
Proceedings of the 2020 EMNLP Workshop W-NUT: The Sixth Workshop on Noisy User-generated Text, pages 249–259
Online, Nov 19, 2020. c©2020 Association for Computational Linguistics

249

Paraphrase Generation via Adversarial Penalizations

Gerson Vizcarra and José Ochoa-Luna
Department of Computer Science
Universidad Católica San Pablo

Arequipa, Perú
{gerson.vizcarra,jeochoa}@ucsp.edu.pe

Abstract

Paraphrase generation is an important problem
in Natural Language Processing (NLP) that
has been addressed with neural network-based
approaches recently. This paper presents an ad-
versarial framework to address the paraphrase
generation problem in English. Unlike pre-
vious methods, we employ the discriminator
output as penalization instead of using policy
gradients, and we propose a global discrimina-
tor to avoid the Monte-Carlo search. In addi-
tion, this work use and compare different set-
tings of input representation. We compare our
methods to some baselines in the Quora ques-
tion pairs dataset. The results show that our
framework is competitive against the previous
benchmarks.

1 Introduction

Paraphrase generation is a task in NLP which aims
to transform a given sentence in another with the
same meaning. This task is challenging because
of the complexity of semantic and syntactic rela-
tionships in language. Moreover, the capacity to
generate paraphrases automatically is an opportu-
nity to use data augmentation in NLP. However,
one of the main problems of paraphrase generation
is that the meaning of a sentence can be changed
radically by modifying a word.

Paraphrase generation is a hot task and recent
neural-approaches have addressed the problem. We
organize previous works of paraphrase generation
into two groups: task-support and task-based. The
task-support paraphrase generation works create
paraphrases to add training data or adversarial-
examples. Paraphrases have been created to aug-
ment data in question answering (Dong et al., 2017;
Gan and Ng, 2019). Some techniques are substitu-
tion of words (Jiao et al., 2019; Xie et al., 2019),
make syntactic changes to the original sentences
(Coulombe, 2018; Iyyer et al., 2018; Sennrich et al.,

2016), and back-translation (Mallinson et al., 2017;
Xie et al., 2019). Other works apply rule-based
generative models to perform multiple changes
(Samanta and Mehta, 2017; Li et al., 2017).

On the other hand, task-based paraphrase gener-
ation works aim to benchmark their results on spe-
cific paired datasets. In this paper, we focus on task-
based works. Prakash et al. (2016) use a stacked
residual Long-Short Term Memory (LSTM) net-
work that outperforms a vanilla LSTM. Gupta et al.
(2018) apply a Variational Autoencoder (VAE) to
get better results than the stacked LSTM. Huang
et al. (2018) use a Seq2Seq-based model with a
dictionary-based attention mechanism. The dictio-
nary search guides the insertion or deletion of a
word. Li et al. (2018b) generate paraphrases using
a deep reinforcement learning framework. Ma et al.
(2018) propose an attention network using word
embeddings information. Yang et al. (2019) present
an adversarial setup over latent space using a con-
ditional VAE as a generator. Chen et al. (2019) pro-
pose a VAE to make syntactically and semantically
changed paraphrases. Wang et al. (2019) propose a
transformer (Vaswani et al., 2017) with multiple en-
coders to process extra semantic information of the
input. The work of Egonmwan and Chali (2019)
shows a hybrid model between a transformer and a
Recurrent Neural Network (RNN). Li et al. (2019)
design a transformer-based model that can generate
paraphrases at different levels of granularity.

From the prior works on paraphrase generation,
most of them learn by conditional Maximum Like-
lihood Estimation (MLE). However, Yang et al.
(2019) highlight the exposure bias problem (Ben-
gio et al., 2015; Ranzato et al., 2015) in paraphrase
generation. Some works address the problem by
applying REINFORCE (Williams, 1992) to gener-
ate text in their adversarial setups (Yu et al., 2017;
Fedus et al., 2018; Li et al., 2018a; Liu et al., 2018;
de Masson d’Autume et al., 2019). However, simi-



250

lar to prior works (He et al., 2019; Lu et al., 2019),
we observe that REINFORCE has a high variance
and is difficult to tune.

At the same time, pre-trained Language Mod-
els (LMs) (Devlin et al., 2019; Peters et al., 2018;
Radford et al., 2019) have outperformed previous
works in many NLP tasks. An important reason
is that they provide contextual representations of
words, which are more specific than static word em-
beddings (Pennington et al., 2014; Mikolov et al.,
2013, 2018). However, static word embeddings
consume fewer resources and are faster than pre-
trained LMs. Ethayarajh (2019) shows that the
static embeddings extracted from pre-trained LMs
outperform Glove (Pennington et al., 2014) and
FastText (Bojanowski et al., 2017) in many word
vector benchmarks.

