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Abstract

In this paper, we present IIITBH team’s ef-
fort to solve the second shared task of the 6th
Workshop on Noisy User-generated Text (W-
NUT) i.e Identification of informative COVID-
19 English Tweets. The central theme of the
task is to develop a system that automatically
identify whether an English Tweet related to
the novel coronavirus (COVID-19) is informa-
tive or not. Our approach is based on exploit-
ing semantic information from both max pool-
ing and average pooling, to this end we pro-
pose two models.

1 Introduction

COVID-19 pandemic started in Wuhan, China in
December 2019, caused by the infection of indi-
viduals by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) this dangerous virus
is spreading around the world since then. The
COVID-19 pandemic continues to have a devas-
tating effect on the health and well-being of the
global population. It is creating fear and panic for
people all around the world, while the vaccine can
hopefully brings the situation under control soon.
To track the development of the outbreak and to pro-
vide users with the information related to the virus,
e.g. any new cases in the user’s regions. Need
for building real-time monitoring system which
uses social network data like Twitter is high. How-
ever, manual approaches to identify the informative
Tweets require significant human efforts and thus
are costly. To help handle this problem, WNUT
shared task 2 (Nguyen et al., 2020) aim participants
to build systems to automatically identify whether
a COVID-19 English Tweet is informative or not.
Such informative Tweets provide information about
recovered, suspected, confirmed and death cases as
well as location or travel history of the cases.
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Pooling-based recurrent neural architectures con-
sistently outperform their counterparts without
pooling (Maini et al., 2020). However, the reasons
for their enhanced performance are largely unex-
amined. In this work, we examine how two most
commonly used pooling techniques (mean-pooling
or average pooling, and max-pooling) perform for
solving WNUT-2020 shared task 2! and develop
two novel systems exploiting semantic features of
both techniques.

2 Data

Dataset consists a total of 10, 000 tweets split into
training, validation, test set in 70/10/20 ratio re-
spectively. Detailed breakdown of data is shown in
Table 1. Maximum and minimum length of tweets
in test data is 64 and 8 respectively. Distribution of
tweet length in test dataset is illustrated in Figure 1

Test tweet length

Figure 1: Frequency vs length of tweet

Informative | Uninformative | Total

Training 3303 3697 7000
Validation 472 528 1000
Test 944 1056 2000
Total 4719 5281 10000

Table 1: Dataset Statistics

"http://noisy-text.github.io/2020/
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3 Proposed Methodology

In our proposed architecture, we aim to leverage
the semantic information from both pooling layers
for identifying whether given tweet is informative
or not. In this section, we describe our method
(base model illustrated in Figure 2) and elaborate
on each part with details.

3.1 Bidirectional LSTM

Recurrent neural network (RNN) is a form of neu-
ral network which maintains a memory based on
history information. RNNs are good for sequen-
tial prediction, but the problem of exploding or
vanishing gradients makes learning long distance
dependencies very difficult for them (Hochreiter,
1998). The LSTM architecture is proposed to ad-
dress this problem (Hochreiter and Schmidhuber,
1997). Bidirectional LSTM uses the features com-
ing from both the previous hidden states as well
as the future hidden states. This structure allows
the networks to have both forward and backward
information about the sequence at every time step.
It helps the language model in understanding the
context better (Schuster and Paliwal, 1997).
Formally, at time t, the memory, ¢;, and the hid-
den state, h;, are updated with the following equa-
tions.
it = o(Waihi—1 + Weici—1) (1)

ct = (1—it) @ i1+t O tanh(Waye Xw,t: Whehi—1) (2)
O = U(W:poxw,t + Whoht—l + Wcoct) (3)
ht = ot © tanh(c) 4)

where x is the input at time step ¢. Bidirectional
LSTM contains two separate LSTMs to capture
both past and future inputs. One of the LSTM
networks encodes the sentence from left to right
and the other one from right to left.

E} = Forward(hy) 5)
E = Backward(hy) 6)
he = hi @ e @)

Thus, for each time step ¢, we obtain two repre-
sentations, h; and hy, finally these two represen-
tations are concatenated to form the final output,
hr.

For the purpose of simplifying the information in
the output from the Bi LSTM layer (passed through
the activation function), pooling layers are used.
Pooling layer is a down sampling method, which
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reduces the number of parameters of the feature
map,retaining the important information. Different
pooling types like average, max, sum, etc., present.
However common pooling types are Max pooling
and Average Pooling.

S:x17$27"'7'xn (8)

Let S be an input tweet, where x; is a representation
of the input word at position ¢. A recurrent neural
network such as a Bi-LSTM produces a hidden
state hp (equation 7) .

3.2 Average Pooling

Average pooling weighs down the activation by
combining the nonmaximal activations (Passricha
and Aggarwal, 2019)

yzizp = AVYGie(1,n—w) (hi:i+w) )
Yap = [Waps Yo - Yoy 1] (10)

where w is width of pooling window
Eap = average(Yap) an

The use of a global average pooling(&,),) layer as
a last layer was proposed by (Lin et al., 2013), and
got its breakthrough by the well known image rec-
ognization system, the residual network (ResNet)
(He et al., 2015).

