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Abstract

We present a neural exhaustive approach that
addresses named entity recognition (NER) and
relation recognition (RE), for the entity and re-
lation recognition over the wet-lab protocols
shared task. We introduce BERT-based neural
exhaustive approach that enumerates all pos-
sible spans as potential entity mentions and
classifies them into entity types or no entity
with deep neural networks to address NER.
To solve relation extraction task, based on the
NER predictions or given gold mentions we
create all possible trigger-argument pairs and
classify them into relation types or no relation.
In NER task, we achieved 76.60% in terms of
F-score as third rank system among the partic-
ipated systems. In relation extraction task, we
achieved 80.46% in terms of F-score as the top
system in the relation extraction or recognition
task. Besides we compare our model based on
the wet lab protocols corpus (WLPC) with the
WLPC baseline and dynamic graph-based in-
formation extraction (DyGIE) systems.

1 Introduction

The entity and relation recognition over wet-lab
protocol (Tabassum et al., 2020) shared task1 is an
open challenge that allows participants to use any
methodology and knowledge sources for the wet
lab protocols that specify the steps in performing
a lab procedure. The task aims at two sub-tasks in
wet lab protocols domain: named entity recogni-
tion (NER), and relation recognition or extraction
(RE). In NER, the task is to detect mentions and
classify them into entity types or no entity. NER
has drawn considerable attentions as the first step
towards many natural language processing (NLP)
applications including relation extraction (Miwa
and Bansal, 2016), event extraction (Feng et al.,

1http://noisy-text.github.io/2020/
wlp-task.html

2016), and co-reference resolution (Fragkou, 2017).
In contrast, relation extraction (RE) is a task to
identify relation types between known or predicted
entity mentions in a sentence.

In this paper, we present a BERT-based neu-
ral exhaustive approach that addresses both NER
and RE tasks. We employ a neural exhaustive
model (Sohrab and Miwa, 2018; Sohrab et al.,
2019b) for NER and the extended model that ad-
dresses RE task. The model detects flat and nested
entities by reasoning over all the spans within a
specified maximum span length. Unlike the ex-
isting models that rely on token-level labels, our
model directly employs an entity type as the label
of a span. The spans with the representations are
classified into their entity types or non-entity. With
the mentions predicted by the NER module, we
then feed the detected or known mentions to the
RE layer that enumerates all trigger-argument pairs
as trigger-trigger or trigger-entity pairs and assigns
a role type or no role type to each pair.

The best run for each sub-task achieved the F-
score of 76.60% on entity recognition task that
stands third rank system and the F-scores of
80.46% on relation extraction task as the top sys-
tem. Besides, we also compare our model with
the state-of-the-art models over the wet lab proto-
cols corpus (WLPC). We compare the WLPC base-
line model based on LSTM-CRF and maximum-
entropy-based approaches to address NER and RE
tasks respectfully. We also compare our model with
dynamic graph-based information extraction (Dy-
GIE) system. Our model outperforms by 4.81% for
NER and 7.79% for RE over the WLPC baseline
and 3.61% for NER over the DyGIE system.

2 Related Work

Most NER work focus on flat entities. Lample et al.
(2016) proposed a LSTM-CRF (conditional ran-

http://noisy-text.github.io/2020/wlp-task.html
http://noisy-text.github.io/2020/wlp-task.html
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dom fields) model and this has been widely used
and extended for the flat NER, e.g., Akbik et al.
(2018). In recent studies of neural network based
flat NER, Gungor et al. (2018, 2019) have shown
that morphological analysis using additional word
representations based on linguistic properties of
the words, especially for morphologically rich lan-
guages such as Turkish and Finnish, improves the
NER performances further compared with using
only representations based on the surface forms of
words.

