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Abstract

Relation and event extraction is an important
task in natural language processing. We in-
troduce a system which uses contextualized
knowledge graph completion to classify rela-
tions and events between known entities in
a noisy text environment. We report results
which show that our system is able to ef-
fectively extract relations and events from a
dataset of wet lab protocols.

1 Introduction

Wet lab protocols specify the steps and ingredi-
ents required to synthesize chemical and biological
products. The majority of wet lab protocols are for-
matted as natural language, designed for human lab
workers to interpret and carry out. Protocols are for-
matted differently depending on lab norms and the
author writing them, and may include spelling mis-
takes, nonstandard abbreviations, colloquial phras-
ing, and assumptions that may not be obvious to
readers from outside of the author’s lab or field.

Automated extraction of events, relations, and
entities from this noisy language data enables stan-
dardized tracking of lab protocols, and is an impor-
tant step forward for the automated reproduction of
scientific results. We examine the problem of au-
tomatically identifying and classifying events and
relations between entities as part of Shared Task
1 at WNUT 2020 (Tabassum et al., 2020). This
shared task works with the Wet Lab Protocol Cor-
pus (WLPC) introduced by Kulkarni et al. (2018).
The WLPC dataset consists of wet lab protocols
drawn from an open-source database and annotated
by a group of human annotators which included
subject matter experts.

2 Prior Work

Past approaches to relation and event extraction
from wet lab data have included systems based
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on propagating information across graphs. Jiang
et al. (2019) introduce an end-to-end system, called
SpanRel, for identifying and labeling text spans and
the relations between them using any text embed-
ding model. The DyGIE and DyGIE++ systems,
meanwhile, learn to propagate useful information
across graphs of coreferences, relations, and events,
allowing long-distance contextual information to
support relation and event extraction tasks based
on sliding window BERT embeddings of the text
(Luan et al., 2019; Wadden et al., 2019).

3 Knowledge Graphs

Knowledge graphs are graph representations of
the relations between entities (Schneider, 1973).
In a typical knowledge graph construction, graph
nodes represent entities, while edges of different
types represent relations between entities. As an
example, a knowledge graph may contain nodes
for ”United Kingdom” and ’United Nations” with
an edge of type "Member-Of” between ~United
Kingdom” and ”United Nations.”

Because knowledge graphs are generated from
imperfect information, they represent a subset of
information about their component nodes and thus
suffer from incompleteness. Incompleteness means
that edges representing relations which exist be-
tween nodes in reality are not present in the graph
(for example, if the knowledge graph contains the
”United Kingdom” and ”United Nations” nodes
but does not contain the "Member-Of” relation be-
tween them). This property of knowledge graphs
has given rise to efforts to identify missing relations
between entities, a task referred to as knowledge
graph completion (Lin et al., 2017).

There are obvious parallels between knowledge
graph completion and relation extraction from text
given prelabeled entities; namely that both tasks re-
quire identifying a relation (if one exists) between
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a given pair of entities. We therefore develop a
model which represents the task of extracting rela-
tions from wet lab protocols as a knowledge graph
completion problem.

4 Methodology

4.1 Representing relation extraction as
sequence classification

Relation classification requires the input of two
target entities to predict a relation between them.
Therefore, to formulate relation extraction as rela-
tion classification, we must identify target entity
pairs. A basic approach might be to simply sam-
ple each possible pair of entities in both possible
orders (bidirectional sampling is required because
relations are order-dependent).

This sampling strategy, however, ignores struc-
tural information about the data. Protocols are
separated into lines with one line for each step,
and relations and events typically occur between
entities which are close together.

This naive approach also introduces computa-
tional problems. The number of possible entity
pairs for n entities is n? — n, which produces a
high number of entity pairs as the number of en-
tities grows. We find that real relations represent
just 0.37% of the possible relations in the WLPC
training data, indicating that a system which enu-
merates all possible entity pairs would have to be
exceptionally accurate to be effective.

The structural features of the data enable us to
reduce the scope of our evaluation by focusing only
on entities which are close to each other. We ini-
tially evaluated based on only considering entity
pairs in the same step. By analyzing the training
data, we find that 99% of true relations are between
entities which contain less than 14 tokens between
them. We thus restrict our analysis to entity pairs
which are less than 14 tokens apart. Using this
method (based on training data statistics) we are
able to maintain 99% of true relations while reduc-
ing the total number of relations evaluated by 41%
over a sentence based approach and improving our
precision substantially.

