
Proceedings of the 2020 EMNLP Workshop W-NUT: The Sixth Workshop on Noisy User-generated Text, pages 34–40
Online, Nov 19, 2020. c©2020 Association for Computational Linguistics

34

Enhanced Sentence Alignment Network for Efficient Short Text Matching

Zhe Hu1 Zuohui Fu2 Cheng Peng1 Weiwei Wang1

1Baidu Inc., Beijing, China
2Rutgers University, NJ, USA

1{huzhe01, pengcheng06}@baidu.com, elegate@qq.com
2zuohui.fu@rutgers.edu

Abstract
Cross-sentence attention has been widely ap-
plied in text matching, in which model learns
the aligned information between two interme-
diate sequence representations to capture their
semantic relationship. However, commonly
the intermediate representations are generated
solely based on the preceding layers and the
models may suffer from error propagation and
unstable matching, especially when multiple
attention layers are used. In this paper, we pro-
pose an enhanced sentence alignment network
with simple gated feature augmentation, where
the model is able to flexibly integrate both orig-
inal word and contextual features to improve
the cross-sentence attention. Moreover, our
model is less complex with fewer parameters
compared to many state-of-the-art structures.
Experiments on three benchmark datasets vali-
date our model capacity for text matching.

1 Introduction

Modeling the semantic relationship of a sentence
pair is a long standing task in natural language
processing, which can be applied in many sce-
narios such as paraphrase detection and natural
language inference (Wang et al., 2017; Bowman
et al., 2015; Lan and Xu, 2018). Neural network
approaches have achieved impressive results on
solving text matching tasks for the good represen-
tation learning ability and benefiting from large
datasets (Rocktäschel et al., 2015; Wang et al.,
2017; Gong et al., 2017).

One of the major paradigms is attention based
neural approach which adopts matching and fu-
sion method (Chen et al., 2017; Wang and Jiang,
2016; Duan et al., 2018). Specifically, attention
mechanism is used as a key component to compute
word or phrase alignments between the two paral-
lel sequences, and then the aligned information is
fused to update the sentence representations. Re-
cent work also adopts multiple matching processes

to equip model with power on gradually refining
the attention results (Yang et al., 2019; Liang et al.,
2019; Kim et al., 2019).

Unfortunately, conducting cross-sentence atten-
tion between two intermediate sentence represen-
tations may lead to unstable matching since dif-
ferent layers aim at capturing different semantic
information (Liu et al., 2019a). Also, each inter-
mediate representation is highly correlated to the
previous layers, and error propagation would affect
the following representations and lead to incorrect
alignments since model is unable to amend the in-
formation without recalling the original semantic
features. Furthermore, in case of multiple align-
ment blocks are used, models may suffer from dif-
ficulty of training such as vanishing gradients, and
low-level features are inefficient to be fully trained.
Different connection methods are adopted by some
recent models to overcome this problem (Tay et al.,
2018a; Yang et al., 2019; Nie and Bansal, 2017).

Recently pre-trained language models such as
BERT have achieved impressive improvements on
text matching tasks (Devlin et al., 2019; Liu et al.,
2019b). Despite the promising results, the large
parameter size and growing computational require-
ments make it hard to directly deploy these models
to real-time applications (Sanh et al., 2019). Thus
designing efficient and effective models to tackle
text matching has been of increasing importance.

In this work, we introduce an Enhanced
Sentence Alignment Network with Gated Feature
Augmentation (ESAN), in which our model inte-
grates the word features (embedding outputs) and
contextual features (encoding outputs) to the in-
termediate representations for each cross-sentence
attention, as shown in Figure 1. The embedding
outputs contain the original word information, and
the encoding outputs represent each token with the
aggregated contexts, which are helpful to guide
the attention layer to properly capture the aligned
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information. A gate operation is used to flexibly
control how much these two features to be added.
Also, incorporating the original semantic features
directly to the different levels of representation lay-
ers can be viewed as a shortcut connection, which
is helpful to reduce the training difficulty on low-
level features. We then apply a simple but effective
fusion layer to fuse the aligned features and update
the sentence representations gradually. Different
from previous work (Yang et al., 2019; Kim et al.,
2019), we do not apply residual connections be-
tween alignment layers or use multiple encoders in
alignment layers, and our architecture is more effi-
cient and less complex compared with many strong
baselines, indicating the feasibility to be deployed
in real applications.

To demonstrate the effectiveness of our method,
we conduct experiments on three text matching
datasets: SNLI, MultiNLI and Quora Question
Pairs. The results show our model outperforms
strong baselines with fast inference speed. We also
conduct model analysis including an ablation study
and a case study on attention visualization.