Recently, nested NER has been widely interested
in NLP. Zhou et al. (2004) detected nested entities
in a bottom-up way. They detected the innermost
flat entities and then found other NEs containing
the flat entities as sub-strings using rules on the
detected entities. The authors reported an improve-
ment of around 3% in the F-score under certain
conditions on the GENIA data set (Collier et al.,
1999). Recent studies show that the conditional
random fields (CRFs) can produce significantly
higher tagging accuracy in flat or nested (stacking
flat NER to nested representation) NERs (Son and
Minh, 2017). Ju et al. (2018) proposed a novel neu-
ral model to address nested entities by dynamically
stacking flat NER layers until no outer entities are
extracted. A cascaded CRF layer is used after the
LSTM output in each flat layer. The authors re-
ported that the model outperforms state-of-the-art
results by achieving 74.5% in F-score on the GE-
NIA data set. Sohrab and Miwa (2018) proposed
a neural model that detects nested entities using
exhaustive approach that outperforms the state-of-
the-art results in terms of F-score on the GENIA
data set. Sohrab et al. (2019b) further extended the
span representations for entity recognition and ad-
dressed sensitive span detection tasks in the MED-
DOCAN (MEDical DOCument ANonymization)
shared task2, and the system achieved 93.12% and
93.52% in terms of F-score for NER and sensitive
span detection, respectively.

Recent successes in neural networks have shown
impressive performance on coupling information
extraction (IE) tasks as in joint modeling of en-
tities and relations (Miwa and Bansal, 2016). Yi
et al. (2019) proposed a dynamic graph information
extraction (DyGIE) system for coupling multiple
IE tasks, a multi-task learning approach to entity,
relation, and coreference extraction. DyGIE uses
dynamic graph propagation to explicitly incorpo-

2http://temu.bsc.es/meddocan/

rate rich contextual information into the span repre-
sentations, and the system achieved significant F1
score improvement on the different datasets. Kulka-
rni et al. (2018) establised a baseline for IE on the
wet lab protocols corpus (WLPC). They employ an
LSTM-CRF for entity recognition approach. For
relation extraction, they assume the presence of
gold entities and train a maximum-entropy classi-
fier using features from the labeled entities.

3 Neural Exhaustive Approach for NER
and Relation Extraction

Our BERT-based neural exhaustive approach is
built upon a pipeline approach of two modules:

• Named entity recognition that uses a contex-
tual neural exhaustive approach

• Relation extraction that aims to predict rela-
tions from detected/given mentions.

To solve entity and relation recognition tasks, the
pipeline approach can be presented as three layers:
BERT layer, entity recognition layer, and relation
recognition layer. Figure1 shows the system archi-
tecture of entity and relation recognition.

3.1 BERT Layer
For a given sequence, the BERT layer receives
sub-word sequences and assigns contextual repre-
sentations to the sub-words via BERT. We assume
each sentence S has n words and the i-th word, rep-
resented by Si, is split into sub-words. This layer
assigns a vector vi,j to the j-th sub-word of the i-th
word. It also produces the representation vS as a
local context for the sentence S, which corresponds
to the embedding of [CLS] token.

3.2 Entity Recognition layer
We build mention detection layer, a.k.a named en-
tity recognition (NER) on top of the BERT. This
layer assigns entity or trigger types to overlapping
text spans, or word sequences, in a sentence. We
firstly generate mention candidates based on the
same idea as the span-based model (Lee et al.,
2017; Sohrab and Miwa, 2018; Sohrab et al.,
2019a), in which all continuous word sequences
are generated given a maximum span length Lx.
Since BERT layer works only on sub-words, we
choose the embedding of the first sub-word vi,1 as
word embedding vi of i-th word. The representa-
tion xb,e ∈ Rdx for the span from the b-th word to
the e-th word in a sentence is calculated from the

http://temu.bsc.es/meddocan/
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Figure 1: System Architecture for Neural Exhaustive Approach for NER and Relation Extraction. The example
sequence is taken from Wet Lab Protocols Data set

embeddings of the first word, the last word, and
the weighted average of all words in the span as
follows:

xb,e =

[
vb;

e∑
i=b

αb,e,ivi;ve

]
, (1)

where αb,e,i denotes the attention value of the i-th
word in a span from the b-th word to the e-th word,
and [; ; ] denotes concatenation.

