
Proceedings of the 2020 EMNLP Workshop W-NUT: The Sixth Workshop on Noisy User-generated Text, pages 7–15
Online, Nov 19, 2020. c©2020 Association for Computational Linguistics

7

“Did you really mean what you said?” : Sarcasm Detection in
Hindi-English Code-Mixed Data using Bilingual Word Embeddings

Akshita Aggarwal, Anshul Wadhawan, Anshima Chaudhary and Kavita Maurya
Department of Computer Engineering

Netaji Subhas University of Technology
Dwarka, New Delhi

{akshitaa, anshulw, anshimac, kavitam}.co.16@nsit.net.in

Abstract

With the increased use of social media plat-
forms by people across the world, many new
interesting NLP problems have come into ex-
istence. One such being the detection of sar-
casm in the social media texts. We present a
corpus of tweets for training custom word em-
beddings and a Hinglish dataset labelled for
sarcasm detection. We propose a deep learning
based approach to address the issue of sarcasm
detection in Hindi-English code mixed tweets
using bilingual word embeddings derived from
FastText and Word2Vec approaches. We ex-
perimented with various deep learning mod-
els, including CNNs, LSTMs, Bi-directional
LSTMs (with and without attention). We were
able to outperform all state-of-the-art perfor-
mances with our deep learning models, with
attention based Bi-directional LSTMs giving
the best performance exhibiting an accuracy of
78.49%.

1 Introduction

With the advent of social media, a large part of
human interaction is carried out online. This leads
to generation of huge amounts of textual data that
can be used to draw meaningful inferences. Social
media websites like Facebook, Twitter, Reddit etc
are used by people across cultures to communicate
with each other and voice their opinions.

With the large amount of data available from so-
cial media, the study of various types of linguistic
expressions like irony, humor, sarcasm, aggression,
hate etc has become a keen research area. Espe-
cially in the field of NLP, automatic detection of
these expressions is being widely explored (Joshi
et al., 2017). Automatic detection involves using
computational methods to detect the presence of a
particular emotion.

Although English is the language most com-
monly used on these websites, a majority of people

are not native English speakers. These people there-
fore prefer to communicate in languages other than
English (Danet and Herring, 2007). A study on
the languages that are most commonly used for
exchange of information on Twitter showed that
around 50% of the posts are written in languages
other than English (Hong et al., 2011). This raises
the opportunity of dealing with multi-lingual data
generated by the social media sites. Various statis-
tics show that around 26% of the Indian population
is bilingual1. This gives rise to the phenomenon
of code-switching and code-mixing (Gupta et al.,
2016). Code mixing takes place when speakers
use two or more languages below clause level in
a single social context. Multilinguals use such a
mixture of languages, particularly on social media
(Mónica et al., 2009). There are multiple chal-
lenges of working with code-mixed data like large
amount of new constructions that are a result of
combining lexicons and syntax of two different
languages, availability of very small amounts of
annotated data and use of very different approaches
when compared to mono-lingual data (Çetinoğlu
et al., 2016).

In this paper, we wish to work on detecting
one of the most popular linguistic constructs used
across social medias, ‘sarcasm’. The cambridge-
dictionary2 defines sarcasm as ‘the use of remarks
that clearly mean the opposite of what they say’.
Example: ”You have been working hard,” he said
with heavy sarcasm, as he looked at the empty
page.

Starting with the earliest known work which fo-
cuses on sarcasm detection in speech (Tepperman
et al., 2006), this domain has been widely explored
in sentiment analysis. Since sarcasm is a sentiment,
detection of sarcasm is important in order to predict

1https://en.wikipedia.org/wiki/
Multilingualism_in_India

2https://dictionary.cambridge.org/

https://en.wikipedia.org/wiki/Multilingualism_in_India
https://en.wikipedia.org/wiki/Multilingualism_in_India
https://dictionary.cambridge.org/


8

Figure 1: Proposed Methodology

the sentiment of a sentence. Being a challenging
problem, automatic detection of sarcasm has been
a popular area of research.

Although a lot of work has been carried out on
sarcasm detection in English (Davidov et al., 2010;
Bamman and Smith, 2015), the detection of sar-
casm in code-mixed language like Hinglish (Hindi-
English) is relatively unexplored. The current state-
of-art performance is proposed via a random forest
model on a dataset of 5000 Hinglish tweets (Swami
et al., 2018).

