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Abstract

The performance of neural machine transla-
tion (NMT) systems only trained on a single
language variant degrades when confronted
with even slightly different language varia-
tions. With this work, we build upon previous
work to explore how to mitigate this issue. We
show that fine-tuning using naturally occur-
ring noise along with pseudo-references (i.e.
“corrected” non-native inputs translated using
the baseline NMT system) is a promising so-
lution towards systems robust to such type of
input variations. We focus on four translation
pairs, from English to Spanish, Italian, French,
and Portuguese, with our system achieving im-
provements of up to 3.1 BLEU points com-
pared to the baselines, establishing a new state-
of-the-art on the JFLEG-ES dataset.1

1 Introduction

Neural machine translation (NMT) approaches
have aided the machine translation field in achiev-
ing great advances in the recent years, starting with
encoder-decoder models with attention (Bahdanau
et al., 2014; Luong et al., 2015), to transformers
using self-attention (Vaswani et al., 2018), to mas-
sively multilingual models that yield large improve-
ments even in low-resource settings (Aharoni et al.,
2019; Zhang et al., 2020).

Despite these very encouraging developments,
the list of shortcomings of NMT is also quite
vast (Koehn and Knowles, 2017), and one of the
most crucial shortcomings is the lack of robustness
to source-side noise.2 When confronted with inputs
that are even slightly different from the inputs that
the models were trained on, the quality of the out-
puts significantly degrades. This observation has

1All datasets and code are publicly available
here: https://github.com/mahfuzibnalam/
finetuning_for_robustness.

2This is not to say that non-neural statistical approaches
did not suffer from the same drawbacks.

been confirmed for noise due to typos or character
scrambling (Belinkov and Bisk, 2018), due to faulty
speech recognition (Heigold et al., 2018), or due
to naturally-occurring errors by second-language
non-native speakers (Anastasopoulos et al., 2019).

However, this issue can particularly degrade the
user experience for millions of potential users. For
example, the number of non-native English speak-
ers is three times larger than the number of native
English speakers (c.f. around 1 billion for the for-
mer and about 300 million for the latter). Had one
had access to large amounts of data for all differ-
ent language varieties, it would be straightforward
to train variety-specific MT models. Such data,
though, are of course scarce.

In this paper we work on addressing this particu-
lar shortcoming, in an attempt to make NMT sys-
tems more robust to source-side variations that non-
native speakers produce. Since English is the lan-
guage with the largest amount of second-language
learners and non-native speakers, we only focus
on MT systems translating out of English, but we
point out that such work is urgently needed for
other colonial languages (i.e. French, Spanish) or
majority languages (such as Russian, Mandarin, or
Hindi) that are taking over minority ones.3

The main difference of our approach compared
to previous work is that we do not attempt to syn-
thesize different types of noise, but rather use
naturally-occurring texts, as produced by non-
native speakers. We utilize grammar error correc-
tion corpora and produce pseudo-references, which
we then use to fine-tune a NMT system with a
goal of increasing its robustness to such source-
side noise. In our view, our approach has two main
advantages and a single disadvantage over previous

3That is also not to say that robustness is not necessary
for low-resource languages; to the contrary! We just focus on
high-resource settings first as they are the ones that have the
potential to affect a larger number of downstream users.

https://github.com/mahfuzibnalam/finetuning_for_robustness
https://github.com/mahfuzibnalam/finetuning_for_robustness
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works. First, the types of realistic “non-native-like”
noise that can be synthesized are limited, cover-
ing among others typos or simple morphological
or syntactic mistakes (Belinkov and Bisk, 2018;
Cheng et al., 2018; Anastasopoulos et al., 2019;
Tan et al., 2020, et alia) but not covering the in-
terplay between all these or any other higher level
issues (e.g. word choice). Our approach has the
potential to handle a larger spectrum of language
variation, as it appears in naturally occurring data.
Second, our choice of fine-tuning, rather than train-
ing from scratch as previous works have opted for,
leads to lower training times and lower compute
needed for similar improvements on robustness.
The main drawback of our approach lies in the need
for corrected (or “normalized”) versions of “noisy”
non-native sentences, but we take solace in the fact
that at least for the majority of the high-resource
languages (such as English, French, German, Rus-
sian, or Chinese) such datasets already exist. Very
briefly, our contributions are summarized here:

• We show that fine-tuning a pre-trained system
on noisy source-side data along with pseudo-
references is a viable approach towards NMT
robustness to grammar errors and input from
non-native speakers.