2 Method

2.1 Encoding Layer

Given inputs Sa and Sb, the model first passes each
sequence to an embedding layer to get word rep-
resentations. We use pre-trained word vectors as
word embeddings and keep it fixed during train-
ing. Character-based word representations is also
leveraged, in which we use 1D convolutional net-
work on the character embeddings, and then apply
max pooling over the time dimension of each token.
The word vectors and character-based vectors are
concatenated. Following Chen et al. (2018), we
further concatenate syntactical features including
part-of-speech (POS) tagging feature and binary
exact match feature for the NLI task. The embed-
ding outputs are regarded as the final word features:
Ea = {eai} ∈ Rm×d and Eb = {ebj} ∈ Rn×d,
where m,n are the sequence lengths. We then pass
Ea and Eb to a Bidirectional LSTM encoder to
obtain the contextual features Ha = {hai} and
Hb = {hbj}, with the same dimension size of d.

Intuitively, the word features contain the original
information of each token, and the contextual fea-
tures represent each word with aggregated context
information. They will be used as additional fea-
tures to enhance the following alignment process.
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Figure 1: The overview of our model. Word features (Ea)
and contextual features (Ha) are used for the enhanced sen-
tence alignment layer, and multiple alignments are stacked
with independent parameters. Symmetric structure is applied,
and we omit the right part for space limitation.

2.2 Enhanced Sentence Alignment Layer

The proposed enhanced sentence alignment layer
takes the intermediate representations a and b as
inputs. As shown in Figure 1, the enhanced align-
ment layer consists of: (1) gated feature augmenta-
tion, (2) co-attention and (3) fusion layer. Multiple
enhanced sentence alignment layers are stacked to
enable the model to gradually refine the alignments.

2.2.1 Gated Feature Augmentation.
Given two intermediate sequence representations a
and b, which are the inputs of the current alignment
layer, we first augment the word and contextual
features to each representation as different levels
of the original semantic features. Specifically, for
sequence representation a = {ai|ai ∈ Rd, i =
1, 2, ...,m}, we augment the word feature Ea and
contextual feature Ha with a gate operation to en-
able the model to selectively keep the features from
different parts, which is formally defined as:

gei = σ(Wgai +Weeai
+ ze) (1)

ghi = σ(Wgai +Whhai + zh) (2)
ãi = ai + gei ◦ eai

+ ghi
◦ hai

(3)

where W∗ ∈ Rd×d and z∗ ∈ Rd are trainable
parameters. The same operation is performed for
sequence b. For the first alignment inputs (the en-
coding outputs), we only augment the word fea-
tures. Inspired by residual connections (He et al.,
2016), we also try a simplified version of augmen-
tation without gate operation:

ãi = ai + eai
+ hai

(4)
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2.2.2 Co-attention.
We then apply the co-attention between two en-
hanced sequence representations ã and b̃ to cap-
ture their relationship. We first calculate similarity
score eij of token ãi and token b̃j :

eij = ReLU(Wcãi)
T · ReLU(Wcb̃j) (5)

where Wc is a trainable parameter, and the bias
term is omitted. Then the attentive representations
of each sequence are computed by the weighted
sum of the other sequence to highlight the relevant
elements:

a′i =

n∑
j=1

exp(eij)∑n
k=1 exp(eik)

b̃j (6)

b′j =

m∑
i=1

exp(eij)∑m
k=1 exp(ekj)

ãi (7)

where m, n are the lengths of sequence ã and b̃.

2.2.3 Fusion Layer
We apply a simple yet effective fusion layer to fuse
the aligned features to the original representations.
The output of fusion layer ā is computed as follows:

āi = ReLU(Wf [ãi; a
′
i; ãi − a′i; ãi ◦ a′i] + zf ) (8)

where Wf and zf are trainable parameters, [; ]
represents concatenation, and ◦ is element-wise
product. The output has the same dimension size
as ã and a′.

2.3 Pooling and Classification Layer
We use both mean and max pooling on each se-
quence to get the corresponding vector represen-
tations, as inputs of the classification layer. Mean
pooling aggregates global semantics and max pool-
ing represents the import semantic features. Then
we apply an MLP with softmax to get the final
distributions. Formally, assume the outputs of the
last fusion layer is Va and Vb, we first compute the
feature vector:

V ′
a = [

1

m

m∑
i=1

vai ;
m

max
i=1

vai ] (9)

V ′
b = [

1

m

m∑
i=1

vbi ;
m

max
i=1

vbi ] (10)

V = [V ′
a;V ′

b ;V ′
a − V ′

b ;V ′
a ◦ V ′

b ] (11)

Then a multi-layer perceptron (MLP) is used to
calculate the final target:

ŷ = softmax(W2ReLU(W1V + z1) + z2) (12)

where W∗and z∗ are trainable parameters.