In this paper, we propose an adversarial model
(generator-discriminator) to address the English
paraphrase generation task. Unlike previous ap-
proaches, we train our model using a weighted
conditional maximum likelihood by a ”penaliza-
tion” score given by the discriminator. Also, we
test variations of our setup by changing the input
representations and the Monte-Carlo search. Over-
all, our contributions are as follows.

• We propose the use of penalizations (discrimi-
nator outputs) in supervised adversarial setups
as an alternative to the REINFORCE algo-
rithm.

• We evaluate the substitution of the Monte-
Carlo search by using a discriminator that out-
puts a score for each word.

• We provide an experimental analysis of the
impact of input representations over a para-
phrase generation model. Further, we include
the use of the first-layer embeddings from pre-
trained language models.

• Our experiments show that our setup can gen-
erate feasible paraphrases. Furthermore, our
results are competitive against prior bench-
marks in the Quora question pairs dataset.

2 Preliminaries

Before presenting our model, we provide some
preliminaries about the MLE training and REIN-
FORCE algorithm in sequential problems.

2.1 Conditional Maximum Likelihood
Estimation

The conditional MLE training for sequence to se-
quence tasks aims to learn the probability distri-
bution of the estimated token ŷt constrained by
an input sequence X1:T = {x1, ..., xT } and a list
of previous tokens Ŷ1:t−1 = {ŷ1, ..., ŷt−1}. We
consider the sets of tokens X and Ŷ in a finite
vocabulary V . Given a dataset D with pairs of se-
quences of tokens X1:T , Y1:T with length T (due
to truncation and padding), the objective function
JMLE of conditional MLE is

JMLE = EŶ∼Y [

T∑
t=1

logG(ŷt|X, Ŷ1:t−1)] (1)

Where G(ŷt|Ŷ1:t−1, X) is the neural network that
generates the word ŷt. Most works use teacher
forcing (Williams and Zipser, 1989) by using the
correct tokens Y instead of Ŷ to improve the results.
In that way, the ”exposure” of the network to the
target words could ”bias” the inference process.

2.2 REINFORCE
REINFORCE (Williams, 1992) in sequence to se-
quence tasks aims to maximize the reward r of a
policy (neural network) received due to the genera-
tion of the word ŷt. In similar dataset conditions,
the objective function JR of REINFORCE is

JR =
T∑
t=1

[logG(ŷt|X, Ŷ1:t−1)] · r(t) (2)

Instead of calculating the reward using the likeli-
hood, most works rely on a discriminator (Yu et al.,
2017; Li et al., 2018a; Liu et al., 2018; Guo et al.,
2018) or an evaluator (Li et al., 2018b).

In REINFORCE, the discriminator/evaluator D
outputs a single scalar for a whole sentence. D
learns using the cross-entropy of the dataset distri-
bution Y and the generated distribution Ŷ . The ob-
jective function JD of the discriminator/evaluator
is

JD = − logD(X,Y )− log(1−D(X, Ŷ )) (3)

So, the reward function for a complete sequence
is r(T ) = D(X, Ŷ1:T ). However, the discriminator
is trained with only completed sequences. REIN-
FORCE establishes the use of Monte-Carlo search



251

with roll-out to sample possible sequences starting
from incomplete ones. We define the Monte-Carlo
search MC as

MCG(Ŷ1:t;N) =
{
Ŷ 1
1:T , ..., Ŷ

N
1:T

}
(4)

In that way, the reward function for all timesteps
is

r(t) =
1

N

N∑
n=1

D(X, Ŷ n1:T ), Ŷ
n
1:T ∈MCG(Ŷ1:t;N)

for t < T

D(X, Ŷ1:T ) for t = T
(5)

3 Methodology

Our adversarial setup is composed of two neural
networks like previous works: a generator and a
discriminator. We make some observations of prior
approaches to propose our model. On the one hand,
MLE could suffer exposure bias when switching
from train to inference. On the other hand, we
observe that the REINFORCE algorithm is very
fluctuating when training because it relies only on
the discriminator. Furthermore, it is slow to train
due to the Monte-Carlo search.

We propose a weighted conditional maximum
likelihood objective to train our generator. In con-
sequence, we take advantage of the conditional
MLE principle and, also, we can guide the train-
ing using a penalization function. The penalization
function is similar to the reward in REINFORCE.
The conditional MLE part let us reduce the vari-
ance of training. In addition, we substitute the
Monte-Carlo search by using a discriminator that
outputs a score for each token.