3.3 Relation Recognition Layer

The relation recognition layer enumerates all
trigger-argument pairs (trigger-trigger and trigger-
entity pairs) given triggers and entities detected by
the entity recognition layer and assigns a role type
or no role to each pair. We generate relation repre-
sentation based on the same idea as the deep event
extraction system (Trieu et al., 2020).

Since each role is constructed by a trigger and an
argument, we firstly compute representations of all
triggers and arguments detected by the entity recog-
nition layer. The representations of a trigger and an
argument are calculated in the same way. A trigger
t ranging from the starting ts-th word to the ending
te-th word is represented with the concatenation of
its span representation xt (from Equation 1) and
a 300-dimensional entity type embedding st, as
follows:

vt = [xt; st] , (2)

Similarly, the representation of an argument a can

be calculated as

va = [xa; sa] . (3)

The representation ri ∈ Rdr for a relation pair i is
then calculated from its trigger representation vt ,
argument representation va, and the context repre-
sentation vS which is obtained from the sentence
representation of the BERT layer:

ri = GELU (wr [vt;va;vS ] + br) , (4)

where Wr and br are learnable weights and biases
respectively and GELU is the Gaussian Error Lin-
ear Unit activation function. After obtaining the
pair representation ri, we classify it with a softmax
function to predict the corresponding role type.

4 Experimental Settings

We provide empirical evidence on the effectiveness
of the pipeline architecture in both NER and re-
lation extraction over the wet lab protocols3 task
of the W-NUT 20204. The wet lab protocols cor-
pus with eighteen entity types5 and fifteen relation
types6 are randomly split into four subsets: train,

3http://noisy-text.github.io/2020/
wlp-task.html

4http://noisy-text.github.io/2020/
5Entity Type: Action, Seal, Numerical, Concentration,

Size, Modifier, Measure-Type, Generic-Measure, Time, Speed,
Action, Location, Method, Temperature, Mention, pH, Device,
Amount, Reagent

6Relation Type: Coreference-Link, Measure, Site,
Meronym, Measure-Type-Link, Product, Commands, Mod-
Link, Count, Acts-on, Using, Creates, Setting, Of-Type, Or

http://noisy-text.github.io/2020/wlp-task.html
http://noisy-text.github.io/2020/wlp-task.html
http://noisy-text.github.io/2020/
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development, test, and test release (unlabeled) sets,
which contain 370, 122, 123 and 111 lab protocols
respectively. In our experiments, we merge the
train and development as train-set, test-set use as
development-set, and predict the annotations for
test release set which is used as test-set.

Our model is implemented in the PyTorch7

framework. We employed the official wet lab pro-
tocols evaluation script for NER8 and relation ex-
traction9 to evaluate our system’s performances on
both tasks.

4.1 Data Preprocessing

Each text and the corresponding annotation file
were preprocessed by several simple rules10 only
for tokenization11. After tokenization, each text
with mapping annotation files were directly passed
to the deep neural approach for mention detection
and relation extraction. Note that the offsets were
restored to the original offsets in evaluation.

4.2 Training Settings

We train the model in a pipeline manner based on
the pre-trained BERT model. We employed the
pre-trained PubmedBERT (Gu et al., 2020) model
which is an uncased BERT Base model that was
pretrained over PubMed abstracts and full PubMed
central articles. Besides, we also employed SciB-
ERT (Beltagy et al., 2019) model that is pre-trained
based on large-scale biomedical text. Moreover,
we also employed original pre-trained BERT (De-
vlin et al., 2019) model which is a uncased BERT
base model to judge the performances of our model
among the PubmedBERT, SciBERT and BERT.

According to our investigation, we choose 10 as
the maximum span length of mention candidates.
We also truncate every sentences at 256 sub-words
without losing any gold entities or relations (we
maintain a 100% recall of gold entities and rela-
tions in the training set).

