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Abstract

Automatic or semi-automatic conversion of
protocols specifying steps in performing a lab
procedure into machine-readable format ben-
efits biological research a lot. These noisy,
dense, and domain-specific lab protocols pro-
cessing draws more and more interests with
the development of deep learning. This pa-
per presents our teamwork on WNUT 2020
shared task-1: wet lab entity extract, that we
conducted studies in several models, including
a BiLSTM CRF model and a Bert case model
which can be used to complete wet lab entity
extraction. And we mainly discussed the per-
formance differences of Bert case under dif-
ferent situations such as transformers versions,
case sensitivity that may don’t get enough at-
tention before.

1 Introduction

The task of named entity recognition (NER) was
first put forward in 1991, after which it grad-
ually became an essential part of natural lan-
guage processing (NLP). The methods for NER
is generally classified into four kinds: rule-based
approaches, unsupervised learning approaches,
feature-based supervised learning approaches and
deep-learning based approaches. The previous
methods are mainly rule-based, performing well on
small dataset, like the LaSIE-II system provided
by Humphreys et al.. Under the rapid develop-
ment of deep learning since 2013, methods like
BiLSTM CRF has been a hot spot in recent years.
Even now, most of the deep learning methods for
NER are based on this framework. But lately, some
new research based on the concept of ”pre-training”
has attracted more and more attention, for exam-
ple, Bert, which stands for bidirectional encoder
representations from transformers (Devlin et al.,
2018). It both pushed the GLUE score to 80.5 % ,
which got 7.7 % point absolute improvement and

Isolation of temperate phages by plaque agar overlay
1. Melt soft agar overlay tubes in boiling water and place
in the 47C water bath.
2. Remove one tube of soft agar from the water bath.
3. Add 1.0 mL host culture and either 1.0 or 0.1 mL viral
concentrate.
4. Mix the contents of the tube well by rolling back and
forth between two hands, and immediately empty the tube
contents onto an agar plate.
5. Sit RT for 5 min.
6. Gently spread the top agar over the agar surface by
sliding the plate on the bench surface using a circular
motion.
7. Harden the top agar by not disturbing the plates for 30
min.
8. Incubate the plates (top agar side down) overnight to
48h.
9. Temperate phage plaques will appear as turbid or cloudy
plaques, whereas purely lytic phage will appear as shaply
defined, clear plaques.

Figure 1: An example wet lab protocol (Kulkarni et al.,
2018)

created a new paradigm of natural language pro-
cessing task method: using the model pre-trained
on a large corpus to complete downstream tasks
through fine-tuning.

2 Task

For WNUT 2020 shared task-1 (Tabassum et al.,
2020), participants were asked to develop a sys-
tem that automatically identify entities from the
provided lab instructions dataset. The dataset is
from wet lab protocols, which usually refer to the
experiment instructions in biology or chemistry
experiments, involving substances like chemicals,
proteins, drugs and other materials. Figure 1 shows
one representative example of the wet lab proto-
cols. In this shared task, the data was divided into
three parts, training data with 370 protocols, de-
velopment data with 122 protocols and test data
with 123 protocols. The data was given in CoNLL
format. To sum up, this was a small dataset in
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Figure 2: A visualization of the BRAT style annotation

Type Example

1 Method Extraction
2 Modifier High Quality Genomic
3 Reagent DNA
4 Action dissect
5 Amount 1-10mg
6 Device Flow Cytometer
7 Time 5 minutes
8 Speed 350xg
9 Mention ethanol wash
10 Location tube
11 Numerical 10 times
12 Temperature 60C
13 Size 0.45m
14 Concentration 4%
15 Measure-Type volume
16 Generic-Measure TFSC=40
17 Seal bottle cap
18 pH pH 8.0

Table 1: Named entity types in WNUT 2020 shared
task-1

size, and specialized in laboratory settings. The
dataset is annotated by the researchers in Ohio
State University (Kulkarni et al., 2018) with BRAT
(Stenetorp et al., 2012). It could be visualized
via http://bit.ly/WNUT2020platform. Figure
2 shows a visualization result of the protocol 3 in
our training dataset. And there are 18 kinds of
entities as shown in table 1.