3.1 Model Architecture
We first define two sequences of tokens X1:T =
{x1, ..., xT }, Y1:T = {y1, ..., yT } of length T that
represent a paraphrase. Let Gθ and Dφ be a θ-
parameterized generator and a φ-parameterized dis-
criminator.

Given X we train Gθ to produce a sequence
of tokens Ŷ1:T = (ŷ1, ..., ŷT ) that is similar to Y .
GivenX we trainDφ to distinguish between Y and
Ŷ .

In the following sections we also call X , Y , and
Ŷ as the condition sentence, target sentence, and
generated sentence respectively.

Figure 1: Architecture of generator network

3.1.1 Generator (Gθ)

Our generator is a Convolutional Sequence to Se-
quence (ConvS2S) model (Gehring et al., 2017).
We choose this architecture over a Seq2Seq
(Sutskever et al., 2014) and Transformer (Vaswani
et al., 2017) because the ConvS2S needs fewer
number of parameters to achieve similar results.
That let us train our framework using large batch
sizes to reduce the generator variance (de Mas-
son d’Autume et al., 2019). Furthermore, the model
performs parallel convolutions to speed up the train-
ing time. That feature allows us to conduct more
experiments.

Figure 1 shows the overall architecture of Gθ.
We feed Gθ encoder with the condition sentence
embeddings (input embeddings). We add position
embeddings on the encoder side. The first encoder
layer is a fully connected. Then, each following
layer performs iteratively: (a) one-dimensional con-
volutions without padding and (b) a gated linear
unit over the previous layer result. We also add
residual connections between non-adjacent layers.

The decoder has convolutional and attention lay-
ers interleaved. However, the decoder performs
temporal convolutions to avoid leakage of future
information. We achieve that by padding the input
vector on the left side. There are no position em-
beddings on the decoder side because they produce
a negative impact on the generation. At training
time, we feed the decoder with the target sentence
to perform convolutions in parallel. At inference



252

Figure 2: Our model training. Up: Discriminator process. Down: Generator process

time, the decoder is sequential. First, we feed the
decoder with our initial token. Then, we repeat
two procedures until Gθ generates all words: the
decoder performs a forward pass and output a new
token; we concatenate the new token to the previ-
ous input in order to feed the decoder. Finally, the
result vector passes through two dense layers to
output the vocabulary probabilities.

3.1.2 Discriminator (Dφ)

The architecture of the discriminator is similar to
that of the generator. We change the last fully con-
nected layer of Dφ decoder to output one number.
So, Dφ output one score per token. Then, we pass
the result to a sigmoid layer that outputs the proba-
bility that the tokens belong to the fake category.

We feed the encoder with the condition sentence,
and the decoder with either the generated or target
sentence.

3.2 Training

The training process of Dφ and Gθ are different.
Figure 2 shows the overall training procedure.

We first generate paraphrases for all condition
sentences. We build a mixed set of sentence
pairs using the condition-target (real pairs) and
condition-generated (fake pairs). In that way, we
feed the discriminator with a pair of sentences. Dφ

outputs a score for each generated / target word.
So, each pair of sentences is classified as a set of
zeros and ones in the real or fake case, respectively.

Dφ learns using the following function

J(φ) = − logDφ(X,Y )− log(1−Dφ(X, Ŷ )) (6)

We train Gθ using a unified learning objective.
We multiply the negative log-likelihood loss of
each word by the result of our penalization function.
The objective function J(θ) of Gθ is

J(θ) = −
T∑
t=1

EŶ1:T∼Y1:T
[
∑
ŷt∈Ŷ

logGθ(ŷt|Ŷ1:T , X) · PGθDφ ]

(7)

We calculate the Gθ log-likelihood loss using
the real sentence as decoder input. Nevertheless,
we estimate the penalization function PGθDφ (t) with
the decoding inference result. Thus, we increase
the loss value of tokens that tend to yield infeasible
paraphrases.
PGθDφ (t) is the discriminator output multiplied by

a constant k. The discriminator outputs scores in
the interval [0, 1] according to the probability that a
token is classified as fake. That is, tokens classified
as fake receive higher penalizations.

PGθDφ (t) = k ·Dφ(X, Ŷ1:T ) (8)

We avoid the Monte-Carlo search using our dis-
criminator score per word. We update Dφ at each
training round to improve the quality of our gener-
ated sentences.

Algorithm 1 presents the overall procedure to
train our model. As first step, we pre-train Gθ us-



253

ing conditional maximum likelihood with the con-
dition and target samples. Also we pre-train Dφ

using supervised learning using pairs composed
of condition-real or condition-generated. Then,
we start the adversarial training phase for several
rounds. First, we sample and calculate PGθDφ to train
Gθ using equation 7. After updating the parame-
ters, we output a generated sample per condition
sentence using Gθ. That results in a balanced set
of fake and real pairs to feed Dφ. Finally, we train
Dφ with Equation 6.