• We show that fine-tuning of a multilingual
NMT system on several languages is also ad-
visable, yielding better performance for a sub-
set of the languages.

• We also discuss the potential of achieving
zero-shot robustness, as long as catastrophic
forgetting issues can be overcome.

2 Related Work

Our work is inspired by and combines two lines
of research: (1) robustness studies in NMT and (2)
data augmentation.

Robust NMT Making robust models for NMT
has recently gained popularity, with Shared Tasks
organized in the Conference of Machine Trans-
lation (Li et al., 2019) and several solutions put
forth (Berard et al., 2019; Helcl et al., 2019; Post
and Duh, 2019; Zhou et al., 2019; Zheng et al.,
2019, et alia). Liu et al. (2018); Karpukhin et al.
(2019) focus on creating black-box methods for
making synthetic or natural noises. Ebrahimi et al.
(2018) use white-box methods and creates adver-
sarial examples for character-level NMT. Anasta-
sopoulos et al. (2019) show that including noisy

synthetic data in the training data can increase
the model’s robustness without sacrificing perfor-
mance on clean data, an approach that Tan et al.
(2020) extend to more NLP tasks.

While these approaches are indeed meritorious
and indeed improve a model’s robustness, we ar-
gue that one needs to use natural noise instead, on
account of two phenomena. The first is language
change: the different variations that the models will
have to contend with are not static, but rather con-
stantly changing at an ever-increasing pace. Sec-
ond, and perhaps a partial direct consequence of the
first point, one cannot rely on synthetic examples
to properly capture the wide variety of naturally-
occurring variations. Besides, if one could prop-
erly model noise creation, they could also similarly
model the inverse problem adequately, namely re-
move said noise, in which case a noise-removing
preprocessing step would be most likely suffiecient
to tackle the issue.

On working with real-world noise, the approach
of Michel and Neubig (2018) is the most similar
to ours. They collected “noisy” English, French,
and Japanese sentences from Reddit, created trans-
lations, and split their dataset (MTNT) into train,
development, and test, ranging from 5 to 36 thou-
sand training examples. To build robust NMT sys-
tems, they first train a model on standard clean
data and then fine-tune it on the training portion
of MTNT using techniques from domain adapta-
tion. The main difference between this worthy
effort and our approach is two-fold. First, our ap-
proach does not require gold translations of the
noisy inputs, which can be expensive and hard
to collect, but we instead rely on the abundance
of corrected second-language learner data (which
we use to create pseudo-references, see §3). Sec-
ond, we attest that Reddit language translation is
much closer to a domain adaptation scenario, and
includes additional noise types that are not per-
tinent to non-native language translation such as
emoji, Reddit jargon such us “upvote” or “gild”,
and internet slang such as “tbh” and “smh”.4

On working with pseudo-references, the ap-
proach of Cheng et al. (2019a) is the most simi-
lar to ours. They use ASR corpora to create syn-
thetic ASR-induced noise and try to make NMT
system more robust to this type of noise. As
speech-to-transcription-to-translation datasets are

4“tbh” stands for “to be honest” and “smh” for “shake my
head”.
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very costly to produce, they use standard speech-
to-transcription datasets instead. They translate the
gold transcription data set to get translation pseudo-
references. Then they jointly train the model
on noisy source transcription using the pseudo-
reference translations as the target.