The contributions of our work includes :

1. In this paper, we have experimented with deep-
learning approaches to detect sarcasm in the
Hindi-English code mixed dataset. The corpus
prepared is released along with the paper.

2. Deep learning is being used extensively in the
domain of natural language processing and
has given satisfactory results (Young et al.,
2018). In our work, we propose five different
deep learning models namely, Series CNN,
Parallel CNN, LSTM, Bi-directional LSTM
and Bi-directional LSTM with attention.

3. The proposed models take self-trained bilin-
gual word embeddings generated by Hindi-
English code mixed data as input.

4. Our work present an alternate approach to the
work done using traditional machine learning
models like SVMs and random forests (Swami
et al., 2018).

2 Proposed Methodology

2.1 Dataset Creation
The current dataset provided in paper (Swami et al.,
2018) contains 5250 tweets, out of which 504
tweets are labelled as sarcastic while the remaining
4746 tweets are labelled as not sarcastic. All the
deep learning models seemed to erroneously pre-
dict all tweets to be not sarcastic, since this dataset
is highly skewed as well as insufficient. There-
fore, to meet the model needs, we created a larger
class-balanced dataset by scraping relevant tweets
from twitter using TwitterScraper API3 with search
tags like #sarcasm, #irony, #humor, #bollywood,
#cricket along with some common hindi words to
obtain Hinglish data.

2.2 Dataset Annotation and Analysis
We were able to obtain around 427k tweets for
training the proposed deep learning models. After
carefully filtering out the obtained tweets for Hindi-
English code mixed entries, we were successful
in creating a corpus of 100k Hindi-English code
mixed tweets with 49% entries being sarcastic and
remaining 51% being non-sarcastic. The annota-
tion scheme was based on the search tags(hashtags)
used for scraping the tweets. We marked all ex-
amples fetched with hashtags like sarcasm, irony
etc to have a positive sarcasm label, whereas all
examples with generic hashtags like cricket, bol-
lywood etc to have a negative sarcasm label. This

3https://github.com/taspinar/
twitterscraper

https://github.com/taspinar/twitterscraper
https://github.com/taspinar/twitterscraper


9

Category Tweet Count
Total Tweets 106899
Sarcastic 52587
Non-Sarcastic 54312

Table 1: Tweets per category

annotation scheme was susceptible to noise, how-
ever, as a quality check measure, we manually tra-
versed the data and noticed that the noisy exam-
ples were meagre in proportion. Also, the noisy
examples were necessary for the models to gen-
eralize well on the diverse dataset we obtained.
Having a class-balanced dataset was significant to
our problem to ensure that deep-learning models
learn the right trends, not being biased towards a
particular class. Embeddings were initally trained
on solely Hinglish data, which was later on added
with English data. The embedding training dataset,
labelled sarcasm detection dataset and the proposed
deep learning classification models are made avail-
able online 4 to facilitate further research.

Examples of some annotated data :

Tweet: Koi Rah Mushkil Nahi hain bus vo
rah #bengalurutraffic se bach jaayein #sarcasm
@random

Translation No path is difficult as long as it does
not pass through Bangalore traffic. (Bangalore is
an Indian city infamous for it’s traffic)
Sarcasm : YES

Tweet : Hindustan ke tamam log chahte h ke jis
trah se auraton ke upar crime bhadr rha h gang
rape ke waqia ho rha iske liye central govt wali
modi sarkar 1 strong law bnaye

Translation: All indians want Modi government
to make strong laws on crime against women
Sarcasm: NO

2.3 Data Preprocessing

The data obtained from social media is very noisy
and a lot of preprocessing is required. While creat-
ing the dataset, we removed the ‘#’ symbols from
the data, along with removing all the mentions
(@). We also removed rare words (words having
occurrence of less than 10 in the entire dataset)

4https://github.com/Akshitaag/Sarcasm_
Detection

and search tags (like cricket, sarcasm) to avoid our
deep learning models being biased towards certain
words while learning. Further, URLs and punctua-
tion marks were also removed.