Algorithm 1: Training of the model
Result: Trained Gθ
Pre-train Gθ .
Generate samples using Gθ .
Pre-train Dφ with fake and real pairs.
for n rounds do

for examples do
Generate a sequence using Gθ .
Calculate PGθDφ .
Train Gθ using 7

end
Generate samples using Gθ .
for examples∗2 do

Train Dφ using 6
end

end

4 Experiments

In this section, we evaluate our model and compare
it with prior methods. We describe the dataset used,
experimental setup, baseline methods, and results
of our experiments.

4.1 Dataset

To test our model, we used the Quora question pairs
dataset. This dataset contains paired questions as-
sociated with a label. The pairs are labeled with
1 whether they express the same idea and 0 other-
wise. For this work, we decided to use only the
duplicated ones. There are around 155K duplicated
questions. We observed that some questions appear
in more than one pair.

We built three sets: Quora I, Quora II, and Quora
III to evaluate our framework. In Quora I, we ran-
domly selected 133K pairs: 100K for training, 30K
for testing, and 3K for validation. In Quora III,
we sampled 83K pairs: 50K for training, 30K for
testing, and 3K for validation. In Quora II, we sam-
pled 30K pairs for testing which questions do not
appear in the training (50K) and validation (3K)
sets. That makes Quora II the most challenging

set. It is worth to notice that there are some over-
laps of input questions between the training and
testing sets in Quora I and III. Table 1 shows the
distribution of quantities of our sets.

Dataset Train Test Validation

Quora I 100K 30K 3K
Quora II 50K 30K (Unique) 3K
Quora III 50K 30K 3K

Table 1: Dataset distribution.

4.2 Experimental setup

G and D are 5-layer ConvS2S in the encoder and
decoder side. The value of k in the penalization
function is 2. For all models, we use the negative
log-likelihood as the loss function. We adopted
the optimization algorithm Adam (Kingma and Ba,
2014) for pre-training the generator and to train
the discriminator. We use 1e − 4 as the learning
rate for Gθ and 1e − 6 for Dφ without modify-
ing the default betas. Model parameters have been
initialized using uniform distribution values, as de-
scribed in (He et al., 2015). We pre-trained the
generator and discriminator for 20 epochs. In the
adversarial training phase, we changed the learning
rate to 2e− 4 performing 40 rounds of adversarial
training. In Monte-Carlo and REINFORCE base-
lines, a roll-out of size four has been used. The
batch size to feed our generator and discriminator
is 250. All samples were generated using greedy
decoding. We tuned our hyperparameters manu-
ally. We run our experiments in a PC with Intel
9900K and Nvidia Titan RTX for two hours on
average for each model. The framework used for
implementation has been Pytorch 1.3 (Paszke et al.,
2019).

4.3 Input representations

The input representation for deep learning models
is important because it is their unique information
before solving a task. We tested the influence of
the input representations in our results by changing
the source of the embedding. In our experiments,
we consider three recent methods: The Byte-level
BPE extracted from the OpenAI GPT-2 (Radford
et al., 2019) with 50257 tokens, the pre-trained
wordpiece embeddings from BERT proposed by
(Devlin et al., 2019) with 30522 tokens, and the
1 million FastText embeddings trained on 16 bil-
lion tokens (Mikolov et al., 2018) considering the



254

Target Sentence GPT-2
embeddings

BERT
embeddings

Fasttext
embeddings

who is best indian hacker? who are the best hackers in in-
dia?

who is the best seo company in
india?

who are the best [UNK] in in-
dia ?

how can we earn from
youtube?

how can i make money from
youtube?

how can i make money on
youtube?

how can we make money from
gmail ?

how can i grow tall? how can i grow taller? how can i become taller? how do i become tall ?

which is best tv series you
have seen? and way?

what are the best tv series you
have watched?

what are the best tv movies in
all time?

what are the best [UNK]
movies you have seen ?

Table 2: Generated Sentences by changing the input representation.

100000 most common tokens in their vocabulary.
We used ConvS2S architecture in all cases. We
only change the input to lowercase and truncate
in 30 tokens as preprocessing. Table 3 shows the
BLEU-2 score of the testing sets. Table 2 presents
some generated sentences using different input rep-
resentations.

Input
Representation

BLEU-2

Quora I Quora II Quora III

GPT-2 embeddings 44.84 33.48 42.48
BERT embeddings 39.03 19.18 29.28

Fasttext embeddings 31.20 17.37 28.19

Table 3: Comparative results by changing the input rep-
resentation.