Data Augmentation Data augmentation tech-
niques have become increasingly popular for MT
and other NLP tasks, from back-translation of
monolingual data (Sennrich et al., 2016) to counter-
factual augmentation to address gender bias is-
sues (Zmigrod et al., 2019, et alia). For our pur-
poses, we will focus on data augmentation tech-
niques aimed at increasing NMT robustness.

Simple perturbations typically used include the
infusion of character-level noise (e.g. character
scrambling (Heigold et al., 2018) or typos (Be-
linkov and Bisk, 2018)) or word order scram-
bling (Sperber et al., 2017). Cheng et al. (2018,
2019b) propose a gradient based method to attack
the translation model with adversarial source ex-
amples, but there’s not guarantee that the adversar-
ial attack results in realistic noise (Michel et al.,
2019a). Anastasopoulos et al. (2019) add specific
types of errors (such as subject-verb agreement or
determiner errors) on the source-side of parallel
data, while Tan et al. (2020) specifically perturb
the inflectional morphology of words to create ad-
versarial examples and show that adversarial fine-
tuning them for a single epoch significantly im-
proves robustness. Our work is highly motivated
from these last two works, but instead of creating
synthetic perturbed adversarial examples we use
real noisy examples.

3 Fine-tuning for Robustness

Our goal is to achieve robustness to source-side
variations that are similar to the mistakes that non-
native English speakers make. To do so, we will
utilize state-of-the-art pretrained systems and fine-
tune them using pseudo-references over corpora
that include real-world noise. The general outline
of our approach is straightforward:

1. Start with a English-to-X NMT system pre-
trained on any available data.

2. Obtain an English Grammar Error Correction
dataset, which provides tuples (x, x̃) of origi-
nal and corrected sentences.

3. Translate the corrected sentences obtaining
pseudo-references ỹ = NMT(x̃).

4. Fine-tune the NMT system on (x, ỹ) pairs.

Notation Throughout this work, we use the nota-
tion of Anastasopoulos (2019) to denote different
types of data:

• x: the original, noisy, potentially ungrammat-
ical English sentence. Its tokens will be de-
noted as xi.
• x̃: the English sentence with the correction

annotations applied to the original sentence
x, which is deemed fluent and grammatical.
Again, its tokens will be denoted as x̃i.
• ỹ: the output of the NMT system when x̃ is

provided as input (tokens: ỹj). This will be
our pseudo-reference for fine-tuning or evalu-
ation.

For the sake of readability, we use the terms
grammatical errors, noise, or edits interchangeably.
In the context of this work, they will all denote
the annotated grammatical errors in the source sen-
tences (x).

Data There are many publicly available corpora
for non-native English that are annotated with cor-
rections, which have been widely used for the
Grammar Error Correction tasks (Bryant et al.,
2019). We specifically use NUCLE (Dahlmeier
et al., 2013), FCE (Yannakoudakis et al., 2011),
and Lang-8 (Tajiri et al., 2012) for creating the
pseudo-references. For evaluation we use the JF-
LEG dataset (Napoles et al., 2017) and its ac-
companying Spanish translations in the JFLEG-ES
dataset (Anastasopoulos et al., 2019).

The NUS Corpus of Learner English (NUCLE)
contains essays written by Singaporean students. It
is generally considered the main benchmark for
GEC. This dataset consists of 21.3K sentences.
The First Certificate in English corpus (FCE) is
also made of essays, written by learners who were
sitting the English as Second or Other Language
(ESOL) examinations. We use the publicly avail-
able version, which includes 17.6K sentences.

Lang-8 is a slightly different dataset than the
previous two datasets. This dataset was built from
user-provided corrections in an online learner fo-
rum. In comparison to the others, this dataset is
much larger, consisting of 149.5K sentences. How-
ever, this datasets’ error domain is very versatile.
It does not consist any test and validation set.