NER and RE models are trained on 100 epochs
with learning rate of 0.00003.

7https://pytorch.org
8https://github.com/jeniyat/WNUT_2020_

NER/tree/master/code/eval
9https://github.com/jeniyat/WNUT_2020_

RE/blob/master/code/evaluation.py
10We also published our preprocessing script at https:

//github.com/dnanhkhoa/WNUT-2020
11Unlike the traditional NER models, our model is indepen-

dent from traditional ‘BIO’ tagging scheme, where ‘B’, ‘I’,
and ‘O’ stand for ‘Begin’, ‘Inside’, and ‘Outside’ of named
entities respectively, so we do not need to assign such tags to
the tokens.

5 Results and Discussions

In order to evaluate the performance of NER,
we conduct experiments on different sets of
BERT-based learning representations, including
PubmedBERT with merging training- and dev-
set (PubmedBERT-Merge), PubmedBERT along
with training (PubmedBERT-Train), SciBERT with
merging training- and dev-set (SciBERT-Merge),
and SciBERT along with training (SciBERT-Train).

In contrast to relation extraction, as based on our
primary results of NER with PubmedBERT and
SciBERT where PubmedBERT is outperforming
to SciBERT. Therefore, we conduct all our rela-
tion extraction experiments using PubmedBERT.
For relation extraction task, we learn our model on
two data scenarios. First, we perform a clustering
approach on training- and dev-set to find the sim-
ilar or duplicate text files in wet-lab data set. We
found that many similar text files with inconsistent
annotations exist in the train- and dev-set. The sim-
ilarity approach with a setting threshold is applied
on the train and dev-set to cluster the similar or
duplicate text protocols. We then eliminate those
text and its corresponding annotation files which
appear in the training set to avoid model learning
confusion and data leakage. We also applied the
predefined relation rules (Kulkarni et al., 2018) to
filter out any invalid relations appearing in the sys-
tem output. We conduct experiments on different
sets of PubmedBERT-based learning representa-
tions, including PubmedBERT using finetune with
filtering approach (PubmedBERT-Finetune-Filter),
PubmedBERT along with finetune (PubmedBERT-
Finetune), PubmedBERT along with filter approach
(PubmedBERT-Filter) and PubmedBERT without
finetune and filtering approaches (PubmedBERT).

In second data scenario, we learn our model
by keeping all the original training set, develop-
ment set, and test set. Based on original data set-
ting, the PubmedBERT-based learning representa-
tions are PubmedBERT-Original-Finetune-Filter,
PubmedBERT-Original-Finetune, PubmedBERT-
Original-Filter and PubmedBERT-Original.

We also report the result of ensemble learning
that combines the predictions using different span
representations to reduce the variance of predic-
tions and the generalization error.

5.1 NER Performances

Table 1 shows the results of NER on the dev- and
test-set. Here, the PubmedBERT-Merge, SciBERT-

https://pytorch.org
https://github.com/jeniyat/WNUT_2020_NER/tree/master/code/eval
https://github.com/jeniyat/WNUT_2020_NER/tree/master/code/eval
https://github.com/jeniyat/WNUT_2020_RE/blob/master/code/evaluation.py
https://github.com/jeniyat/WNUT_2020_RE/blob/master/code/evaluation.py
https://github.com/dnanhkhoa/WNUT-2020
https://github.com/dnanhkhoa/WNUT-2020
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Dev: NER Test: NER
Learning Approach P R F P R F(%)
Ensemble 83.14 83.28 83.21 83.69 70.62 76.60

PubmedBERT-Merge (Train+dev) 82.04 83.51 82.77 80.59 71.57 75.81
SciBERT-Merge (Train+Dev) 82.47 82.80 82.64 80.79 70.40 75.24
PubmedBERT-Train 82.46 79.23 80.81 83.66 69.59 75.98
SciBERT-Train 80.68 80.46 80.57 80.78 71.70 75.97

