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Abstract

Pre-trained neural language models (LMs)
have achieved impressive results in various
natural language processing tasks, across dif-
ferent languages. Surprisingly, this extends to
the social media genre, despite the fact that so-
cial media often has very different characteris-
tics from the language that LMs have seen dur-
ing training. A particularly striking example is
the performance of AraBERT, an LM for the
Arabic language, which is successful in cate-
gorizing social media posts in Arabic dialects,
despite only having been trained on Modern
Standard Arabic. Our hypothesis in this paper
is that the performance of LMs for social me-
dia can nonetheless be improved by incorporat-
ing static word vectors that have been specifi-
cally trained on social media. We show that
a simple method for incorporating such word
vectors is indeed successful in several Arabic
and English benchmarks. Curiously, however,
we also find that similar improvements are pos-
sible with word vectors that have been trained
on traditional text sources (e.g. Wikipedia).

1 Introduction

Social media has become an important source of
information across numerous disciplines (Jaffali
et al., 2020). For instance, it allows extracting
and analyzing people’s opinions, emotions and
attitudes towards particular subjects, in a way
which is difficult to achieve using other information
sources. However, social media posts tend to be
short and often contain abbreviations, slang words,
misspellings, emoticons and dialect (Baly et al.,
2017). For language models (LMs) such as BERT
(Devlin et al., 2019), which have been primarily
trained on Wikipedia, this poses a number of clear
challenges. In the case of Arabic, the challenge is
even greater, since social media posts are mostly
written in regional dialects, which can be different
from the language that is found in resources such
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as Wikipedia (Alali et al., 2019). In particular, the
Arabic language can be divided into Classical Ara-
bic, Modern Standard Arabic, and Dialectal Arabic
(Alotaibi et al., 2019). The latter differs between
Arabic countries, and sometimes among regions
and cities. Social Media acts as the primary source
where Arabic dialects appear as written text, due to
the informality of these platforms.

Similar as for English, the best results in many
Arabic NLP tasks are currently obtained with LMs.
In particular, the AraBERT model (Antoun et al.,
2020) has achieved state-of-the-art results in senti-
ment analysis, named entity recognition and ques-
tion answering, among others. However, AraBERT
was trained on Wikipedia and news stories. It has
thus not seen the Arabic dialects in which most
social media posts are written. Surprisingly, how-
ever, Antoun et al. (2020) found that AraBERT
is nonetheless able to outperform other methods
on social media tasks. This includes methods that
use the AraVec (Soliman et al., 2017) embeddings,
which are word2vec vectors trained on Twitter, and
have a wide coverage of dialect words.

Our hypothesis is that AraBERT and AraVec
have complementary strengths, and that better re-
sults can thus be obtained by combining these two
resources. Similarly, for English tasks, we would
expect that the performance of BERT on social me-
dia can be improved by incorporating word embed-
dings that have been trained on social media. How-
ever, for English we would expect to see a smaller
effect, since compared to Arabic, the vocabulary of
English social media is more similar to the vocabu-
lary in traditional sources. To test these hypotheses,
we propose and evaluate a simple classifier which
combines language models with static word em-
beddings. Our main findings are that incorporating
word vectors can indeed boost performance. Sur-
prisingly, this even holds for word embeddings that
have been trained on standard sources.
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2 Related Work

While there is a large literature on NLP for social
media, more efforts that focus on the Arabic lan-
guage are needed. A notable work is Heikal et al.
(2018), which developed a CNN and LSTM ensem-
ble model for Arabic sentiment analysis. They used
AraVec pre-trained word embeddings for the word
embedding representation. Recently, Kaibi et al.
(2020) proposed an approach that relies on the con-
catenation of pre-trained AraVec and fastText vec-
tors. However, the best results on most datasets are
currently achieved by fine-tuning AraBERT (An-
toun et al., 2020), as already mentioned in the in-
troduction. For the English language, Nguyen et al.
(2020) recently introduced BERTweet, a BERT-
based language model that was trained on a large
corpus of English tweets. Their experiments show
that utilising this model led to improved results
on different tasks involving Twitter posts, such as
named entity recognition, part-of-speech tagging
and text classification.