The JHU FLuency-Extended GUG corpus
(JFLEG) is a small corpus of only 1.3K sentences,
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intended only for evaluation. It has an unique char-
acter that is different from other datasets, as it con-
tains correction annotations that include extended
fluency edits rather than just minimal grammatical
ones.

The JFLEG corpus was translated into Span-
ish by Anastasopoulos et al. (2019) to create the
JFLEG-ES corpus, which provides gold-standard
Spanish translations for every JFLEG sentence.

Evaluation In cases where we have access to
human references, we can simply evaluate with
reference-based metrics (e.g. BLEU (Papineni
et al., 2002)). Unfortunately, we only have ref-
erences for the JFLEG-ES dataset in Spanish.

For all other datasets and languages, we treat
the translations of the corrected clean English
sources as pseudo-references, and use the metrics
from (Anastasopoulos, 2019): Robustness Score
(RB), f-BLEU, f-METEOR, and Noise Ratio (NR).

Robustness Score (RB) is defined as the per-
centage of translations of noisy sentences that are
exactly the same as the translation of the respective
corrected sentence.

f-BLEU and f-METEOR are slight modifica-
tion of the popular BLEU and METEOR met-
rics. The only difference is that they use pseudo-
references instead of true human-created ones, and
hence are referred to as faux BLEU and faux ME-
TEOR. In our case, the pseudo-references are the
translations of the corrected sentence.

Target-Source Noise Ratio (NR) is the ratio
between the target- and source-side BLEU score
between noisy and corrected sentences. All other
measures do not take into consideration how large
are the source-side differences. The intuition be-
hind this metric is that if there is minimal perturba-
tion d(x, x̃) on the input side then there should be
minimal reflection on the target side perturbation
d(y, ỹ) as well. NR is computed as:

NR(x, x̃,y, ỹ) =
d(y, ỹ)

d(x, x̃)
=

100− BLEU(y, ỹ)

100− BLEU(x, x̃)

4 Experiments and Results

We name our models in a way that is convenient
to understand. Our models are named as such:
dataset language; e.g. the NUCLE ES model will
refer to the model fine-tuned on the NUCLE dataset
for Spanish language. We will overload the naming
convention to also refer to datasets in the same way,
e.g. the NUCLE ES dataset.

Experimental Details All data are tokenized
and true-cased using the Moses tools (Koehn
et al., 2007).We use the SentencePiece (Kudo and
Richardson, 2018) toolkit to split the sentences into
sub-words. We use the unigram language model
algorithm of the toolkit with 65,000 operations. We
filter the fine-tuning dataset so that sentence length
is capped at 80 words.

Target Side Creation Given the recent suc-
cess and promise of massively multilingual sys-
tems (Johnson et al., 2016; Firat et al., 2016), we
use as our original model the OPUS-MT multilin-
gual Romance model5 (Tiedemann and Thottin-
gal, 2020), trained using Marian NMT (Junczys-
Dowmunt et al., 2018) within the HuggingFace’s
Transformers library (Wolf et al., 2019). For every
dataset we pass source sentences (both original and
corrected versions) and obtain target side sentences.
Then we use the corrected target side sentences as
our ground truth for fine-tuning the same model.

Transformer Model Details We use a trans-
former architecture as they have shown to be much
superior to recurrent architectures. We use Hug-
ginFace’s Transformers’ BartForConditionalGen-
eration as our model and tokenizer. This model
uses 12 layers, 16 attention heads, the embedding
dimension is 1024, and positional feed-forward di-
mension is 4096. Dropout is set to 0.1. We use the
same learning rate schedule as in (Vaswani et al.,
2017) with 500 warm-up steps but only decay the
learning rate until it reaches 3 ∗ 10−5. We fine-tune
our models on a V100 GPU for a maximum of 100
epochs (although best validation set performance
is reached around 20 to 25 epochs). For testing
we use the model with the best performance on the
validation dataset. Our validation check interval is
set to 0.2.

