To generate the results for our BERT models, we
fit each BERT model with the train data set and
evaluate on the validation data set. The pretrained
BERT model yielded a F-1 score of .8312, our fine-
tuned BERT model yielded a F-1 score of .8701,
and the BERT+ model yielded a further improved
F1-score of .8713 (see Table 4).

6 Discussion

6.1 Preprocessing and feature extraction

The method to compress repeated characters in
our final data preprocessor might have improved
the performance of our model by generating a com-
mon word level feature between features that would
have been interpreted differently. For example, if
one user Tweet, “good,” and another user Tweeted,
“gooood,” these different words would now repre-
sent the same feature.

While stop-word removal and word lemma con-
version are commonly in the field of NLP, the
presence of the stop words and the complexity of
words pre-lemma conversion appeared to help our
machine learning models detect stylometric fea-
tures and improved the performance of our machine
learning models.

For feature extraction, TF-IDF outperformed the
word count vectorizer. As TF-IDF decreases the
weight of terms that occur frequently across all doc-



483

Feature (n-gram with n=[1,2,3]) weight
cases 5.9113
positive 5.4668
deaths 4.9618
died 4.7764
confirmed 4.5300
tested 4.5110
in 3.9934
positive for 3.7167
has 3.6581
tested positive 3.4429

Table 3: Top 10 Features with weights of the greatest
magnitude from the highest performing model (Logis-
tic Regression).

BERT Model F1-Score
Fine-tuned BERT+ .8713
Fine-tuned BERT .8701
Pre-trained BERT .8312

Table 4: BERT models trained on the train data set and
evaluated on the validation data set.

uments and increases the weight of less common
terms, (Ramos, 1999) it is unsurprising that it out-
performs the simple word count feature extraction.

6.2 Traditional ML models

With optimized data cleaning and feature extrac-
tion, our highest performing traditional models out-
performed the base pretrained BERT model. This
high performance demonstrates the efficacy of fine
tuning the preprocessing steps to achieve competi-
tive performances with these models.

The features in Table 3 depict the features that
strongly impact the classification of Tweets in the
Logistic Regression model. Based on the descrip-
tion from the WNUT-2020 shared task 2 descrip-
tion of INFORMATIVE Tweets as Tweets that,
“provide information about recovered, suspected,
confirmed and death cases as well as location or
travel history of the cases,” (Nguyen et al., 2020b) it
is unsurprising that word-level features concerning
cases, test results, and deaths have large weights.

6.3 BERT

Somewhat surprisingly the pre-trained BERT
model was outperformed by our logistic regression
model for this task. This shows that even for large-
scale pre-trained language models such as BERT,
task-specific fine-tuning is of utmost importance.

Though both the fined-tuned BERT and BERT+
models both outperformed the logistic regression
model, the difference in performance was not large.
(around 3% boost in performance when using the
BERT+ model compared to the logistic regression).
We believe this is because BERT is not ideal for
classifying noisy Twitter data as it has been trained
on well-formed English sentences. This is why
several Twitter-specific models have been proposed
to deal with noisy Twitter data (Vosoughi et al.,
2016; Nguyen et al., 2020a).

7 Conclusion & Future Work

In this paper, we have described multiple tech-
niques for automatically identifying and classifying
informative COVID-19 Tweets. We have demon-
strated the applicability of Logistic Regression with
an optimized data cleaning pipeline and TF-IDF
for feature extraction for the task of Tweet classifi-
cation. We have also displayed the higher perfor-
mance of the BERT+ model. Automated classifi-
cation of real time data feeds will be important as
the COVID-19 pandemic continues to impact the
world around us.

For future work, we would to like pre-train a
BERT model on a large corpus of Tweets as Twit-
ter’s lexicon and grammatical styling differ from
normal usage of the English language. We also
want to compare the performance of our fine-tuned
BERT model to the performances of other state-
of-the-art, pretrained NLP models such as fast.ai’s
ULMFIT (Howard and Ruder, 2018) and OpenAI’s
GPT2 (Radford et al., 2018) on this task. We would
also like to train a Convolutional Neural Network
for Tweet classification. Moreover, as (Kim, 2014)
has demonstrated, Convolutional Neural Network
(CNN) trained on top of pre-trained word vectors
can achieve state-of-the-art performance for se-
quence classification. We would like to develop
a similar method of utilizing a CNN for the task of
Tweet classification.

References

Steven Bird and Edward Loper. 2004. NLTK: The nat-
ural language toolkit. In Proceedings of the ACL In-
teractive Poster and Demonstration Sessions, pages
214–217, Barcelona, Spain. Association for Compu-
tational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

https://www.aclweb.org/anthology/P04-3031
https://www.aclweb.org/anthology/P04-3031
https://doi.org/10.18653/v1/N19-1423


484

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
ACL. Association for Computational Linguistics.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1746–1751.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
Ro{bert}a: A robustly optimized {bert} pretraining
approach.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations.

Dat Quoc Nguyen, Thanh Vu, and Anh Tuan Nguyen.
2020a. Bertweet: A pre-trained language model for
english tweets. arXiv preprint arXiv:2005.10200.

Dat Quoc Nguyen, Thanh Vu, Afshin Rahimi,
Mai Hoang Dao, Linh The Nguyen, and Long Doan.
2020b. WNUT-2020 Task 2: Identification of Infor-
mative COVID-19 English Tweets. In Proceedings
of the 6th Workshop on Noisy User-generated Text.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2018. Language
models are unsupervised multitask learners.

Juan Ramos. 1999. Using tf-idf to determine word rel-
evance in document queries.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Soroush Vosoughi, Prashanth Vijayaraghavan, and Deb
Roy. 2016. Tweet2vec: Learning tweet embeddings
using character-level cnn-lstm encoder-decoder. In
Proceedings of the 39th International ACM SIGIR
conference on Research and Development in Infor-
mation Retrieval, pages 1041–1044.

—

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://dl.acm.org/doi/10.5555/1953048.2078195
https://dl.acm.org/doi/10.5555/1953048.2078195
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://doi.org/10.36106/ijsr
https://doi.org/10.36106/ijsr
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762

