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Abstract

The field of NLP has seen unprecedented
achievements in recent years. Most notably,
with the advent of large-scale pre-trained
Transformer-based language models, such as
BERT, there has been a noticeable improve-
ment in text representation. It is, however, un-
clear whether these improvements translate to
noisy user-generated text, such as tweets. In
this paper, we present an experimental survey
of a wide range of well-known text representa-
tion techniques for the task of text clustering
on noisy Twitter data. Our results indicate that
the more advanced models do not necessarily
work best on tweets and that more exploration
in this area is needed.

1 Introduction

Recent years have witnessed an exponential in-
crease in the usage of social media platforms.
These platforms have become an important part of
politics, business, entertainment, and general social
life. Correspondingly, the amount of data gener-
ated by users on these platforms has also grown
exponentially. Though data on social media in-
cludes various modalities, such as images, videos,
and graphs, text is by far the largest type of data
generated by users. Thus, in order to extract knowl-
edge and insight from social media, sophisticated
text processing models are needed. Luckily, in
parallel to the growth of social media, there has
been a rapid rise in the development of sophisti-
cated text representation techniques, the most re-
cent being large-scale pre-trained language models
that use Transformer-based architecture (Vaswani
et al., 2017)(such as BERT (Devlin et al., 2018),
and XLNet(Yang et al., 2019)). These methods can
generate general-purpose vector representations of
documents that can be used for any downstream
task (e.g., sentiment classification).

However, the representation power of these
methods for data from social media is not well un-
derstood. This is especially true for tweets which
are usually short, noisy, and idiosyncratic. This
paper is an attempt to evaluate and catalogue the
representation power of a wide range of meth-
ods for tweets, starting from very simple bag-of-
words representations (or embeddings) to repre-
sentations generated by recent Transformer-based
models, such as BERT. Since we are interested in
the general representation power of the methods
and not their performance on any specific down-
stream tasks, we do not fine-tune any of the meth-
ods using downstream tasks and use unsupervised
evaluation (i.e., clustering) for our survey.

2 Text Representation Methods

In this section, we briefly introduce the methods
used in our survey, sorted from oldest to newest.
For word embedding methods like word2vec,
GloVe, and fastText, which dot not explicitly sup-
port sentence embeddings, we average the word
embeddings to get sentence embeddings. For deep
models like ELMo, BERT, ALBERT, and XLNet,
we take the average of the hidden state of the last
layer on the input sequence axis. Note that some
other works use the hidden state of the first token
([CLS]), but in our experiments, we use the pre-
trained model without fine-tuning, in this case, the
hidden state of [CLS] is not a good sentence repre-
sentation. Note that we use all these deep neural
models without fine-tuning. This is because fine-
tuning is usually based on specific downstream
tasks which bias the information in the hidden
states, weakening the general representation. Note
that when we refer to n-gram models we mean mod-
els that capture all grams up to and including the
n-gram (e.g., bigram models will include bigrams
and unigrams).
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1. bag-of-words (BoW). This is a representa-
tion of text that describes the occurrence of words
within a document. In our experiments, we use a
random sample of 5 million tweets collected from
the Internet Archive Twitter dataset 1 (IAT) to cre-
ate a vocabulary. We also remove stop words from
the tweets. We try unigram, bigram, and trigram
models.
2. TF-IDF.. Term frequency–inverse document fre-
quency (TF-IDF) reflects how important a word is
with respect to documents in a collection or corpus.
We use a similar experimental setup as BoW.
3. LDA (Hoffman et al., 2010). Latent Dirichlet
allocation (LDA) is a generative statistical model
for capturing the topic distribution of documents in
a corpus. We train this model on the IAT dataset.
We also remove stop-words and train models with
5, 10, 20, and 100 topics.
4. word2vec (Mikolov et al., 2013). word2vec
is a distributed representation of words based on
a model trained on predicting the current word
from surrounding context words (CBOW). We train
unigram, bigram, and trigram word2vec models
using the IAT dataset.
5. doc2vec (Le and Mikolov, 2014). This model
extends word2vec by adding another document vec-
tor based on ID. Our model is trained on the IAT
dataset.
6. GloVe (Pennington et al., 2014). This model
combines global matrix factorization and local con-
text window methods for training distributed rep-
resentations. We use the 200-dimensional version
that was pre-trained on 2 billion tweets.
7. fastText (Joulin et al., 2016). fastText is another
word embedding method that extends word2vec by
representing each word as an n-gram of characters.
We use the 300-dimensional off-the-shelf version
which was pre-trained on Wikipedia.
8. Tweet2vec (Dhingra et al., 2016). This model
finds vector-space representations of whole tweets
by learning complex, non-local dependencies in
character sequences. In our experiments, we use
the pre-trained best model provided by the au-
thors.2