Evaluation We use METEOR (Denkowski and
Lavie, 2014) to calculate the f-METEOR scores.
We calculate BLEU and f-BLEU scores using
Sacrebleu (Post, 2018). We compute statistical sig-
nificance with paired bootstrap resampling (Koehn,
2004).

Results on English-Spanish We first discuss the
results on the JFLEG-ES test set, which is the only
dataset with human gold references.

The performance of our systems on the JFLEG-
ES test set, as measured by detokenized BLEU is

5name: Helsinki-NLP/opus-mt-en-ROMANCE
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System
en→es BLEU

Clean† Noisy ∆

(Anastasopoulos et al., 2019) 27.80 26.80 -1.00
Helsinki-NLP/opus-mt-en-ROMANCE 30.14 28.04 -2.10

-fine-tuned on:
NUCLE 27.89 26.62 -1.27

FCE 26.93 25.54 -1.39
Lang-8 28.85 28.20 -0.65

all noisy in Spanish 29.37 31.14* 1.77
all noisy in all four languages 28.16 29.04 0.88

all clean in Spanish 30.39 27.83 -2.56

Table 1: Translation quality (BLEU scores) on the JFLEG ES data-set. †: average over 4 corrected sentences as
input to the translation model. *statistically significantly better than the baseline, with p < 0.05.

System Sentence BLEU

Source (original) it has some problems that it can effect to humens.
OPUS-MT output tiene algunos problemas que puede afectar a los humens. 47
Finetuned output tiene algunos problemas que pueden afectar a los humanos. 89

Reference esto tiene algunos problemas que pueden afectar a los humanos.

Source (original) last month, I needed to buy digtal-camera.
OPUS-MT output el mes pasado, necesitaba comprar digtal-camera. 26
Finetuned output el mes pasado, necesitaba comprar una cámara digital. 66

Reference el mes pasado necesitaba comprar una cámara digital.

Table 2: Examples (cherry-picked) of sentences with high BLEU improvement after fine-tuning (English-Spanish
on the the JFLEG-ES dataset).

summarized in Table 1. The “Clean” column refers
to an average BLEU score over the four versions
of source-side corrections provided by the JFLEG
dataset, the “Noisy” column reports results with
the original sentences as input, and the last column
presents the difference (∆) between the two.

The first thing to note is that the multilingual
OPUS-MT model outperforms the previously pub-
lished results of Anastasopoulos et al. (2019) by
more than 2 BLEU points on both clean and noisy
settings. This is unsurprising, if one considers that
the OPUS-MT model has been trained on an order
of magnitude more English-Spanish data (about
25x), and it has in addition been trained on other
related Romance languages. However, we should
also note that the difference of the two models is
imbalanced: the improvement from all these addi-
tional data is +2.3 BLEU points when evaluated on
clean data, but only +1.2 BLEU points when eval-
uated on the noisy pairs. This outlines the impor-
tance of evaluating MT systems not only on clean

data but also on other language variants. Although
imbalanced these improvements are significant and
hence we treat our multilingual OPUS-MT model
as the baseline in all following discussions.

Fine-tuning on individual datasets yields incon-
sistent results, with the BLEU score changing from
-2.5 to +0.16. The highest drop is observed when
fine-tuning on FCE; this is reasonable as JFLEG
and FCE include errors on quite different domains
(Napoles et al., 2017). This ablation allows us to
identify Lang-8 as perhaps the most appropriate
single dataset for this kind of tasks, most likely due
to its size and diversity of errors and domains.