Table 1: Performance of NER on the dev- and test-set

Exact Match Partial Match
Team Name P R F P R F(%)
BITEM 84.73 72.25 77.99 88.72 75.66 81.67
PublishInCovid19 81.36 74.12 77.57 85.74 78.11 81.75
mgsohrab 83.69 70.62 76.60 87.95 74.22 80.50
Kabir 78.79 72.20 75.35 83.73 76.73 80.08
IITKGP 77.00 72.93 74.91 81.76 77.43 79.54
BIO-BIO 78.49 71.06 74.59 83.16 75.29 79.03
Fancy Man Launches Zippo 76.21 71.76 73.92 81.15 76.41 78.71
SudeshnaTCS 74.99 71.43 73.16 79.73 75.95 77.80
B-NLP 77.95 63.93 70.25 84.85 69.59 76.46
KaushikAcharya 73.68 63.98 68.48 79.31 68.87 73.73
IBS 74.26 62.55 67.90 79.72 67.15 72.89
DSC-IITISM 64.20 57.07 60.42 68.52 60.90 64.49
mahab 50.19 52.96 51.54 55.09 58.14 56.57

Table 2: Team performances of NER on the test-set

Dev: RE Test: RE
Learning Approach P R F P R F(%)
Ensemble 88.16 86.91 87.53 80.86 80.07 80.46

PubmedBERT-Finetune-Filter 88.59 85.47 87.00 83.03 77.35 80.09
PubmedBERT-Finetune 88.55 85.47 86.99 82.93 77.36 80.05
PubmedBERT-Filter 88.54 84.84 86.65 81.96 75.96 78.84
PubmedBERT 88.50 84.84 86.63 81.92 75.97 78.83
PubmedBERT-Original-Finetune-Filter 87.85 86.36 87.10 78.67 79.03 78.85
PubmedBERT-Original-Finetune 87.85 86.36 87.10 78.59 79.03 78.81
PubmedBERT-Original-Filter 88.09 85.15 86.60 80.36 77.48 78.89
PubmedBERT-Original 88.04 85.15 86.57 80.30 77.48 78.87

Table 3: Performance of relation extraction (RE) on the dev- and test-set

Relation Extraction
Team Name P R F(%)
mgsohrab 80.86 80.07 80.46
Big Green 45.42 86.54 59.57

Table 4: Team performances of relation extraction (RE)
on the test-set

Merge, PubmedBERT-Train, and SciBERT-Train
are used for ensemble approach. In this table, it
is shown that the ensemble approach using max-
imum voting of all the approaches is effective to
improve the NER system performance with achiev-
ing 83.21% and 76.60% in terms of F-score over
the dev- and test-set respectfully. In contrast, the
PubmedBERT-Merge shows the best performance
as an individual learning on NER with achieving
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NER Test-set RE Test-set
Entity Level P R F P R F(%)
All 82.70 71.25 76.55 80.96 80.05 80.50
Single-token 85.43 72.05 78.17 82.95 78.97 80.91
Multi-token 77.73 69.70 73.50 79.01 81.20 80.09

Table 5: Performances of NER and RE of our model on different entity level on the test-set

NER RE
Model P R F P R F(%)
WLPC Baseline (Kulkarni et al., 2018) − − 78.30 80.98 77.04 78.96
DyGIE (Yi et al., 2019) − − 79.50 − − ∗64.10
Our Model 82.83 83.40 83.11 88.75 84.86 86.75

Table 6: Performance comparison of NER and RE based on different models on the wet lab protocols dataset. ’-’
denotes results are not reported in the original paper. ’*’ indicates the performance of relation extraction system
is based on predicted entity boundary as input.