4.2 Contextualization

One distinction between knowledge graph comple-
tion and relation extraction is important to consider.
In a knowledge graph, nodes are unique and any
given relation between two nodes always exists. In

relation extraction from text, nodes are not unique.
Consider the following protocol instruction:

”Separate SmL of the solution and add SmL wa-
ter to replace the removed volume.”

In this protocol, the ”5mL” entity of type mea-
surement which refers to the solution is distinct
from the ”5SmL” entity of type measurement which
refers to the water. The action ”Separate” acts on
the former, but not on the latter, while the action
”combine” acts on the latter, but not on the for-
mer. We handle this discrepancy by adding a local
context sequence, identifying the targeted entities
in-text.

We generate this context sequence by taking the
tokens corresponding to the n sentences surround-
ing the target entity tokens as contextual informa-
tion. We find empirically that n = 1 provides the
best performance, and that higher values of n tend
to cause overfitting.

To resolve the issue of ambiguous entity refer-
ence in a sequence where multiple entities share the
same text (as above), we identify entities in-context.
To do this, we add entity label tokens ([EntA] and
[EntB]) surrounding the referenced entities in the
context, tagging them for easy identification.

4.3 Relation Classification

Once we have extracted a set of viable entity pair
candidates, given two labeled candidate entities
E, and Ej, and surrounding context C' we attempt
to achieve two tasks: identifying whether or not
a relationship is present between the two entities,
and if there is, to classify the relationship between
the entities using a knowledge graph completion
approach.

Prior work has introduced the idea of using lan-
guage models to formulate relation prediction be-
tween entities in a knowledge graph as a sequence
classification task (Yao et al., 2019). Pre-trained
language models such as ELMo and BERT have
seen widespread success when fine-tuned for use in
sequence classification tasks (Devlin et al., 2019;
Vaswani et al., 2017; Peters et al., 2018).

We finetune a BERT model provided by the
HuggingFace library to perform relation predic-
tion based on multi-sequence classification (Wolf
et al., 2019). We finetune for 15 epochs, using an
initial learning rate of 5 x 10~° and an input size
of 100 tokens. Hyperparameters were determined
via grid search over the development set.
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Figure 1: Input tokens and type ID masks for BERT pretraining.

4.4 Sequence Parameters

We formulate our input sequence as shown in Fig-
ure 1. Token Input indicates the actual tokens
which are passed into the model. For this field,
[CLS] represents the start of the sequence, Tok An
represents the nth token of entity A, and Tok Bn and
Tok Cn represent the equivalent tokens for entity B
and the context sequence, Label A and Label B are
the labels for entities A and B, and [SEP] indicates
separators between different sequence sources.

Type ID Mask represents the token type IDs
passed to the BERT model. These binary type
IDs indicate different sequence sources for multi-
sequence problems such as this one. For example,
when performing a classification task with two se-
quences, tokens from the first sequence would have
a type ID of 0, and tokens from the second se-
quence would have a type ID of 1. The type IDs
improve learning stability for BERT, ensuring that
the model is able to distinguish between different
sources of data.

Typically, three-sequence classification tasks in
BERT are handled by masking in a 0-1-0 style (ie,
the type ID mask for sequence 1 is 0, the type ID
mask for sequence 2 is 1, and the type ID mask for
sequence 3 is 0 again). We find that the distinct
information types of entity information and con-
textual information mean that labeling a sequence
of Entity-Entity-Context sequences as 0-1-0 is in-
effective, as BERT is not able to effectively learn
the difference between context and entity informa-
tion. We instead use the type-mask format 0-0-1,
labeling labeled entity tokens O and context tokens
1. This method improves training stability and in-
creases model performance substantially. We sug-
gest that differences in sequence information type
is the most important metric for determining type
ID mask.

5 Results & Discussion

Our results, shown in Table 1, show that our sys-
tem is able to effectively identify many types of
relations even given this noisy data format. More
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specifically, this approach is able to identify re-
lations and events with extremely high recall (as
high as .95 for Measure and Measure-Type-Link
relations).