Model Test Accuracy (%)

ESIM (Chen et al., 2017) 88.0
BiMPM (Wang et al., 2017) 87.5
DIIN (Gong et al., 2017) 88.0
CAFE (Tay et al., 2018b) 88.5
CSRAN (Tay et al., 2018a) 88.7
ADIN (Liang et al., 2019) 88.8
RE2 (Yang et al., 2019) 88.9
OSOA-DFN (Liu et al., 2019a) 88.8
ESAN 89.0

Table 1: Experiment results on SNLI dataset. Our model
yields better results (in bold).

3 Experimental Setups

Datasets and Preprocessing. We evaluate our
model on three large-scale benchmark datasets:
SNLI dataset (Bowman et al., 2015), MultiNLI
dataset (Williams et al., 2018) and Quora Question
Pairs (Quora) dataset. We follow the same data
splits as provided in the original papers for SNLI
and MultiNLI. For Quora, we use the same split as
Wang et al. (2017)1. Accuracy is used to evaluate
the model performance for all three datasets.

Training Details and Parameters. We tune the
number of enhanced alignment layers from 2 to 3
in all experiments, which can be easily extended
to more layers. We apply 300D-840B Glove (Pen-
nington et al., 2014) as pre-trained word vectors.
The 1D convolutional network is used for char em-
bedding with kernel size 5 and 100 filters. We tune
the number of recurrent layers from 1 to 2, and
the dimension of feed-forward layers from 150 to
300 with ReLU (Glorot et al., 2011) as activation
function. Adam optimizer (Kingma and Ba, 2014)
is used with β1 to be 0.9 and β2 to be 0.999 dur-
ing training. We use cropping or padding to limit
each token to have 16 characters in char embed-
ding. Dropout with dropout rate of 0.2 is applied
to prevent overfitting. We set initial learning rate
as 0.001 with exponential decay. The batch size is
tuned from 64 to 256. More details are in Supple-
mentary.

4 Results

4.1 Quantitative Results
Our model outperforms strong baselines with com-
petitive results on all three datasets. For a fair
comparison, we do not include the methods with
pre-trained language models such as BERT (Devlin
et al., 2019) or ensemble systems.

1Data statistics are in Supplementary.
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Model Test Accuracy (%)

BiMPM (Wang et al., 2017) 88.2
DIIN (Gong et al., 2017) 89.1
CAFE (Tay et al., 2018b) 88.7
CSRAN (Tay et al., 2018a) 89.2
RE2 (Yang et al., 2019) 89.2
OSOA-DFN (Liu et al., 2019a) 89.0
Enhanced-RCNN (Peng et al., 2020) 89.3
ESAN 89.3

Table 2: Experiment results on Quora datasets. Our model
yields better results than all comparisons (in bold).

Model Test Accuracy (%)
Matched Mismatched

DIIN (Gong et al., 2017) 78.8 77.8
CAFE (Tay et al., 2018b) 78.7 77.9
AF-DMN (Duan et al., 2018) 76.9 76.3
MwAN (Tan et al., 2018) 78.5 77.7
ADIN (Liang et al., 2019) 78.8 77.9
ESAN 79.3 78.4

Table 3: Experiment results on MultiNLI dataset. Our model
yields better results than all comparisons (in bold).

The results for SNLI and Quora are shown
in Table 1 and Table 2. For SNLI, our model
achieves 89.0% test accuracy, which is higher than
all comparisons including some strong state-of-the-
art models. For Quora, our model also achieves
the best performance, with 89.3% test accuracy.
Table 3 presents the results on MultiNLI, and our
model produces higher accuracy on both in-domain
(matched) and out-domain (mismatched) test sets,
which further proves the model ability for natural
language inference task. Above all, the results on
the challenging datasets verify our model effective-
ness for solving text matching tasks.
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Figure 2: Total number of parameters for different models
on Quora dataset.

4.2 Model Analysis
Ablation Study. To verify the effectiveness of our
model components, we conduct an ablation study
on Quora as shown in Table 4. The first line rep-
resents the model variant without feature augmen-
tation (using original co-attention between inter-
mediate representations) and the result drops dra-
matically. It shows that feature augmentation plays

Models Acc. (%)

ESAN 89.4
(w/o Feat. Augment.) 88.1
(w/o Word Feat.) 89.0
(w/o Contextual Feat.) 88.9
(w/ Simple Augment.) 89.1

Table 4: Analysis of model components on Quora dev set.

a key role to enhance the alignment process. In
the next two settings, after removing word features
and contextual features respectively, both the re-
sults drop, and removing contextual features brings
more decrease to the final performance. These two
features are complementary to each other to im-
prove the following cross-sentence attention. For
the last ablation study, we apply simple augmen-
tation without gate as Equation 4, and the perfor-
mance decreases by 0.3 percentage point, which
indicates the usefulness of the gate operation.