In order to facilitate narration and comparison,
we merged all the files of test provided into one
during training and verification, and separated and
saved the prediction results of corresponding files
by using dictionary when submitting verification.

3 Model

3.1 Baseline
The provided baseline model is a linear conditional
random field (CRF) tagger, which is one of the
traditional machine learning ways to complete the
named entity recognition task (Finkel et al., 2005).
This tagger does the NER task with feature engi-
neering, taking word features, context features and

gazatteer features into consideration.

3.2 BiLSTM CRF

BiLSTM CRF is a deep learning oriented tagger
to complete the NER task (Huang et al., 2015). The
long-short term memory (LSTM) unit (Hochreiter
and Schmidhuber, 1997) is a kind of specifically de-
signed recurrent neural network (RNN) to process
the timing sequential information. Here, LSTM
units are adopted to collect the information in the
context. Additionally, they are bidirectional so that
they can take information from both sides into con-
sideration.

One more CRF layer is added into this model
because it will help the model to standardizing
output results. For example, a sequence like “B-
Action I-Mention” will never be possible in real
world. However, a pure BiLSTM model is possibly
giving this kind of errors.

The basic architecture of BiLSTM CRF is
shown in figure 3.

O

forward

backward

EU rejects German call

OB−ORG B−MISC

Figure 3: The architecture of a BiLSTM CRF model
(Huang et al., 2015)

3.3 Bert

Bidirectional encoder representations from trans-
formers (Bert) was first proposed by Google AI re-
searchers in 2018 (Devlin et al., 2018). It achieved
quite a few new records in NLP field and the con-
cept of “pre-training” has been popular since then.

In this shared task, we also adopted Bert pre-
training model to do the NER task and to compare
the results with BiLSTM CRF to explore the per-
formance of different techniques.

Our Bert case adopted BertforTokenClassifica-
tion class in transformers (Wolf et al., 2019) and
added one more fine-tuning layer to complete the
task. The architecture is shown in the following
figure 4.

http://bit.ly/WNUT2020 platform
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Figure 4: Bert fine-tuning for token classification (De-
vlin et al., 2018)

4 Experiment

In this shared task, we tried to compare the rela-
tively traditional deep learning method, BiLSTM
CRF, and pre-training Bert based, including Bert
base cased model and Bert base uncased model.
The former needs to train static word vector from
dataset, while the latter is equivalent to using dy-
namic word vector and we can directly conduct
fine-tuning experiments on NER by connecting
BertforTokenClassification after pre-training model.
It can be seen that from table 2 that the perfor-
mance of BiLSTM CRF without careful training
of word vector is not as good as the baseline model
provided, Linear CRF. Therefore, our follow-up
experiments will focus on training Bert in different
situations and carry out exploration and discussion.

precision recall F1

Linear CRF 0.7549 0.7332 0.7439
BiLSTM CRF 0.7208 0.6605 0.7101

Table 2: Results of BiLSTM CRF and baseline

4.1 Stipulate
For the sake of simplicity, we will usewd and η rep-
resent weight decay and learning rate respectively
and cased/uncased with/without to abbreviate the
corresponding model with lowercase processing or
not in subsequent trials. In addition, v means im-
porting the required classes like BertModel from
pytorch-transformers, and V means importing from
transformers, and classes are imported from the lat-

ter by default. In general, the precision and recall
of the model are considered comprehensively in
f1-score, so the performance of the model is of-
ten evaluated using f1-score (micro avg). And the
numbers underlined in the chart represent possible
anomalies, while the numbers highlighted in bold
represent the best results.