Label P R F(%) Prediction Annotation Correct
Action 90.71 92.92 91.80 4239 4138 3845
Concentration 85.45 85.61 85.53 536 535 458
Reagent 85.20 86.43 85.81 4053 3995 3453
Amount 91.78 91.93 91.86 1192 1190 1094
Location 79.27 78.43 78.85 1312 1326 1040
Method 65.36 54.56 59.47 485 581 317
Time 91.77 91.03 91.40 863 870 792
Temperature 93.63 91.17 92.38 518 532 485
Device 69.92 70.51 70.21 472 468 330
Modifier 64.68 66.58 65.62 1648 1601 1066
Size 75.70 71.68 73.64 107 113 81
Mention 64.29 80.36 71.43 70 56 45
Ph 83.64 74.19 78.63 55 62 46
Numerical 65.06 70.13 67.50 249 231 162
Seal 70.00 65.62 67.74 60 64 42
Measure-type 65.53 56.62 60.75 235 272 154
Speed 90.75 94.01 92.35 173 167 157
Generic-measure 41.90 30.77 35.48 105 143 44

Overall (micro) 83.14 83.28 83.21 16372 16344 13611

Table 7: Categorical performances of NER on the dev-set

82.77% in terms of F-score.
Table 2 shows the NER task results on the par-

ticipated teams. In this table results are listed in
descending order in terms of exact match-based
F-score. The top system achieves 77.99% where
our team achieves 76.60% in terms of F-score for
NER task.

5.2 Relation Extraction Performances

Table 3 shows the results of relation extraction
task on the dev- and test-set. Here, all the re-

ported learning approaches in this table are used
for ensemble approach. In this table, it is shown
that the ensemble approach using maximum vot-
ing of all the approaches is also effective to im-
prove the relation extraction system performance
with achieving 87.53% and 80.46% in terms of F-
score over the dev- and test-set respectfully. In con-
trast, the PubmedBERT-Original-Finetune-Filter
and PubmedBERT-Finetune-Filter are showing the
best performances as an individual learning on rela-
tion extraction with achieving 87.10% and 80.09%



296

Label P R F(%) Prediction Annotation Correct
Coreference-Link 69.64 46.43 55.71 56 84 39
Measure 92.66 91.20 91.93 1880 1910 1742
Site 81.61 87.82 84.61 1202 1117 981
Meronym 73.97 65.98 69.74 388 435 287
Measure-Type-Link 87.90 88.62 88.26 124 123 109
Product 43.18 20.00 27.34 44 95 19
Commands 07.14 05.00 05.88 14 20 1
Mod-Link 92.52 91.85 92.18 1510 1521 1397
Count 87.37 83.84 85.57 95 99 830
Acts-On 91.44 89.82 90.63 3050 3105 2789
Using 77.04 75.50 76.26 832 849 641
Creates 00.00 00.00 00.00 0 0 0
Setting 91.13 92.48 91.80 1713 1688 1561
Of-Type 75.00 54.55 63.16 16 22 12
Or 68.99 62.64 65.66 158 174 109

Overall (micro) 88.16 86.91 87.53 11082 11242 9770

Table 8: Categorical performances of relation extraction (RE) on the dev-set

RE
Training Strategy P R F(%)
Not pre-finetune NER layer 88.09 85.15 86.60
Pre-finetune NER layer using gold entities 87.85 86.36 87.10

Table 9: Performance of relation extraction (RE) using different training strategies on the dev-set

NER RE
Entity P R F P R F(%)
BERT-base-uncased 84.18 83.19 83.68 87.84 85.55 86.83
PubmedBERT-full-uncased 84.50 83.70 84.10 87.85 86.36 87.10

Table 10: Performance of NER and relation extraction (RE) using different BERT-based learning on the dev-set

Span Length P R F(%)
8 82.65 82.55 82.60
10 82.83 82.89 82.86
12 81.95 83.71 82.82

Table 11: Performance of our model with different
spans on the dev-set

in terms of F-score over the dev- and test-set re-
spectively.

Table 4 shows the relation extraction task results
on the participated teams. Our relation extraction
system achieves 80.56% in terms of F-score as a top
system in this task. We outperformed the second
best system by 20.89% in terms of F-score.