As can be seen in Table 3, the ConvS2S archi-
tecture that uses the Byte level BPE embeddings
surpasses the BERT embeddings in 11.13 points in
the BLEU score in average, and in 14.68 to the Fast-
Text. Also, the generated texts of Table 2 presents
a correlation with the BLEU scores. The results
confirm the superiority of embeddings extracted
from contextualizing environments against tradi-
tional embeddings. Overall, the presented results
indicate that the byte-level BPE embeddings from
GPT-2 are the most suitable input representation
for our framework.

4.4 Automatic evaluation

We used some automatic metrics to evaluate our
framework and compare it with other methods. We
use BLEU (Papineni et al., 2002) which evaluates
similarities between n-grams, ROUGE (Lin, 2004)
which is a common metric in text summarization,
METEOR (Denkowski and Lavie, 2014) that con-
siders synonyms, and iBleu (Sun and Zhou, 2012)
which penalizes similarities with the source sen-
tence (parroting), as Li et al. (2019); Mao and Lee
(2019); Qian et al. (2019) suggest. We consider the

following methods as baselines of our research. In
all cases, we extracted directly the results reported
from their publications.

VAE-SVG and VAE-SVG-eq from Gupta et al.
(2018): A variational autoencoder and its modifi-
cation with fewer parameters. RbM-SL and RbM-
IRL from Li et al. (2018b): Reinforcement learning
method with an evaluator trained with supervised
learning and another with inverse reinforcement
learning. DNPG from Li et al. (2019): Multi-
granularity encoder and decoder framework us-
ing multi-head attention. GAP from Yang et al.
(2019): Generative model using REINFORCE with
two losses per word. TranSEQ from Egonmwan
and Chali (2019): Model with a transformer en-
coder and an RNN decoder. Our implementation of
ConvS2S from Gehring et al. (2017) using byte-
level BPE. Our implementation of Transformer
from Vaswani et al. (2017) using byte-level BPE as
initial embeddings. Our model setup using REIN-
FORCE and another with only Monte-Carlo search.

We compared our results using similar configu-
rations of prior works to make a fair comparison.
Quora I and III are identical to the sets of Gupta
et al. (2018); Yang et al. (2019); Egonmwan and
Chali (2019). Quora I and II are analogous to the
sets proposed by Li et al. (2018b). Also, the Quora
I set is similar to the set of Li et al. (2019).

Table 4, 5, and 6 show the results for Quora I, II,
and III corpora respectively. The results presented
refer to the scores of testing sets. Conv-Adv-MC
refers to the method with Monte-Carlo discrimina-
tor and Conv-Adv-S, to our discriminator. The best
results in each metric are in bold.

The automatic evaluation results show that our
models are competitive against the state of the art
baselines. Moreover, the Conv-Adv-S has slightly
higher scores than previous methods in Quora I and
III. However, RBM-SL is still the best method for
generating paraphrases that are completely differ-



255

Proposed
Model

Quora I

BLEU-2 BLEU-4 iBLEU ROUGE-1 ROUGE-2 METEOR

VAE-SVG - 22.50 - - - 25.50
VAE-SVG-eq - 22.90 - - - 25.50

RbM-SL 43.54 - - 64.39 38.11 32.84
RbM-IRL 43.09 - - 64.02 37.72 31.97

DNPG - 25.03 18.01 63.73 37.75 -
GAP 44.83 - - - - 32.48

TranSEQ 38.75 - - - - 35.84

Transformer 42.03 26.56 20.17 57.80 34.25 29.06
ConvS2S 44.84 29.44 21.20 61.72 38.48 31.28

REINFORCE 43.96 28.87 20.86 60.43 37.53 31.12
Conv-Adv-MC 44.65 29.48 21.08 61.18 38.03 31.01

Conv-Adv-S (ours) 44.84 29.07 21.40 60.34 37.09 31.27

Table 4: Comparative results on Quora I.

Proposed
Model

Quora II

BLEU-2 ROUGE-1 ROUGE-2 METEOR

RbM-SL 35.81 57.34 31.09 28.12
RbM-IRL 34.79 56.86 29.90 26.67

Transformer 25.45 38.57 18.22 17.71
ConvS2S 33.48 48.30 26.83 23.07

REINFORCE 32.41 47.58 26.19 22.15
Conv-Adv-MC 32.73 47.76 26.63 22.58
Conv-Adv-S 33.27 47.73 26.25 23.03

Table 5: Comparative results on Quora II.