Using all available datasets, however, is sig-
nificantly better. We find that our model per-
forms particularly well when fine-tuned on pseudo-
references from all corpora (the “all noisy in Span-
ish” model (sixth row) that is a concatenation of all
the datasets in Spanish). We observe a 3.1 BLEU
improvement for noisy data, while suffering a small
decrease (0.8 BLEU points) on clean data. The dif-
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en→x system RB
f-BLEU

f-METEOR NR
noisy (clean)

Spanish original 9.56 62.61 (99.1) 0.79 0.99
adapted on es 24.45 69.88* (81.76) 0.84 0.69
adapted on all 24.76 69.92* (75.81) 0.83 0.68

Italian original 9.40 59.06 (99.32) 0.70 1.08
adapted on it 34.48 84.64* (81.54) 0.87 0.46

adapted on all 23.35 67.71* (75.14) 0.76 0.72

French original 10.32 61.96 (99.16) 0.77 1.00
adapted on fr 43.02 87.30* (83.12) 0.90 0.31

adapted on all 22.22 67.80* (74.38) 0.78 0.73

Portuguese original 9.20 61.12 (99.01) 0.72 1.02
adapted on pt 24.29 68.61* (81.60) 0.77 0.70
adapted on all 24.00 69.36* (76.47) 0.77 0.69

Table 3: Translation robustness evaluation (multiple metrics) for English to four Romance language translation.
Adaptation significantly increases the Robustness percentage as well as f-BLEU. *statistically significantly better
than the “original” baseline, with p < 0.05.

ferent datasets cover different types of errors and
domains, and as a result the fine-tuning process
does not get biased by a single type of domain.

The second-to-last row (“all noisy in all four lan-
guages”) reports results when pseudo-references
in all four experimental MT directions (EN to
ES,FR,IT,PT) are used in the fine-tuning process
of our multilingual model. In this case, we still
observe 1 BLEU improvement over the noisy data,
compared to the baseline, but the performance on
clean data is further degraded.

Last, it was crucial to examine whether the im-
provements we obtained are due to our fine-tuned
models becoming indeed more robust to errors, as
opposed to adapting to the domain and other charac-
teristics of the datasets we train and evaluate on. In
the last row (“all clean in Spanish”) we present the
results following fine-tuning the models with the
corrected sentences as inputs.6 We confirm that in-
deed our model improves slightly on the clean data,
but its performance does not improve on the noisy
inputs. Hence, we can conclude that the effect of
domain adaptation is minimal, and our fine-tuned
model has indeed learn to deal with non-standard
inputs.

Table 2 displays a couple of sentences where
our fine-tuned system produces more fluent out-
puts that then pre-trained system, properly han-

6This would amount to a straightforward case of self-
training, since it the target outputs were produced by the model
itself prior to fine-tuning.

dling the source-side noise. The mistakes in the
English source sentence and the MT outputs are
highlighted with red italics. In the first example
(top) our system can handle the typo “digtal” and
correctly translate it as “digital.” In the second ex-
ample (bottom) our system, in addition to handling
the typo “humens”, it also correctly inflects the
verb “pueden” (third person, plural) to agree with
its subject, while the pretrained model produces an
ungrammatical Spanish output (the verb “puede” is
in third person singular and does not agree with its
subject).

Results on other ROMANCE language In this
section we report results obtained with the model
fine-tuned on pseudo-references from all datasets
for each of the four languages, as they were con-
sistently better than any single-dataset fine-tuning
approach. Table 3 presents the scores with all four
evaluation metrics on all four En-to-X translation
directions. For each language, we compare three
models: the pre-trained one, one fine-tuned on
pseudo-references for the respective language only,
and one fine-tuned on all four languages simultane-
ously.

As we don’t have human references for the other
languages except Spanish, we use the Robustness
Score, faux-BLEU, faux-METEOR, and Target-
Source Noise Ratio metrics. As showcased by
Table 3, in every language our approach yields
a minimum of 7 f-BLEU points improvement over
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the original system when trained on that single lan-
guage. In Italian and French, the improvement is
particularly significant of at least 25 f-BLEU points.
We have also listed the f-BLEU for clean test set
which shows that the f-BLEU score decreased giv-
ing us assurance that the model is learning to be
robust on noisy data. Also 75-80 BLEU score is
still very significant.

