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Abstract

With the COVID-19 pandemic raging world-
wide since the beginning of the 2020 decade,
the need for monitoring systems to track rele-
vant information on social media is vitally im-
portant. This paper describes our submission
to the WNUT-2020 Task 2: Identification of
informative COVID-19 English Tweets. We
investigate the effectiveness for a variety of
classification models, and found that domain-
specific pre-trained BERT models lead to the
best performance. On top of this, we attempt
a variety of ensembling strategies, but these at-
tempts did not lead to further improvements.
Our final best model, the standalone CT-BERT
model, proved to be highly competitive, lead-
ing to a shared first place in the shared task.
Our results emphasize the importance of do-
main and task-related pre-training.1

1 Introduction

The amount of COVID-19 pandemic cases is
rapidly approaching 25M world wide, with almost
1M people who have lost their life to the merciless
disease, according to worldometer.2 This paper
exploits the capabilities of Natural Language Pro-
cessing (NLP) techniques to extract informative
tweets, and is a participation in the WNUT-2020
Task 2: Identification of informative COVID-19
English Tweets (Nguyen et al., 2020).

Social media is a useful medium for rapid access
to information about the pandemic - but along with
all the informative tweets comes an even larger
amount of non-informative information. Being able
to extract what is informative, and hereby leave out
all the non-informative posts, is vital in monitoring
and tracking the development of COVID-19. In the

1source code is available on: https://github.com/
AGMoller/noisy_text/

2https://www.worldometers.info/
coronavirus/

Informative
Oklahoma’s first confirmed case of

coronavirus is in Tulsa County
<URL>#SmartNews

Uninformative
Trump could cure Coronavirus 19, AIDS, and
Cancer in the same day and the media would

say he wasn’t doing anything.

Figure 1: Examples of INFORMATIVE and UNINFOR-
MATIVE tweets from the training data.

shared task, informative tweets were defined as to
contain information about COVID-19 cases such
as statistics, locations or travel history. Figure 1
shows two examples from the training data.

The introduction of neural networks has led to an
increase in performance for many natural language
processing tasks (Manning, 2015). However, pre-
vious work on classification showed that SVMs
with character and/or word n-grams often still out-
perform neural networks (Zampieri et al., 2017;
Medvedeva et al., 2017; Çöltekin and Rama, 2018;
Basile et al., 2018). Neural network approaches
can elegantly exploit raw data, by pre-training word
embeddings using a language modeling objective.
Recently, more powerful contextual embeddings
were introduced (Peters et al., 2018; Devlin et al.,
2019), which base each word embedding on its
context. These contextual embeddings are gener-
ally pre-trained on huge amounts of raw data, and
then fine-tuned on the target task. This leads to the
question: How do the three types of classification
models viz. SVM, neural models with pre-trained
embeddings and various contextual models com-
pare and perform in this classification task? (RQ1)

Neural networks as well as transformer-based
models can directly exploit additional raw data by

https://github.com/AGMoller/noisy_text/
https://github.com/AGMoller/noisy_text/
https://www.worldometers.info/coronavirus/
https://www.worldometers.info/coronavirus/
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pre-training. This pre-training often leads to su-
perior performance, depending mainly on the size
and distribution of the pre-training data. Although
no additional annotation effort is necessary for pre-
training, it often comes with huge computational
cost and exhaustive training time. Recent work has
shown that selecting data which matches the target
domain better (domain-specific or task-specific) is
important for transformer-based pre-training (Gu-
rurangan et al., 2020; Gu et al., 2020). This leads
to the question: How important is task-specific pre-
training for detection of informative COVID-19
tweets? (RQ2)

Finally, we are interested in the supplementary
of the three different architectures. Even though
one model outperforms the other two models, it
can still be that they have different strengths, and
combining them can thus lead to superior perfor-
mance. Our last question is: Can we ensemble
SVM, neural network and BERT-based models to
improve robustness? (RQ3)

2 Methodology

Below we will discuss our implementations of each
of the classifiers and the ensemble models.

2.1 SVM

We used the linear SVM classifier with default pa-
rameters from Scikit-learn (Pedregosa et al., 2011)
as basis for our implementation. We experimented
with n-grams on a variety of levels. Besides the
standard word and character n-grams, we also eval-
uate wordpiece n-grams (Schuster and Nakajima,
2012).3 For each granularity (character, word piece,
word), we systematically evaluated each range of n
between 1-7. We found the optimal range of n to be
1-2 for words, 5-6 for characters, and 1-2 for word
pieces. When combining all features, and ablating
one group, we found that the highest score was
obtained with word and character n-grams which
was used in the final model. We found that adding
word pieces led to a small performance decrease.