Proposed
Model

Quora III

BLEU-2 BLEU-4 METEOR

VAE-SVG - 17.1 22.20
VAE-SVG-eq - 17.4 22.20

GAP 37.18 - 22.24
TranSEQ 38.75 - 33.73

Transformer 35.74 16.48 24.73
ConvS2S 42.48 27.02 29.52

REINFORCE 42.05 26.73 29.20
Conv-Adv-MC 41.98 26.84 29.45
Conv-Adv-S 42.81 27.33 29.70

Table 6: Comparative results on Quora III.

ent than the training set (Quora II).
The scores on BLEU and ROUGE indicate that

our model produces paraphrases that are more sim-
ilar to the targets. Also, the iBLEU scores sug-
gest that our model generates more diverse para-
phrases than some of the prior works. However, the
METEOR scores indicate that some of the previ-
ous baselines use more synonyms when generating
paraphrases than our model does.

4.5 Human evaluation
We make a human evaluation of the generated mod-
els because we believe that the automatic evalua-
tion is not always accurate. We randomly select
120 condition-target questions and the generated
of two methods of the Quora I testing set, and we
distribute them to 4 evaluators using a form. We
ask the evaluators to verify three main aspects in
scores from 1 to 5:

• Relevance: Whether the paraphrase has the
same meaning of the original sentence and
does not lose information.

• Fluency: Whether the paraphrase has a cor-
rect grammar and use of vocabulary.

• Diversity: Whether the paraphrase varies syn-
tactically and semantically.

Table 7 presents the average ratings given by
human evaluators. It is worth to notice that all
appraisals are from 1 to 5, being five the highest
score.

Model Relevance Fluency Diversity

Reference 3.97 4.42 3.22

ConvS2S 3.98 4.32 2.65
Conv-Adv-S (ours) 3.97 4.24 2.77

Table 7: Results of human evaluation.

From the results, we analyze each evaluated as-
pect: The three paraphrases have equivalent Rel-
evance scores. We infer that this is due to some
reference examples that lose some extra informa-
tion in the paraphrase and for the random sampling.
Overall, the scores indicate that our model can
produce paraphrases that are highly related to the
original input questions.

Although the ConvS2S model has a better flu-
ency than our method with non-statistical signifi-
cant differences (paired t-test, p-value∼0.21), both
are near the reference examples. We believe that
the process of correcting some specific words could
cause disorder when decoding some sentences. Be-
sides, we assume that another decoding algorithm



256

Input Sentence ConvS2S Conv-Adv-S (ours) Target sentence

what is the difference between
militants and terrorists?

what is the difference between
terrorists and terrorists?

what is the difference between
a person and terrorists?

what is the difference between
terrorists and militants?

who is going to win, trump or
hillary?

who will win the election,
trump or clinton?

who will win, trump or clin-
ton?

who will win, trump or clin-
ton?

is it possible to advertise on
quora?

is it possible to advertise on
quora?

is promotion allowed on
quora?

can we advertise our business
on quora?

how do you train your memory
to memorize things fast?

how do i memorize my mem-
ory?

how can i memorize things
faster?

how can i memorize things
faster?

what are the top 5 mobile app
development companies in in-
dia?

what are the top 5 mobile app
development companies in in-
dia?

which is the best mobile app
development company in in-
dia?

what is the best mobile app de-
velopment company in india?

how can i persuade my parents
to let me wear makeup?

how do i convince my parents
to let me wear makeup?

how do i let my parents to let
me wear makeup?

how do i convince my parents
to let me wear makeup?

why doesn’t germany pursues
indigenous jet engine develop-
ment?

why doesn’t germany angulic
in the world?

why doesn’t the germany
always a bit of it’s lim-
ited/2.2.2.50 & sandys have
been fired in the

why doesn’t germany produce
jet engines?

Table 8: Generated sentences on Quora I testing set.

could benefit the generation of fluent paraphrases.
Our model produces more diverse sentences than

ConvS2S does. However, the difference is not sta-
tistical significant (p-value∼0.19). Also, the ref-
erence sentences are still more diverse than the
outputs of our model. We believe that a penaliza-
tion function for similarity with the source sentence
could help to improve the results.

Overall, human evaluation shows that our model
produces relevant and fluent paraphrases, which
indicates that our model works properly. Although
we improved the diversity factor of the ConvS2S,
it is still non-comparable with the variety of the
original distribution.

As a case study, Table 8 presents some of the
sentences that our model and the ConvS2S gener-
ated in the test set of Quora I. We color the cells
depending on our criterion of the quality of each
paraphrase. The red color represents a bad para-
phrase (a repetition from the source question, a
nonsense sentence, or a not related question). The
yellow color represents a paraphrase with some
missing information. The green color represents a
correct paraphrase.