In this work, we investigate the effectiveness of
combining pre-trained language models with static
word embeddings. For earlier language models,
most notably ELMo (Peters et al., 2018), it was
common practice to combine contextual embed-
dings, predicted by the language model, with static
word embeddings. However, the introduction of
BERT has essentially eliminated the need for static
word vectors in standard settings. On the other
hand, several authors have shown that it can be
beneficial to incorporate entity vectors with BERT,
allowing the model to exploit factual or common-
sense knowledge from structured sources (Lin et
al., 2019; Poerner et al., 2019).

3 Proposed Approach

There are various ways in which BERT-based mod-
els can be combined with static word vectors. Note,
however, that we cannot simply concatenate the
contextualised word vectors predicted by BERT
with the corresponding static word vectors, due
to the fact that the tokenization strategy used by
BERT means that many words are split into two
or more word-piece tokens. One possible solution,
adopted by Zhang et al. (2020) in a different set-
ting, is to combine the word-piece tokens from the
same word into a single vector, using a convolu-
tional or recurrent neural network. The resulting
word-level vector can then be concatenated with
the corresponding static word vector. However,
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without a large training set, there is a risk that the
representations predicted by BERT are degraded
by this aggregation step. As a simpler solution,
we instead combine representations obtained from
BERT and from the static word vectors at sentence
level. In particular, to obtain a sentence vector
from the fine-tuned BERT model, we simply take
the average of the predicted contextualised vectors.
To obtain a sentence vector from the static word
embeddings, we use either a Convolutional Neural
Network (CNN) or a Long Short Term Memory net-
work (LSTM). After concatenating the two types of
sentence vectors, we apply dropout, followed by a
softmax classification layer. A diagram illustrating
the model is shown in Figure 1. Rather than jointly
training the combined model, we first fine-tune the
BERT model on its own. After this fine-tuning
step, we freeze the BERT model and train the CNN
and combined classification layer. We found this
strategy to be more robust against over-fitting.
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Figure 1: The CNN based proposed architecture

4 Experimental Results

We experimentally analyze the benefit of incorpo-
rating static word vectors, in both Arabic and En-
glish. For Arabic, we used the following datasets:

AJGT Arabic Jordanian General Tweets (Alo-
mari et al., 2017) is a sentiment classification
dataset. It consists of 1,800 tweets annotated
with positive and negative labels.

SemEval-2017 Task 4 (Rosenthal et al., 2017)
We use the Arabic subtask A dataset from
SemEval 2017 Task 4. This dataset contains
10,126 tweets, annotated with negative, neu-
tral, and positive labels.



L-HSAB A dataset for hate speech and abusive
language in Arabic Levantine dialect (Mulki
et al., 2019). It consists of 5846 tweets, which
are annotated as normal, abusive or hate.

ArsenTD-Lev An Arabic Levantine dataset for
sentiment analysis that discusses multiple top-
ics (Baly et al., 2019). It contains 4000 tweets,
labelled as a very negative, negative, neutral,
positive, or very positive.

For English, we used the following datasets:

Irony Detection We use Semeval-2018 Task 3
dataset (Van Hee et al., 2018), containing
4,618 tweets that are annotated as ironic or
not.

Semeval-2019 Task 6: OffensEval An offensive
language identification dataset for social me-
dia (Zampieri et al., 2019). It consist of 14,100
tweets that are labeled as offensive or not.

Stance Detection We use the climate change
Semeval-2016 Task 6 subtask A dataset (Mo-
hammad et al., 2016). It contains 564 tweets,
annotated as in favour, against or neutral to-
wards the target.

Hate Speech Detection We utilize the English
SemEval-2019 Task 5 dataset (Basile et al.,
2019). It contains 13,000 tweets labeled as
hateful or not.