The model doesn’t converge when it’s trained
only once, but it may face problems of over fit-
ting and CUDA out of memory if it is more than
4, for only 8G memory in RTX 2060 Super and
RTX 2080. After several trials, 3 is selected as the
optimal default epoch number. For alleviating over
fitting, weight decay technique (or L2 regulariza-
tion) is usually adopted and wd is empirically set
between 0.001 and 0.01. If there is no special ex-
planation, the default value of weight decay value
in this paper is 0.005.

4.2 Train
4.2.1 Learning Rate
Named entity recognition is one of downstream
tasks of Bert. Since it has been trained on a large
scale corpus, the recommended learning rate is gen-
erally small, such as 2e− 5, 3e− 5, 5e− 5 (Devlin
et al., 2018). But this needs to be considering with
the specific application scenarios. By using the
default Bert model: cased without and uncased
with, we trained on both 2060s and 2080 with dif-
ferent learning rates.

As shown in table 3, all recommended learning
rates did not perform well in this task, and we
thought that the dataset provided this time are not
common in daily life, so we were ought to increase
the learning rate appropriately. At the same time,
we noticed that the uncased model is better than the
cased model on 2060s, but it is opposite in 2080.
Although the best model is obtained by training on
2080, the model training on 2060s is more stable.

4.2.2 Case Sensitivity and Version
Generally speaking, the uncased model is better
than the cased model, however, the cased model
performs better when there are obvious case dif-
ferences in specific aspects such as named entity
recognition. But we also noticed that we could
train an uncased model after processing the text in
lowercase.

During testing, we also found that different ver-
sions of classes imported will lead to differing re-
sults. To better explore the influence of case sen-
sitivity and version, we further trained three pos-
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learning rate 2e-5 3e-5 5e-5 8e-5 9e-5 1e-4 2e-4 3e-4 4e-4 5e-4

cased without 0.7776 0.7848 0.7909 0.7949 0.7961 0.7965 0.7980 0.7963 0.7956 0.7911
2060s uncased with 0.7797 0.7900 0.7974 0.7987 0.7993 0.7993 0.7972 0.7968 0.7970 0.7928

cased without 0.7775 0.7844 0.7907 0.7951 0.7973 0.7994 0.8008 0.7946 0.7917 0.7876
2080 uncased with 0.7775 0.7881 0.7948 0.7974 0.7956 0.7962 0.7988 0.7948 0.7974 0.7903

Table 3: Bert case default model performances at differing learning rates

sible casing methods, including: cased without,
cased with and uncased with (by the way, un-
cased without should perform the worst, because
it can’t actually distinguish case information, and
the experimental results are exactly the same, so
we omit this possible combination) and two differ-
ent versions of the combination model. Record the
performance of each model and take the top two to
get table 4.

Except for some models with slight performance
decrease, in most cases, the model can be further
improved by using pytorch-transformers to import
the required classes. Moreover, we noticed that
uncased with is the best model on both 2060s and
2080 when considering the use of previous versions
of classes (uncased with V), however, when only
the latest version of transformers is used, the cased
model works best. But the relationship between
whether to use lowercase processing and the final
performance is not obvious from our experiments.

Theoretically, words with different case could
represent the same named entity, while using lower-
case processing can increase the number of training
samples but reduce the number of types. So we
suggest that when using the updated transformers
training, please use cased without, and when us-
ing the previous version training, consider using
uncased with. What’s more, cased with is also an
option worth considering.

4.2.3 Weight Decay
We used 0.005 as our default weight decay value be-
fore, which based on several simple attempts. Here,
we selected the best four models on 2060s and 2080
respectively to adjust the weight decay under the
condition of using previous version classes or not,
and sorted them out as figure 5.