The f-METEOR scores indicate similar trends.
It is worth noting, though, that the differences be-
tween the original and the fine-tuned systems are
less pronounced. We attribute this difference to
the fact that most output differences are generally
small local changes (e.g. on the inflection of a verb
or a noun), which METEOR’s paraphrase matching
considers to be quite similar.

The Robustness Scores (RB) are also revealing:
when the original system only returned the same
output for the potentially noisy original sentence
and the corrected one about 10% of the time, af-
ter fine-tuning all systems return the same outputs
more than 24% of the time, reaching a RB score of
more than 43% for French.

The Noise Ratio (NR) allows us to inspect if we
actually manage to create a system that reduces
the noise or not. An NR of less than 1 means that
indeed our system reduces the source-side noise in
its output, while a NR higher than one implies that
the system amplifies the source-side differences
(the lower NR the better). The pre-trained system
consistently produces an NR of around 1, meaning
that even though it does not amplify noise, it also
does not reduce it. In comparison, our adapted
models manage to reduce the source-side noise,
with scores significantly lower than 1.

Can we achieve zero-shot robustness? An in-
triguing question that arose during our experiments,
was whether one could fine-tune a multilingual
system for robustness on only one language (e.g.
Spanish) and consequently make the system more
robust not only in that language but also in the other
languages supported by the system. This avenue
would significantly increase the value of not only
our approach but also of the original multilingual
systems: perhaps the community might eventually
have access to large collections of true reference
translations of non-native English, which would
allow us to train systems robust to such source-
side variations. Such datasets are unlikely to be
available in multiple languages, though, hence the
need for a way to improve a multilingual system’s

Finetune on: en→es BLEU

Italian 5.04
French 10.02

Portuguese 3.86

Table 4: Simple finetuning on only a single language
leads to catastrophic forgetting of the other languages,
as the low translation quality (BLEU scores) on the JF-
LEG ES data-set show.

robustness using single-language data.
We attempt a first step towards this direction,

by evaluating on English-Spanish the systems that
we fine-tuned solely on English-Italian, English-
French, and English-Portuguese. Unfortunately, as
outlined in Table 4, this simple approach does not
work out-of-the-box. Fine-tuning on a single lan-
guage pair leads to catastrophic forgetting (French,
1999) of the multilingual abilities of the system.
This is a phenomenon commonly observed in con-
tinued learning or fine-tuning scenarios (Good-
fellow et al., 2013) as well as on MT domain
adaptation scenarios in particular (Freitag and Al-
Onaizan, 2016), for the mitigation of which sev-
eral approaches have been proposed (Lopez-Paz
and Ranzato, 2017; Thompson et al., 2019; Michel
et al., 2019b, et alia). As this research direction
is beyond the scope of this paper, we leave the
application of such approaches for future work.

5 Conclusion

In this work, we studied the effect of fine-tuning a
NMT model using real source-side noise paired
with pseudo-references obtained by translating
Grammar Error Correction corpora. We confirmed
previous works on the utility of training with
source-side noise, as it leads to models more robust
to non-native English inputs, but also showed that
instead of using synthetically-induced noise, we
can (a) use real-user data with pseudo-references
and (b) fine-tune a pre-trained system, rather than
training from scratch. We will release all pseudo-
references and our code upon acceptance. Our
approach of fine-tuning a pre-trained system with
pseudo-references approach has particular appeal-
ing advantages (less training time, no need for
costly translation references) and it improves the
robustness of MT systems significantly on all lan-
guage pairs we tested.

For future work, we will explore ways to inte-
grate strategies for avoiding catastrophic forgetting,
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in order to achieve multilingual robustness with-
out needing to fine-tune a multilingual model on
all interested languages, as well as incorporating
robustness rewards through reinforcement learning
in the fine-tuning process. In addition, we will in-
vestigate how the quality of the pseudo-references
affects the downstream results, and we also plan
to explore the trade-off between language-specific
and multilingual fine-tuning.
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