For datasets without standard splits, we randomly
split the data into 80% for training and 20% for test-
ing. We removed emojis, hashtag signs (#), num-
bers, special characters and punctuation. We re-
place user mentions with [user], URLs with [link],
and email addresses with [email], written in Ara-
bic or English depending on the language of the
dataset. For Arabic tweets, we also removed dia-
critics, elongation and English letters, besides shal-
low normalization. For English, we removed non-
ASCII characters, convert emoticons to text, and
common contractions to their full form.

Word Embeddings. For the Arabic dataset, we
use AraVec word vectors (Soliman et al., 2017),
which are based on the word2vec model (Mikolov
et al., 2013). Pre-trained models are available for
two Arabic content domains: Wikipedia and Twit-
ter. For each domain, Skip-gram and CBOW ver-
sions with 100 and 300 dimension vector sizes were
provided. In our experiments, for both domains,
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we have used the 300-dimensional CBOW vectors
(AraVec-twi and AraVec-wiki). For English, we
have used GloVe vectors provided by (Pennington
et al., 2014). We have used the 100 dimensional
word vectors that have been pre-trained on Twitter
data (GloVe-twi), as well as the 100-dimensional
GloVe vectors that have been trained on Wikipedia
(GloVe-wiki).

Language Models. We use the pre-trained
AraBERTVO0.1 model! (Antoun et al., 2020) for
Arabic and the BERT},,s. uncased (Devlin et al.,
2018) model for English.

Baselines and Methodology. As a baseline, we
show the performance of a standard CNN, using
only the static word vectors as input. We use 100
convolutional filters, a kernel size of 3, and a ReLU
activation function. A global max-pooling layer
follows the convolution layer. A dropout layer with
a 0.5 drop rate is applied to the max-pooled output
to avoid over-fitting. We use SGD with a batch size
of 16 for 15 epochs with early stopping callback.

We also show results for BERT and AraBERT
alone. We followed the BERT TensorFlow imple-
mentation for sequence classification provided by
Hugging Face (Wolf et al., 2019). Both AraBERT
and the English BERT},s pre-trained language
models share the same architecture, which con-
sists of 12 layers. We utilize the Adamax optimizer
and batch size of 8. The hyper-parameters search
for the fine-tuning process involves the number of
epochs (3 to 6) and the learning rates [2e-5, Se-5].
We chose the best performing hyper-parameters
based on a validation split. We use the standard
validation split for datasets where one is provided,
and use 20% of the training data as validation oth-
erwise. We fine-tune BERT on the whole training
data once the best hyper-parameters are chosen.

For the CNN variant of our proposed hybrid
approach, we use the same configuration as for
the CNN baseline, i.e. we use a convolution layer
with a filter size of 100, a kernel size of 3, and
the ReLLU activation function, followed by global
max-pooling. For the LSTM variant, we use 100-
dimensional units. In both variants, the dropout
rate is set to 0.5, and we use SGD with a batch
size of 16, for 15 epochs, with the usage of early
stopping callback.

"There are two versions of AraBERT, called AraBERTv0.1
and AraBERTvVI1. The only difference is that a Farasa Seg-
menter is used for the latter.



Model Embeddings AJGT SemEval-2017 L-HSAB ArsenTD-Lev
CNN AraVec-twi 89.9 55.6 60.9 47.5

AraBERT - 93.3 63.1 71.0 51.8

CNN + AraBERT AraVec-twi 93.4 (93.0,93.9) 64.1 63.5,644)  72.1 (71.7,723)  49.2 (47.1,51.5)
LSTM + AraBERT  AraVec-twi 93.1(92.8,93.6)  63.7(63.3,64.1) 72.0 (715,725  52.2(51.7,52.7)
CNN + AraBERT AraVec-wiki 93.4 (92.8,93.6) 64.3 639,645  71.8 (71.6,72.1)  50.9 (48.0, 53.1)
LSTM + AraBERT  AraVec-wiki 93.1 (92.8,93.6) 63.7 (634,639 719 (71.5,725)  51.9(51.5,52.5)

Table 1: F1 scores (%) for Arabic datasets. We report the average result from five runs for CNN, CNN+AraBERT
and LSTM+AraBERT, as well as the minimum and maximum results between parentheses.