4.6 Discussion

The presented results on the experimentation of the
representations of the input show that the embed-
dings of pre-trained models are better input repre-
sentations than the ones provided by classic algo-
rithms of word-embeddings. The results concur
with the study of (Ethayarajh, 2019). Furthermore,
we found that the input representation has a high

impact on the framework results (difference up to
14.68). Also, the results indicate that the GPT-2 has
more robust embeddings in the first layer than the
ones provided by BERT. We infer that BERT relies
more on its contextual similarities calculated in its
higher layers than GPT-2 does, as is suggested in
previous studies (Ethayarajh, 2019; Hoover et al.,
2019).

The comparison with previous baselines indi-
cates that our framework achieves competitive re-
sults against the state-of-the-art methods consider-
ing all automatic metrics. Further, we improved
some benchmarks on BLEU, ROUGE, and ME-
TEOR. The results indicate that the weighted ad-
versarial loss is a suitable option to REINFORCE,
and it provides generation diversity to our ConvS2S
implementation (improvement of 0.12 in human
evaluation). The BLEU and ROUGE scores indi-
cate that our model has similarities with the target
questions. However, it also has a lack of diversity
as the METEOR score shows. Similar to (Qian
et al., 2019; Banerjee and Lavie, 2005), the results
from the automatic evaluation concur with the hu-
man evaluation, especially on diversity.

5 Conclusions

We propose an adversarial setup to address the para-
phrase generation task. The automatic evaluation
results show some improvements over previous
baselines. The human evaluation suggests a trade-
off between the fluency and diversity of the gen-
erated paraphrases of the fine-tuned model. We
conclude that our setup is a suitable option to RE-



257

INFORCE and MLE training. In addition, the case
study shows that our method helps to improve the
quality of paraphrases in general.

Acknowledgments

This work was supported by grant 234-2015-
FONDECYT (Master Program) from Cienciac-
tiva of the National Council for Science, Technol-
ogy and Technological Innovation (CONCYTEC-
PERU).

References
Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An

automatic metric for mt evaluation with improved
correlation with human judgments. In Proceedings
of the acl workshop on intrinsic and extrinsic evalu-
ation measures for machine translation and/or sum-
marization, pages 65–72.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. 2015. Scheduled sampling for se-
quence prediction with recurrent neural networks.
In Advances in Neural Information Processing Sys-
tems, pages 1171–1179.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Mingda Chen, Qingming Tang, Sam Wiseman, and
Kevin Gimpel. 2019. Controllable paraphrase gen-
eration with a syntactic exemplar. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5972–5984.

Claude Coulombe. 2018. Text data augmentation made
simple by leveraging nlp cloud apis. arXiv preprint
arXiv:1812.04718.

Michael Denkowski and Alon Lavie. 2014. Meteor uni-
versal: Language specific translation evaluation for
any target language. In Proceedings of the EACL
2014 Workshop on Statistical Machine Translation.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Li Dong, Jonathan Mallinson, Siva Reddy, and Mirella
Lapata. 2017. Learning to paraphrase for question
answering. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Process-
ing, pages 875–886.

Elozino Egonmwan and Yllias Chali. 2019. Trans-
former and seq2seq model for paraphrase generation.
In Proceedings of the 3rd Workshop on Neural Gen-
eration and Translation, pages 249–255.

Kawin Ethayarajh. 2019. How contextual are contextu-
alized word representations? comparing the geome-
try of bert, elmo, and gpt-2 embeddings. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 55–65.

William Fedus, Ian Goodfellow, and Andrew M Dai.
2018. Maskgan: Better text generation via filling in
the . arXiv preprint arXiv:1801.07736.

Wee Chung Gan and Hwee Tou Ng. 2019. Improv-
ing the robustness of question answering systems
to question paraphrasing. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 6065–6075.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
sequence to sequence learning. In Proceedings
of the 34th International Conference on Machine
Learning-Volume 70, pages 1243–1252. JMLR. org.

Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong
Yu, and Jun Wang. 2018. Long text generation
via adversarial training with leaked information. In
Thirty-Second AAAI Conference on Artificial Intelli-
gence.

Ankush Gupta, Arvind Agarwal, Prawaan Singh, and
Piyush Rai. 2018. A deep generative framework for
paraphrase generation. In Thirty-Second AAAI Con-
ference on Artificial Intelligence.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.
In Proceedings of the IEEE international conference
on computer vision, pages 1026–1034.

Tianxing He, Jingzhao Zhang, Zhiming Zhou, and
James Glass. 2019. Quantifying exposure bias
for neural language generation. arXiv preprint
arXiv:1905.10617.

Benjamin Hoover, Hendrik Strobelt, and Sebastian
Gehrmann. 2019. exbert: A visual analysis tool to
explore learned representations in transformers mod-
els. arXiv preprint arXiv:1910.05276.