3.3 Max Pooling

Max pooling extracts only the maximum activa-
tions (Passricha and Aggarwal, 2019) independent
of distribution. One dimensional max pooling can
be expressed as follow:

y:np = MAZje(1,n—w) (hi:ier) (12)
Ymp = [Winps Ymaps -+ U ) (13)

where w is width of pooling window
fmp = max(ymp) (14)

Global max pooling(§,,,) was proposed for
weakly-supervised learning (Oquab et al., 2014)
and is also used in the PHOCNet for the task of
word spotting. (Sudholt and Fink, 2016).
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Figure 2: Base Model

From (Section 3.2 and 3.3) we know that max
pooling identify only maximum activations irre-
spective of distribution and frequency, wheras av-
erage pooling focus on distribution, and frequency
irrespective of maximum values. To leverage this
both types of information we propose the following
two models (Section 3.4 and 3.5)

3.4 Modell

In Model I, we simply concatenate both global max
pooling and global average pooling layers (equa-
tion 15). Though this can be considered as a naive
model but previous works (Nguyen et al., 2018)
(Sun et al., 2018) (Tu et al., 2017) suggests that
feature concatenation improves performance of sys-
tems, our results supported this intuition.

h* = gmp @ gap

where &, &qp are global max pooling and
global average pooling from eq 14 and eq 11 re-
spectively.

(15)

g=o(n)

1
14+e—%"

(16)

where, 0(z) =

3.5 Model I
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In Model II, we intend to use the information
such as distribution and frequency from average
pooling to understand the context better. While the
max-pooling layer attempts to find the most impor-
tant latent semantic factors in the tweet (Lai et al.,
2015). First, we compute the dot product of global
average pooling and global max pooling (equation
17), and later multiply with global average pooling
(equation 18)

0= gap © gmp (17

hf =0 & (18)

where &, &qp are global max pooling and
global average pooling from eq 14 and eq 11 re-
spectively.

j = o(h) (19)

1
14e—%"

where, o(z) =

Note: For both models, we used binary cross
entropy as our loss function. We submitted results
of both systems (Model I & Model II).



4 Experimental Setup

Our model is implemented in Tensorflow? and
Keras®. We use a batch size of B = 500, we train our
neural network for 25 epochs with the Adam opti-
mizer. A dropout and recurrent dropout of 0.25 is
used. Complete code is made available on Github*.
During the pre processing stage of data we removed
all unwanted symbols and user mentions. Large-
uncased BERT model is employed for obtaining
tweet embeddings. We also analysed how accu-
racy and loss of max pooling and average pooling
changes with number of epochs in different contex-
tual embeddings (Devlin et al., 2019) (Peters et al.,
2018) (Yang et al., 2019) complete code and plots
are uploaded in our repository.

5 Results

In order to illustrate the efficacy of our proposed
methods, we compare the results with simple aver-
age pooling and max pooling on validation set in
Table 2. Results in Table 2 are average of 5 runs
of each model. From this Table we can infer that
our proposed models perform better than existing
approaches. In Figure 3 and 4 we illustrated how
loss vary with number of epochs on validation data.

Model F1 Precision | Recall | Accuracy
Avg Pool | 84.08 84.28 83.86 | 85.06
Max Pool | 84.18 84.50 84.01 85.13
Model I 84.58 84.73 84.30 | 85.41
Model II | 84.797 | 85.05 84.69 | 86.04

Table 2: Results on Validation data

From Table 2 we can infer our proposed models
(section 3.4 and section 3.5) works than simple
average or max pooling. Results of our proposed
models on test data are showed in Table 3, we
achieved an F1 score of 0.7979 using Model II and
0.7932 using Model I.

Model Test

F1score | Precision | Recall | Accuracy
Model IT | 0.7979 0.7991 0.7966 0.8095
Model I 0.7932 0.7983 0.7881 0.8060

Table 3: Results on test data

https://www.tensorflow.org/

Shttps://keras.io/

‘nttps://github.com/Saichethan/
WNUT-2020
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Figure 3: Model I loss on validation set

Model Il

0.50 1

0.45 1

0.40 1

0.351

0.301

0.25 1

0.20 1 —
—— training

validation

0.151

0 5 10 15 20

Figure 4: Model II loss on validation set

6 Conclusion

In this paper we presented our system to WNUT
2020 shared task on “Identification of informative
COVID-19 English Tweets”. Traditional text clas-
sification models mainly focus on three topics: fea-
ture engineering, feature selection and using differ-
ent types of machine learning algorithms. Our main
goal in this paper is to show how we can leverages
on different pooling methods of BiLSTM, without
using any human-engineered features and improve
efficacy of any system. We believe performance of
our system can be further improved by tweaking hy-
per parameters. In future we would like to explore
how our models perform with different attention
mechanisms (Vaswani et al., 2017) for different
tasks like relation classification (Zhou et al., 2016),
image captioning (Xu et al., 2015), and machine
translation (Bahdanau et al., 2014).


https://www.tensorflow.org/
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