Models parameter size time (s/batch)

ESAN 3.9M 0.04 ± 0.01
BERT 109.5M 0.88 ± 0.06

Table 5: Paramter size and inference time for ESAN and
BERT on Quora Question Pairs.

Model Efficiency. Figure 2 presents the compar-
ison of total number of parameters for our model
and baselines. Some strong comparisons such
as CSRAN and MwAN contain more than 10M
parameters, while our model has less parameters
(3.9M) and achieves better results. We also com-
pare the inference time with BERT to show the
efficiency of our model in Table 5. Specifically,
we set the sentence lengths as 20. Both models
are required to make predictions for a batch of 8
sentence pairs on a MacBook Pro with Intel Core
i7 CPUs. For BERT, we add a linear layer on top
of the [CLS] token for classification as the original
paper did (Devlin et al., 2019). We report the aver-
age and the standard deviation of processing 1000
batches. From the results we can see ESAN has a
higher inference speed than BERT with less model
complexity, which further indicates ESAN is more
efficient and can be applied in many real scenarios.

4.3 Attention Visualization.
We present a case study through the attention vi-
sualization to investigate what our model learns in
cross-sentence attention. We take an instance from
SNLI, where sentence 1 is “police officer with riot
shield stands in front of crowd” and sentence 2 is
“a police officer stands in front of a crowd”. The
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1st attention 2nd attention

Figure 3: Visualization of attention results for a natural
language inference case.

attention results are shown in Figure 3.
In the first attention, the model tends to align ele-

ments mostly in word-level. For example, “stands”
and “crowd” in two sequences are successfully con-
nected. Also, the model correctly aligns phrase “po-
lice officer” together which is one of the key com-
ponents. In the second attention, the model tries to
refine the attention distribution and gives “stands”
and “crowd” larger weights. Also, the model tends
to align longer phrases together instead of individ-
ual words. For example, phrases “in front of” in
two sequences are connected. Notably, “riot shield”
is also aligned to “police officer”. We hypothesis
that the model learns this phrase is used to describe
entity “police officer”, thus correctly aligning these
two would help to make the final decision. With the
proper alignments, the model correctly classifies
their relationship as “entailment”.

5 Related Work

Text matching is a key technique for many NLP
tasks such as natural language inference (Bowman
et al., 2015), paraphrase identification (Wang et al.,
2017) and machine reading comprehension (Ra-
jpurkar et al., 2016; Wang et al., 2018). As a long
standing problem, this area has been in the center
of attention and investigated widely.

Benefiting from large-scale datasets, neural net-
works have achieved much success for solving this
problem. One of the paradigms uses sentence en-
coding structure, in which two sentences are en-
coded into vector representations, and then the vec-
tors are combined to make the final prediction (Con-
neau et al., 2017; Yin and Schütze, 2015; Mueller
and Thyagarajan, 2016). However, the interaction
of the two input sequences is not directly consid-
ered during the encoding process, which makes the
model difficult to capture complex relationship.

Later work adopts matching and aggregation
method to model the alignments of the two sen-
tences. Wang and Jiang (2016) uses a match-

LSTM to conduct word-level matching of the two
sequences. Parikh et al. (2016) propose a sim-
ple attention operation and use a feed-forward
network to integrate the aligned representations.
BiMPM (Wang et al., 2017) uses multi-perspective
matching operation to compare two sequences, and
applies a Bi-LSTM network for aggregation. Gong
et al. (2017) uses DensNet as feature extractor to
extract the semantic feature from the interaction
tensor.

To better capture the sentence alignments in dif-
ferent levels, multiple attention operations can be
stacked together. Yang et al. (2019) propose a
simple but effective framework with richer align-
ment features. Tay et al. (2018a) leverages multi-
level attention refinement component to conduct
more extensive matching and improve the results.
ADIN (Liang et al., 2019) stacks asynchronous
inference layers for a multi-step reasoning process.

Recently the pre-trained language models have
achieved state-of-the-art results on text match-
ing tasks with pre-training and finetuning proce-
dure (Devlin et al., 2019). Nevertheless, large pa-
rameter size and slow inference speed make it hard
to directly deploy these structures to the real appli-
cations. Different from above methods, we propose
a simple but effective gated augmentation layer to
enrich the intermediate representations with the
original word features and contextual features, and
thus guide model to produce better alignments.

6 Conclusions

In this work, we present ESAN, an enhanced sen-
tence alignment network for text matching. We
flexibly integrate both word and contextual features
to the intermediate representations with a gate oper-
ation to conduct better co-attention between two se-
quences. Our model outperforms strong baselines
on three datasets and contains fewer parameters,
which indicates the model capacity on producing
proper alignments for text matching. In the future,
we also plan to apply our methods to some other
scenarios such as question answering.
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