Shaohan Huang, Yu Wu, Furu Wei, and Ming
Zhou. 2018. Dictionary-guided editing net-
works for paraphrase generation. arXiv preprint
arXiv:1806.08077.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
In Proceedings of the 2018 Conference of the North

https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423


258

American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), volume 1, pages 1875–
1885.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2019. Tinybert: Distilling bert for natural language
understanding. arXiv preprint arXiv:1909.10351.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Yang Li, Quan Pan, Suhang Wang, Tao Yang, and Erik
Cambria. 2018a. A generative model for category
text generation. Information Sciences, 450:301–
315.

Yitong Li, Trevor Cohn, and Timothy Baldwin. 2017.
Robust training under linguistic adversity. In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers, volume 2, pages
21–27.

Zichao Li, Xin Jiang, Lifeng Shang, and Hang Li.
2018b. Paraphrase generation with deep reinforce-
ment learning. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3865–3878.

Zichao Li, Xin Jiang, Lifeng Shang, and Qun Liu. 2019.
Decomposable neural paraphrase generation. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3403–
3414.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Xinyue Liu, Xiangnan Kong, Lei Liu, and Kuorong
Chiang. 2018. Treegan: Syntax-aware sequence
generation with generative adversarial networks.
arXiv preprint arXiv:1808.07582.

Sidi Lu, Lantao Yu, Siyuan Feng, Yaoming Zhu, and
Weinan Zhang. 2019. Cot: Cooperative training
for generative modeling of discrete data. In Inter-
national Conference on Machine Learning, pages
4164–4172.

Shuming Ma, Xu Sun, Wei Li, Sujian Li, Wenjie Li,
and Xuancheng Ren. 2018. Query and output: Gen-
erating words by querying distributed word represen-
tations for paraphrase generation. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 196–206.

Jonathan Mallinson, Rico Sennrich, and Mirella Lapata.
2017. Paraphrasing revisited with neural machine
translation. In Proceedings of the 15th Conference

of the European Chapter of the Association for Com-
putational Linguistics: Volume 1, Long Papers, vol-
ume 1, pages 881–893.

Hong-Ren Mao and Hung-Yi Lee. 2019. Polly want
a cracker: Analyzing performance of parroting on
paraphrase generation datasets. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5962–5970.

Cyprien de Masson d’Autume, Shakir Mohamed, Mi-
haela Rosca, and Jack Rae. 2019. Training language
gans from scratch. In Advances in Neural Informa-
tion Processing Systems, pages 4302–4313.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in pre-training distributed word representa-
tions. In Proceedings of the Eleventh International
Conference on Language Resources and Evalua-
tion (LREC-2018), Miyazaki, Japan. European Lan-
guages Resources Association (ELRA).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learn-
ing library. In Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/L18-1008
https://www.aclweb.org/anthology/L18-1008
https://www.aclweb.org/anthology/L18-1008
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202


259

Aaditya Prakash, Sadid A Hasan, Kathy Lee, Vivek
Datla, Ashequl Qadir, Joey Liu, and Oladimeji
Farri. 2016. Neural paraphrase generation with
stacked residual lstm networks. arXiv preprint
arXiv:1610.03098.

Lihua Qian, Lin Qiu, Weinan Zhang, Xin Jiang, and
Yong Yu. 2019. Exploring diverse expressions
for paraphrase generation. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3164–3173.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2015. Sequence level train-
ing with recurrent neural networks. arXiv preprint
arXiv:1511.06732.

Suranjana Samanta and Sameep Mehta. 2017. Towards
crafting text adversarial samples. arXiv preprint
arXiv:1707.02812.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Hong Sun and Ming Zhou. 2012. Joint learning of a
dual smt system for paraphrase generation. In Pro-
ceedings of the 50th Annual Meeting of the Associ-
ation for Computational Linguistics: Short Papers-
Volume 2, pages 38–42. Association for Computa-
tional Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems, pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Su Wang, Rahul Gupta, Nancy Chang, and Jason
Baldridge. 2019. A task in a suit and a tie: para-
phrase generation with semantic augmentation. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 33, pages 7176–7183.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256.

Ronald J Williams and David Zipser. 1989. A learn-
ing algorithm for continually running fully recurrent
neural networks. Neural computation, 1(2):270–
280.

Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Lu-
ong, and Quoc V Le. 2019. Unsupervised data aug-
mentation for consistency training.

Qian Yang, Dinghan Shen, Yong Cheng, Wenlin Wang,
Guoyin Wang, Lawrence Carin, et al. 2019. An end-
to-end generative architecture for paraphrase gener-
ation. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3123–3133.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu.
2017. Seqgan: Sequence generative adversarial nets
with policy gradient. In AAAI, pages 2852–2858.

https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009