Our approach is relatively weak in precision.
This is likely due to our formulation of the task
as an evaluation of potential entity pairs. We find
that our system classifies relations with an accuracy
of 93% on the development set, but because there
are many more possible pairings between entities
in a given protocol than there are actual pairings,
even a system with high accuracy can incorrectly
predict nonexistent relations.

We reduce the number of possible entity pair-
ings generated by applying a distance heuristic
discussed in Section 4. We found that tuning
the amount of entity pair candidates evaluated im-
pacted results significantly (for example, our devel-
opment set F1-score rose almost 20% when using a
token-based distance metric rather than a sentence-
based distance metric for selecting candidate entity
pairs). The recall of our results suggests that our
distance heuristic is effective at dramatically reduc-
ing the number of evaluated entity combinations
without removing too many valid combinations, but
the precision indicates that it may be valuable to
modify or find an alternative method for producing
candidate entity pairs. This could include a method
which considers contextual information, instead of
focusing only on the token distance between a pair
of entities.

Class-specific result analysis allows us to iden-
tify where our system struggles. One such area
is classes which occur less frequently in the data.
Our macro-average F1-score is 0.69 for the seven
most frequent relation classes (each of these has
over 1000 examples in the training data), versus
a macro-average of 0.43 for the seven least fre-
quent relation classes (each of which has less than
1000 examples in the training data). BERT and
similar language-embedding models rely on large
quantities of training data, and class performance
suffering due to lack of training data is not unex-



Table 1: Results by relation type on withheld WLPC test data.

Relation Type Precision Recall F1-Score Support
Site 0.72 0.82 0.77 1622
Setting 0.70 0.86 0.77 2034
Measure-Type-Link 0.50 0.95 0.65 275
Coreference-Link 0.42 0.53 0.47 286
Mod-Link 0.66 0.88 0.75 3429
Count 0.62 0.80 0.70 183
Meronym 0.22 0.72 0.34 558
Using 0.52 0.74 0.61 1120
Measure 0.69 0.95 0.80 2370
Commands 0.03 0.50 0.05 12
Of-Type 0.56 0.62 0.58 193
Or 0.22 0.66 0.33 193
Product 0.13 0.55 0.21 42
Acts-On 0.68 0.89 0.77 4072
Micro-Avg 0.61 0.86 0.71 16354
Macro-Avg 0.44 0.70 0.52 16354

pected here. We expect that collection of more data
for imbalanced classes could improve performance
of predictions for those classes substantially.

Recent prior work has shown that BERT and
other language embedding models can become
overly reliant on simple patterns in the data.
Chauhan (2020) showed that the addition of the text
10 deaths” to uninformative tweets about COVID-
19 caused a BERT based system to mistakenly label
them as informative. We anticipate that this effect
may make our system more prone to failure in edge
cases, where basic clues that the model has learned
in terms of entity type patterns or contextual pat-
terns are not present. A potential solution for this
problem is to augment the training data using ex-
amples which do not have certain attributes (for
example, masking entity labels). This may reduce
the model’s tendency to learn from basic patterns
rather than true relationships between text and a
relation or event class.

6 Conclusion & Future Work

We show that contextualized knowledge graph com-
pletion using sequence classification can perform
effectively on a relation extraction task in a noisy
and specialized domain. Our model effectively
identifies relations and events in the data, and our
work leaves open many avenues for future work.
As discussed in Section 5, our system is sensitive
to how candidate entity pairs are selected. We use a

distance heuristic based on statistics of the training
data to achieve our results, but we anticipate that
more sophisticated methods for identifying promis-
ing candidate entity pairs could improve our results.
We also suggest that our results could be improved
by using a domain-specific model such as SciB-
ERT or BioBERT (models trained on scientific pa-
pers and abstracts respectively). Prior work shows
that these models often outperform standard BERT
models on scientific data (Beltagy et al., 2019; Lee
et al., 2020).

We believe that our results and the results of any
systems which require training or fine-tuning large
models would be improved by increasing available
training data. Finding an effective method for aug-
menting existing training data and generating or
collecting new training data (artificial or real) is a
valuable route for further study.

Finally, we are interested in further investigation
of representing relation and event identification as
graph completion. Link prediction systems which
support a variety of edge labels could allow us to
leverage structural data from a protocol relation
graph. This could enable the identification of rela-
tions which are improbable or those which may be
missing from the predictions.
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