1https://archive.org/search.php?
query=collection%3Atwitterstream&sort=
-publicdate

2https://github.com/bdhingra/
tweet2vec/tree/master/tweet2vec/best_
model There is another tweet2vec model that uses a
character-level cnn-lstm encoder-decoder (Vosoughi et al.,
2016), but for the sake of brevity we only show the results for
one of the tweet2vec models.

9. Universal Sentence Encoder (USE) (Cer et al.,
2018). USE encodes sentences into high dimen-
sional vectors. The pre-trained encoder comes in
two versions, one trained with deep averaging net-
work (DAN) (Iyyer et al., 2015) and one with Trans-
former. We use the DAN version of USE.
10. ELMo (Peters et al., 2018). This method
provides context-dependent word representations
based on bidirectional language models. We use
the version pre-trained on the One Billion Word
Benchmark.
11. BERT (Devlin et al., 2018). BERT is a large-
scale Transformer-based language representation
model (Vaswani et al., 2017). We use two off-the-
shelf pre-trained versions BERT-base and BERT-
large, which are pre-trained on the BooksCorpus
and English Wikipedia respectively.
12. ALBERT (Lan et al., 2019). This is a
lite version of BERT, with far fewer parameters.
We use two off-the-shelf versions, ALBERT-base
and ALBERT-large, which are pre-trained on the
BooksCorpus and English Wikipedia respectively.
13. XLNet (Yang et al., 2019). This is an autore-
gressive Transformer-based language model. Like
BERT, XLNet is a large-scale language model with
millions of parameters. We use the off-the-shelf
versions pre-trained on the BooksCorpus and En-
glish Wikipedia.
14. Sentence-BERT (Reimers and Gurevych,
2019). Sentence-BERT modifies BERT by using
siamese and triplet network structures to derive se-
mantically meaningful sentence embeddings. We
use five off-the-shelf versions provided by the au-
thors, Sentence-BERT-base, Sentence-BERT-large,
Sentence-Distilbert, Sentence-RoBERTa-base, and
Sentence-RoBERTa-large, all pre-trained on NLI
data.

3 Experiments

Since we are interested in measuring the general
text representation power of our methods, we use
clustering as a way to evaluate the representations
generated by each model (instead of any down-
stream supervised tasks). We use the vector repre-
sentations of each tweet to run k-means clustering
for different values of k. We use two tweet datasets
for our evaluation. The tweets in these datasets
have labels corresponding to their topic which we
use as cluster ground-truth for evaluation purposes.

Dataset 1 (Zubiaga et al., 2015): This dataset in-
cludes 356,782 tweets belonging to 1,036 topics.

https://archive.org/search.php?query=collection%3Atwitterstream&sort=-publicdate
https://archive.org/search.php?query=collection%3Atwitterstream&sort=-publicdate
https://archive.org/search.php?query=collection%3Atwitterstream&sort=-publicdate
https://github.com/bdhingra/tweet2vec/tree/master/tweet2vec/best_model
https://github.com/bdhingra/tweet2vec/tree/master/tweet2vec/best_model
https://github.com/bdhingra/tweet2vec/tree/master/tweet2vec/best_model
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We use k ∈ {200, 400, 600, 800, 1000}, for this
dataset.
Dataset 2 (Rosenthal et al., 2017): This dataset
includes 35,323 tweets belonging to 374 topics. We
use k ∈ {100, 200, 300, 400, 500}, for this dataset.

3.1 Evaluation Metrics

We use a total of six metrics for evaluating the
“goodness” of our clusters, described below. Except
for the Silhouette score, all other metrics rely on
ground-truth labels.