In theory, the increase of weight decay will make
the performance of the model increase to the maxi-
mum firstly and then decrease. This is because at
the beginning, the model performs poorly in the test
set due to over fitting. With the increase of penalty
term, the performance of the model is improved and
the best value is generated. If the penalty term con-

tinues to increase, the model will tend to be more
simple model, so the performance of the model
drops. However, the actual situation in the evalu-
ation is that the performance of the model firstly
increases and then decreases with the increase of
weight decay, and then increases to the maximum
value and then decreases according to the theory.
It is worth noting that the f1-score of case with-
out when weight decay value is 0.009 is the same
as that is 0.005, which is difficult to explain ac-
cording to the classical theory (more specifically,
the recall of the former is higher, but the precision
of the latter is higher). Though it’s true that the
best performance of most models is achieved at
0.005, the final selected model in this experiment
is uncased with V on 2080 when the weight decay
value is 0.007. The specific index comparison ta-
ble between this Base case model and baseline is
shown in table 5.

Bert case based on Transformer has achieved
better results in the recognition of most entity cate-
gories than Linear CRF combined with traditional
feature engineering. It can be seen that using a
large corpus for pre-training combined with spe-
cific downstream task fine-tuning strategies is a
very effective and operational model paradigm.
However, for the output results of Bert case with-
out CRF standardizing, we could find that many
unreasonable annotation results are generated in
the test set, and on some indicators, the model does
not perform as well as the baseline, especially in
the prediction results on Temperature and Mea-
sure. All in all, Bert can be used as a relatively
good benchmark, but there is still much room for
improvement. We planned to replace it with other
pre-trained models such as Roberta, Albert, XLNet,
and connected it with CRF to observe the effect of
the experiment, but it finally failed to achieve due
to limited time and capacity.

4.3 Test

The classification results of each group participat-
ing in this task can be accessed from results. As the

https://docs.google.com/spreadsheets/d/1Iu0FfkradDgrMc9KTvByNrUyMSaVT1JFkCYXpt4oZRA/edit?usp=sharing
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Figure 5: The tendency comparisons under different
weight decay and experimental conditions

cased without uncased with cased with

transformers
2080 0.8008 0.7994 0.7988 0.7974 0.7979 0.7956
2060s 0.7980 0.7965 0.7993 0.7993 0.7995 0.7960

pytorch-transformers
2080 0.8004 0.7997 0.8019 0.7992 0.7975 0.7975
2060s 0.7990 0.7982 0.8006 0.7994 0.7993 0.7997

avg +0.03% +0.12% +0.28% +0.11% -0.03% +0.35%

Table 4: The performance change under different ver-
sions and case sensitivity

final test model was submitted before, it could not
be trained from aspects proposed in this paper, and
the model could only be trained on RTX 2060 Su-
per, so the final model is uncased with with lower
f1-score. In addition to these influencing factors
shown above, we also noted that on different op-
erating systems (Ubuntu and Windows), whether
or not to enable X service and perform other tasks
during training may also change the performance
of the model with the same other conditions. How-
ever, due to its complexity, we have not got the
results temporarily and we hope further research
could carry on in the future.

5 Conclusion

This article introduces our relevant experimental
research based on this WNUT 2020 shared task-
1. By trying BiLSTM CRF, we learn about that
the method based on static word vector needs to
be trained on a specific dataset, so its transferabil-
ity is relatively low. And we mainly focused on
the fine-tuning experiments based on Bert under
different conditions, including learning rate, GPU,
transformers version, case sensitivity and weight
decay, and conducted discussions, so as to under-
stand that the possible influencing factors in actual
model training. It is quite necessary to unify and
clarify experimental conditions while evaluating