2.2 Neural Networks

We experimented with two different neural ar-
chitectures, a multi-layer perceptron (MLP) and
a 1-dimensional convolutional neural network
(Conv1d). The text input was embedded using
GloVe embeddings (Pennington et al., 2014), pre-
trained on 2B English tweets with 27B tokens and

3We used the mBERT word piece vocabulary.

a vocabulary of 1.2M words. These embeddings
are chosen, because they are trained on Twitter
data, even though this data was sampled before the
COVID-19 pandemic. The embeddings were not
further tuned during training but were kept static.

The MLP is a two-layer neural net using ReLU
as activation in the hidden layers. The layers con-
sist of 1024 and 512 neurons respectively. Between
the two layers a dropout with a rate of 0.5 is ap-
plied. The Conv1d model consists of a single layer
of 1-dimensional convolution with 64 filters and
a kernel size of 5, max-pooling with a pool-size
of 2, and a dropout layer with a rate of 0.5. Both
architectures apply a sigmoid function in the final
output layer.

2.3 BERT
Three different pre-trained transformer models
were used and evaluated to investigate the impact
of diverse pre-training domains and task-specific
fine-tuning. All transformer models were fine-
tuned on 4 epochs and optimized using the AdamW
optimizer (Loshchilov and Hutter, 2017) with a
learning rate of 2× 10−5 and an epsilon value of
1× 10−8. We used the following transformers:

• BERT base (uncased) (Devlin et al., 2019):
pre-trained on the BookCorpus dataset (Zhu
et al., 2015) consisting of 800M words and
English Wikipedia with 2.5B words.

• RoBERTa base (Liu et al., 2019): similar to
BERT base, but has extended the training
data with CC-News (Nagel, 2016), OpenWeb-
Text (Gokaslan and Cohen, 2019) and Stories
(Trinh and Le, 2018), a total amount of 160GB
of text.

• Covid-Twitter BERT (CT-BERT) (Müller
et al., 2020): based on BERT-Large, but has
been trained further on a collection of 22.5M
corona related tweets collected from January
12 to April 16, 2020. The data consisted of
40.7M sentences and 633M tokens.

Where BERT-base is trained on ∼3B words un-
related to COVID-19, RoBERTa is trained on much
more data, and the CT-BERT training data is simi-
lar in size as BERT-base, but matches the domain
of our task.

2.4 Ensembling
In an attempt to achieve better performance, dif-
ferent ensembling experiments were carried out,
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Model F1 Note

SVM 83.64 word 1-2 grams, char 5-6 grams
SVM 83.54 word 1-2 grams, char 5-6 grams, word-piece 1-2
MLP 78.05 200d Twitter GloVe embeddings
Conv1d 75.52 200d Twitter GloVe embeddings

BERT-base 89.86
RoBERTa-base 89.59
CT-BERT 92.19

Ensemble Model F1 Note

CT-BERT, RoBERTa, BERT-base 88.19 Soft voting
CT-BERT, RoBERTa, BERT-base 89.99 Hard voting
CT-BERT, SVM 92.19 Thresholding
Random Forest Classifier 91.67 Stacking

Table 1: Model results evaluated on the development data using weighted F1 score as metric.

which included majority voting, stacking and
thresholding.

Majority: Majority voting was used among the
BERT-models, both with hard and soft voting. In
hard voting classification, each transformer model
would provide a predicted label, and the majority
label would be the final prediction. In soft voting,
each model produces a probability for each class
using a sigmoid function. The final prediction is
the class with the highest average probability. All
three models were weighted equally.

Stacking: Our second ensembling approach is
stacked generalization (Wolpert, 1992), where we
trained a meta-classifier which takes the predic-
tions of all other models as input as well as their
confidence. Confidence being the probability for
each class. We tuned this step in a 10-fold setup
on the development data. As classifier, we chose a
random forest classifier (Breiman, 2001), because
it can model different types of features (binary and
continuous), and can model feature interactions
intrinsically.

Thresholding: We test whether CT-BERT out-
puts can be replaced with SVM predictions when-
ever the confidence score of CT-BERT is below
a certain threshold. Here, we use SVM as sec-
ond system instead of the better performing BERT
models because SVM in nature is very different
compared to CT-BERT, and is thus more likely to
give a complementary perspective.

3 Evaluation

3.1 Data

The data used in this work is provided in connec-
tion with the shared task (Nguyen et al., 2020) of
the 2020 W-NUT workshop. The training data
consists of 7,000 tweets, the validation data 1,000
tweets and the final test data of 12,000 tweets of
which 2,000 where annotated and used for the fi-
nal scores and ranking. All the data has a close to
equal class distribution being either INFORMATIVE

or UNINFORMATIVE.