AraBERT model is fixed across all variants.

The fine-tuned

Model Embeddings Irony OffensEval Hate Stance
CNN GloVe-twi 57.2 75.1 47.0 29.0
BERT - 67.3 78.5 50.6 52.9
CNN + BERT GloVe-twi 68.4 674,697 79.4 (792,79.7)  48.1 (47.6,48.5) 54.3 (52.9, 56.0)
LSTM+ BERT  GloVe-twi 68.3 (67.6,68.9)  79.5(79.2,79.8)  47.7 (47.5,47.8) 54.1 (53.1,55.5)
CNN + BERT  GloVe-wiki 67.7 (66.5,68.7)  79.4(79.0,79.6) 48.1 (47.8,483) 54.6 (53.6,55.5)
LSTM+ BERT  GloVe-wiki 68.3 (67.6,68.9) 79.6 (79.2,79.8)  47.7 (47.5,47.8)  54.1 (53.1,55.5)

Table 2: F1 scores (%) for English datasets. We report the average result from five runs for CNN, CNN+BERT and
LSTM+BERT, as well as the minimum and maximum results between parentheses. The fine-tuned BERT model

is fixed across all variants.

Results. Table 1 summarizes the performance of
the baseline models and the proposed strategy for
the Arabic language, while Table 2 shows the re-
sults for English. The results for AraBERT and
BERT are the best results that were obtained over
three runs. We then fix this model and combine it
with the CNN and LSTM models. The results of
these combined models (and the CNN baseline) are
averaged over 5 runs. We use this approach since
the focus is on assessing whether the performance
of BERT and AraBERT can be improved.

Overall, the proposed combined model improves
the results across almost all datasets, with the CNN
and LSTM variants performing broadly similarly.
One exception for Arabic is the ArsenTD-Lev
dataset, where the LSTM variant performs substan-
tially better than the CNN variant. and the English
Hate dataset, where neither of the two variants out-
performs the fine-tuned BERT model. The under-
performance on the Hate dataset is likely related to
over-fitting, as there is a clear mismatch between
training and test data in this dataset (e.g. in terms
of annotation strategy and average tweet length).
The most surprising finding is that the AraVec-twi
and AraVec-wiki word embeddings achieve com-
parable performance for Arabic, and similarly, the
GloVe-twi and GloVe-wiki embeddings achieve
comparable performance for English. This sug-
gests that the main improvements are not due to
the fact that the word embeddings are specialized
towards the social media genre, but rather because
they capture complementary facets of word mean-

31

ing. We conjecture that word vectors can, in partic-
ular, provide valuable complementary information
for rare words. Schick and Schiitze (2020) found
that BERT struggles with rare words and we can
indeed expect social media texts to contain a larger
proportion of rare words than documents in other
genres.

5 Conclusions

In this paper, we have presented a simple approach
to combine static word embeddings with BERT-
based language models. Intuitively, the reason why
this hybrid approach can outperform the BERT-
based models themselves is because the latter were
not trained on Wikipedia. The alternative solution
would be to train language models on a relevant
social media corpus, as in the BERTweet model
(Nguyen et al., 2020). While such a strategy is
likely to lead to a better overall performance, in
principle, this is not always feasible in practice.
For instance, using static word vectors could play
an important role in dealing with emerging terms,
such as trending hashtags, as continuously updating
language models (for many different languages)
would be too expensive. Similarly, incorporating
static word vectors seems to be a promising strategy
for improving language models for low-resource
languages, as specialized language models (e.g.
trained on social media) are unlikely to become
available for such languages.
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