Linear CRF Bert case
precision recall F1 precision recall F1

Action 0.8456 0.8423 0.8440 0.8889 0.9179 0.9031
Amount 0.8521 0.8319 0.8419 0.8798 0.9078 0.8936
Concentration 0.7770 0.7929 0.7849 0.8230 0.8659 0.8439
Device 0.6125 0.5629 0.5867 0.6455 0.6966 0.6701
Measure 0.3600 0.2553 0.2988 0.3119 0.2378 0.2698
Location 0.6883 0.6951 0.6917 0.7525 0.7882 0.7700
Type 0.5164 0.4649 0.4893 0.4713 0.5735 0.5174
Mention 0.5965 0.6071 0.6018 0.6567 0.7857 0.7154
Method 0.5069 0.3830 0.4363 0.5080 0.4914 0.4996
Modifier 0.5682 0.5134 0.5394 0.5968 0.6140 0.6053
Numerical 0.5636 0.5758 0.5696 0.6000 0.6623 0.6296
Reagent 0.7475 0.7522 0.7498 0.8161 0.8412 0.8284
Seal 0.6825 0.6719 0.6772 0.6712 0.7656 0.7153
Size 0.6667 0.5000 0.5714 0.7805 0.5614 0.6531
Speed 0.8421 0.8675 0.8546 0.8908 0.9281 0.9091
Temperature 0.9385 0.8975 0.9176 0.9130 0.9079 0.9105
Time 0.8969 0.8762 0.8864 0.8857 0.9080 0.8967
pH 0.7255 0.5968 0.6549 0.7273 0.7742 0.7500

avg 0.7549 0.7332 0.7439 0.7897 0.8148 0.8021

Table 5: Comparison of classification results between
Bert case and Linear CRF

the performance of related models in the future,
because even the class imported matters.

We noted that recently, several papers presented
NER studies using convolutional neural network
(CNN) (Li and Guo, 2018; Zhai et al., 2018). This
may imply that more work combining pre-trained
model and CNN will be a new direction for NER
studies. Additionally, although more and more
attention has been focused on deep learning nowa-
days, the methods based on traditional machine
learning still get attention and continue to develop
with its interpretability and robustness in specific
domain tasks.

References
Jacob Devlin, Ming Wei Chang, Kenton Lee, and

Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by gibbs
sampling. In Proceedings of the 43rd Annual Meet-
ing on Association for Computational Linguistics,
ACL ’05, page 363–370, USA. Association for Com-
putational Linguistics.

Sepp Hochreiter and JüRgen A Schmidhuber. 1997.
Long short-term memory. Neural Computation.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv:
Computation and Language.

K. Humphreys, R. Gaizauskas, S. Azzam, C. Huyck,
and Y. Wilks. 1995. University of Sheffield: Descrip-

https://doi.org/10.3115/1219840.1219885
https://doi.org/10.3115/1219840.1219885
https://doi.org/10.3115/1219840.1219885


304

tion of the LaSIE-II system as used for MUC-7. As-
sociation for Computational Linguistics.

Chaitanya Kulkarni, Wei Xu, Alan Ritter, and Raghu
Machiraju. 2018. An annotated corpus for machine
reading of instructions in wet lab protocols. 2:97–
106.

SL Li and YK Guo. 2018. Biomedical named entity
recognition with cnn-blstm-crf [j]. Journal of chi-
nese information processing, 32(1):116–122.

Lisa F Rau. 1991. Extracting company names from
text. In Proceedings The Seventh IEEE Conference
on Artificial Intelligence Application, pages 29–30.
IEEE Computer Society.

Pontus Stenetorp, Sampo Pyysalo, Goran Topic,
Tomoko Ohta, Sophia Ananiadou, and Junichi Tsu-
jii. 2012. brat: a web-based tool for nlp-assisted text
annotation. pages 102–107.

Jeniya Tabassum, Wei Xu, and Alan Ritter. 2020.
WNUT-2020 Task 1: Extracting Entities and Rela-
tions from Wet Lab Protocols. In Proceedings of
EMNLP 2020 Workshop on Noisy User-generated
Text (WNUT).

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, and Morgan and
Funtowicz. 2019. Huggingface’s transformers:
State-of-the-art natural language processing.

Zenan Zhai, Dat Quoc Nguyen, and Karin Verspoor.
2018. Comparing cnn and lstm character-level
embeddings in bilstm-crf models for chemical and
disease named entity recognition. arXiv preprint
arXiv:1808.08450.