Our system is based on span-based representa-
tion, therefore we also investigate the performances

for all vs single-token vs multi-token entities. Ta-
ble 5 shows the break down performances of our
model on different entity levels over the NER and
relation extraction on the test set.

In contrast, we also compare our model with the
state-of-the-art models over the wet lab protocols
corpus (WLPC). Table 6 shows the comparison
of our model with the WLPC baseline and Dy-
GIE systems. In NER, our model outperforms the
WLPC baseline and DyGIE systems by 4.81% and
3.61% respectively in terms of F-score. In RE, our
model outperforms the WLPC baseline by 7.79%
in terms of F-score. In compare the RE task for
DyGIE, NER predictions are given as input in Dy-
GIE where gold data boundary is given as input
in our and WLPC baseline models. We report the
DyGIE RE performance without comparing with
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our RE performance. In these comparisons, we use
the same train-, dev-, test-set, and evaluation script
that reported in the WLPC baseline (Kulkarni et al.,
2018) for fair comparisons.

5.3 Ablation Study

We show the performances of different BERT-
based learning models for NER and relation extrac-
tion tasks on the development column in Table 1
and Table 3 to compare the possible scenarios of
the given solutions and to report the best system
submissions for NER and relation extraction. For
NER and relation extraction tasks, all the results
in Table 1 and Table 3 in development column
window show that almost all the results in differ-
ent approaches are close to each other to solve the
NER and relation extraction tasks.

Table 7 shows the categorical performances us-
ing ensemble learning of NER on the dev-set. In
this table, we also break down the number of pre-
dicted and correct mentions among the gold anno-
tations of each category. Here, prediction can be
denoted as number of predicted entities, annotation
as number of gold entities of each category, and
correct as number of true positive outcomes where
the model correctly predicts the positive category.
In this table, it can be observed that for the frequent
classes (e.g. Action, Reagent, Amount etc.), the
model shows high performance because there are
a reasonable number of training instances for the
classes. In contrast, for the rare classes (e.g. Size,
Mention, Ph, numerical etc.), the performances are
also consistence. Table 8 shows the categorical
performances using ensemble learning of relation
extraction on the dev-set. In this table, it shows the
categorical performances using ensemble learning
of relation extraction on the development set. In
this table, it seems that the model is well gener-
alized to classify the relation types that leads to
achieve the top system in the shared task.

Since we provided gold entities in the RE task,
therefore, we also examine two different strategies
for training the RE model that present in the Table 9.
In this table, it shows that we can significantly
boost the RE performance just by pre-finetuning
the NER layer using gold entities. Table 10 shows
the performances of NER and RE based on the
original BERT base in compare to the Pubmed-
BERT. The results show that PubmedBERT is out-
performed both in NER and RE tasks. In Table 11,
we compared our model in different span length.

We chose the maximum span size from 8, 10, and
12 that covers more than 99% mentions to judge
the sensitivity of our approach in different span
length. In ths table, it can be observed that the
performances of our model are consistence even
with different span lengths.

6 Conclusion

This paper presented a BERT-based neural exhaus-
tive approach that addresses both named entity
recognition (NER) and relation extraction (RE)
tasks. This neural approach consider all possible
spans exhaustively, for NER which is capable to
detect flat and nested entities from the generated
mention candidates.

Several enhancements, namely PubmedBERT,
SciBERT, BERT-base-uncased, filtering, clustering,
and ensembling are investigated for the wet-lab pro-
tocol data set to enhance the system performance.
In NER task, we achieved 76.60% in terms of F-
score as third rank system among the participated
systems. In relation extraction task, we achieved
80.46% in terms of F-score as the top system that
participated in the relation extraction task. More-
over, our model outperforms by 4.81% for NER
and 7.79% for RE over the WLPC baseline and
3.61% for NER over the DyGIE system.

In the future direction, we will implement a joint
modeling that addresses NER and relation extrac-
tion in an end-to-end manner.
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