3.2 Individual Model Evaluation on
Development Data

As found in Table 1, CT-BERT had the over-
all best performance on the validation data scor-
ing a weighted F1 of 0.92185. Compared to the
other transformer models, the domain-specific pre-
training appears to be crucial in this specific classi-
fication task, with a relative difference in weighted
F1-score of absolute 2.6% higher than BERT-base
and 2.9% higher than RoBERTa (RQ2). When
comparing BERT-base and RoBERTa one can ob-
serve that they achieve almost similar results, de-
spite being pre-trained on datasets covering differ-
ent domains. This shows that the domain on which
the embeddings are trained is more important com-
pared to the size (RoBERTA is trained on more
general text compared to BERT-base, whereas CT-
BERT is trained on domain-specific data).

The two neural networks using GloVe embed-
dings achieved the lowest scores among the tested
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Figure 2: Thresholding: CT-BERT predictions with
SVM replacement

models with an F1 of 78.05 for the MLP model,
and 75.52 for the Conv1d model. They both suf-
fered from lack of fine-tuning of parameters and
non-contextualized embeddings.

The SVM achieved an F1 score of 83.64, being
in the middle when comparing the three types of
models. Our initial ablation study in the selection
of n-gram features allowed for an increase in per-
formance of ∼ 2%. This, however, shows that an
SVM with sparse n-gram input can outperform neu-
ral models with pre-trained embeddings, confirm-
ing previous work (Section 1) (RQ1). It should
be noted that an SVM does not require any pre-
training, and is much faster and cheaper to train, so
in specific situations it could in fact be the preferred
solution.

3.3 Ensembling on Development Data

Majority: Neither hard voting nor soft voting
managed to overcome the performance of stan-
dalone CT-BERT. Soft voting, which was based
on the probabilities of the two labels, achieved an
F1 score of 88.19. Using hard voting, where each
transformer model contributes with a single pre-
dicted label, an F1 score of 89.99 was achieved.

Stacking: The stacking model proved to be the
best ensemble model and was used as alternative
model to our standalone CT-BERT in the official
shared task submission, which allowed for two final
submissions. On development data, our 10-fold
development setup achieved an F1 score of 91.67.
This is a relative difference of −0.55% compared
to CT-BERT (RQ3). The standalone model is more
accurate and more efficient, and hence the preferred
solution over ensembling.

Model F1

Ensemble (Random Forest) 90.54
CT-BERT (ours) 90.96
Highest (team NutCracker) 90.96

Table 2: Results on the test data, we evaluate our best
individual model, best ensemble model and the highest
score achieved in the shared task. According to F1, our
system shares the first place with team NutCracker.

Thresholding: CT-BERT proved to perform the
best compared to the other models. In an attempt
to assist CT-BERT when the confidence score of a
prediction was below a certain threshold, the non-
neural SVM model would provide its prediction
on the given input tweet and replace the CT-BERT
prediction.

Figure 2 shows the F1 score when testing dif-
ferent confidence thresholds. The dashed line in-
dicates standalone CT-BERT. We found that re-
placing CT-BERT does not at a single point obtain
better F1 score than the standalone model. When
the threshold surpasses a certain lower boundary,
all predictions are solely from CT-BERT. This is
the reason why the maximum F1 score achieved
is equal to standalone CT-BERT, and why it is not
considered as the best ensemble model. In the other
end when the threshold approaches 1, all predic-
tions are provided by the SVM.

3.4 Test data
Results in Table 2 confirm that ensembling is not
beneficial over using the output of CT-BERT di-
rectly. It appears from the evaluated scores on both
the development and test data that task-specific
pre-training is crucial in this particular classifica-
tion task, and that complementing CT-BERT with
ensembling did not improve the performance. Fur-
thermore, the performance of CT-BERT is con-
firmed by comparing to the other participants of
the shared task, where it ranked 1st out of 98 sub-
missions from 55 teams (according to official F1
score ranking; we rank 2nd if we consider both
F1 and accuracy). Our CT-BERT model shares the
first place with the submission by team NutCracker.

4 Conclusion

In this paper we have presented our winning par-
ticipation for the shared task of WNUT-2020 on
Identification of Informative COVID-19 English
Tweets. We evaluated three types of models; SVM,
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neural networks with pre-trained embeddings, and
transformer models. We found that the transformer-
based covid-related CT-BERT model performed
the best, achieving an F1 score of 90.96 on the
hidden test data (RQ1). Evaluating our models on
the development data, we found that the CT-BERT
model, which was pre-trained on domain and task-
related data, performed better than BERT-base
and RoBERTa pre-trained on data unrelated to the
shared task (RQ2). Different types of ensembling
approaches were tested in an attempt to improve
robustness. This included majority voting, stacking
and thresholding. We found stacking to be most
competitive, albeit it still underperformed com-
pared to standalone CT-BERT (−0.55%) (RQ3).
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