Silhouette score (Rousseeuw, 1987): A good clus-
tering will produce clusters where the elements
inside the same cluster are close to each other and
the elements in different clusters are far from each
other. The Silhouette score takes both these fac-
tors into account. The score goes from -1.0 to 1.0,
where higher values mean better clustering.
Homogeneity, Completeness, and V-measure,
(Rosenberg and Hirschberg, 2007): If clusters con-
tain only data points that are members of a sin-
gle class, in other words, high homogeneity, this
usually indicates good clustering. Similarly, if all
members of a given class are assigned to the same
cluster, in other words, high completeness, this usu-
ally indicates good clustering. The Homogeneity
and Completeness scores are between 0.0 and 1.0,
where higher values correspond to better cluster-
ing. The V-measure score is the harmonic mean of
Homogeneity and Completeness.
Adjusted Rand Index (ARI) (Hubert and Arabie,
1985): The Rand Index can be used to compute the
similarity between generated clusters and ground-
truth labels. This is done by considering all pairs of
samples and seeing whether their label agreement
(i.e., belonging to the same ground-truth cluster or
not) matches the generated cluster agreement (i.e.,
belonging to the same generated cluster or not).
The raw RI score is then “adjusted for chance”
into the ARI. score using the following formula:
The ARI score can be between -1.0 and 1.0, where
random clusterings have an ARI close to 0.0 and
1.0 stands for perfect clustering.
Adjusted Mutual Information (AMI) (Vinh
et al., 2010): The Mutual Information (MI) score is
an information-theoretic metric that measures the
amount of ”shared information” between two clus-
terings. The Adjusted Mutual Information (AMI)
is an adjustment of the Mutual Information (MI)
score to account for chance. It accounts for the
fact that the MI is generally higher for two cluster-
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Figure 1: Confusion matrix of the correlation (Pear-
son’s r) between each pair of methods.

ings with a larger number of clusters, regardless of
whether there is actually more information shared.
The AMI score can be between 0.0 and 1.0, where
random clusterings have an AMI close to 0.0 and
1.0 stands for perfect clustering.

4 Results & Discussion

For each dataset, we average the scores from
k-means clustering with different values of k.
Though we use several metrics in our evaluations
for the sake of being thorough, most of the metrics
are in fact highly correlated. Fig. 1 shows the cor-
relation between each pair of metrics (calculated
based on the clustering results of our methods).
We can see that all the external evaluation metrics
(Homogeneity, Completeness, V-measure, AMI,
and ARI, which need external ground-truth labels)
highly agree with each other while the internal
evaluation metric (Silhouette score, which does not
need external ground-truth labels) does not.

The clustering results are shown in Fig. 2 and
Fig. 3, the methods in both figures are sorted
based on the date of their release to capture the
advancements in NLP. Unlike conventional tasks
and datasets (such as the GLUE benchmark (Wang
et al., 2018)), there does not seem to be a very
clear trend of improvement for capturing tweet rep-
resentations. The more advanced models are not
necessarily the best. Notably, the BERT family of
large-scale pre-trained language models (ALBERT,
Sentence-BERT, etc) do not vastly or consistently
outperform much simpler methods such as bag-
of-words and tf-idf. XLNet, on the other hand,
seems to be the best performing method for cap-
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Figure 2: The V-measure (left), ARI (middle), and AMI (right) of all the methods on the two datasets. The points
in the figure denote the average value across different k values and the blue lines denote the standard deviations.
The methods are sorted from the oldest to the newest.

turing tweet representations, followed closely by
USE. Interestingly, XLNet is also the most volatile
with respect to the choice of k in our clustering.
We think XLNet outperforms other comparable (in
terms of complexity) models such as BERT since it
uses permutation language modeling, allowing for
prediction of tokens in random order. This might
make it more robust to the noisy user-generated
text, such as tweets. We think that our results are
unexpected and inconclusive, demonstrating that
much is still unknown about the performance of
the most recent models on noisy and idiosyncratic
user-generated text.

Very recently, a large-scale pre-trained BERT
model for English Tweets was trained and released
(Nguyen et al., 2020). This model was released
just days before the publication of this paper and
thus we did not have time to thoroughly compare
its performance against the other models. However,
we believe this model is a step in the right direction

as we have shown in this paper that models trained
on standard English corpora do not perform well
on Tweets.

5 Conclusion

In this paper, we presented an experimental sur-
vey of 14 methods for representing noisy user-
generated text prevalent in tweets. These methods
ranged from very simple bag-of-words representa-
tions to complex pre-trained language models with
millions of parameters. Through clustering exper-
iments, we showed that the advances in NLP do
not necessarily translate to better representation of
tweet data.

We believe more work is needed to better under-
stand and potentially improve the performance of
the more recent methods, such as BERT, on noisy,
user-generated data.
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Figure 3: The Silhouette (left), Homogeneity (middle), and Completeness (right) of all the methods on the two
datasets. The points in the figure denote the average value across different k values and the blue lines denote the
standard deviations. The methods are sorted from the oldest to the newest.
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