2.4 Creation of Hindi-English Bi-lingual
Word Embeddings

Being a text classification problem, it is essential
for the words of the dataset to be first converted to
vector representations. Word embedding is learned
from unannotated plain text, useful in determining
the context in which a given word is used. They
provide a dense vector representation of syntactic
or semantic aspects of a word (Mandelbaum and
Shalev, 2016). To create a Hindi-English word
embedding, we needed a huge amount of data. We
used TwitterScraper API to extract 427k Hinglish
tweets and 300k English tweets from Twitter for
Hindi-English code-mixed data. For the Hinglish
code mixed tweets, we removed the tweets obtained
in pure Devnagri and kept only those which were a
mixture of both Hindi and English sentences. The
above obtained dataset was further processed to
remove rare words, hashtags and mentions to obtain
a less noisy corpus for training word embeddings.

We experimented with 2 different kinds of word
embeddings for two types of datasets, one which
solely consisted of Hinglish tweets, the other which
consisted of 300k English along with Hinglish
tweets. We chose to experiment with a mixture of
Hinglish and English tweets in order to get the co-
relations between the words of the two languages.
Each of these variations, after similar processing
(removing hashtags, URLs, punctuations, user men-
tions and keywords used for scraping), were tried
for two types of embeddings:

Word2Vec: In this embedding, words in the cor-
pus are converted into vectors, where words that
share common context are placed closed to each
other in the vector-space (Mikolov et al., 2013).
Since Word2Vec is pre-trained for English dataset
only, we had to train our model on custom Hindi-
English code mixed dataset, to obtain Hinglish
word embeddings.

FastText: FastText which was given by Face-
book in 2016, is an addition to the Word2Vec em-
beddings (Joulin et al., 2017). Rather than giving
individual words to a model, FastText breaks down
the words into multiple sub-words, also known
as n-grams (Bojanowski et al., 2017). During the
training of the model, weights are learned for all

https://github.com/Akshitaag/Sarcasm_Detection
https://github.com/Akshitaag/Sarcasm_Detection


10

Figure 2: CNN Model 1.2 architecture

the n-grams along with the complete word. Un-
like Word2vec, rare words can be appropriately
featured as now it is much more likely that some
of their n-grams also occur in other words. This is
especially true for social media text where people
use multiple spellings for the same words (amaze,
amazeee, amazing, amazinggg).

2.5 Deep Learning Models

We propose 5 different models to experiment with
the above problem. The models tested include Se-
ries CNN, Parallel CNN, LSTM, Bi-directional
LSTM and Bi-directional LSTM with attention.
Word embeddings, as generated by FastText and
Word2Vec custom data trained representations,
served as input to the models, generate as output
a binary variable depicting the probability of the
corresponding tweet being sarcastic.

2.5.1 Convolutional Neural Networks (CNN)

CNNs have the ability to extract features from data
provided to it as input. In our case, the input data is
a set of word vectors, over which convolution oper-
ation is performed to extract features and thereby,
perform classification.

We propose 2 CNN deep learning model archi-
tectures, one which has convolution layers in series,
denoted by model 1.1 and the other which has con-
volutional layers in parallel, denoted by model 1.2.
Both the models have an embedding layer as the
first one, which is used to select the word vector
representations corresponding to the words of the
tweet under consideration during the training ses-
sion, from the word embedding matrix. In model
1.1, the embedding layer is followed by a couple
sets of convolution and max pooling layers in se-
ries whereas in model 1.2, it is followed by 4 single
dimensional convolution layers in parallel.

The convolution layer is responsible for the ex-
traction of features from the word vectors provided
as input. The outputs of these layers, concatenated
in case of model 1.2, are fed to a global max pool-
ing layer with a dropout activated. This layer is
further followed by 3 dense fully connected layers,
the final layer with a single neuron, which is respon-
sible for the classification. We have used dropout
in the the global max pooling layer so as to reduce
overfitting, which already is low due to the large
dataset. However, on its application, the difference
between the validation accuracy and training accu-
racy reduced, also leading to better convergence.

2.5.2 Recurrent Neural Networks (RNN)

The meaning of a word depends on the context in
which it is used. For example,

Sentence 1 : We dined at a small Mexican
restaurant and spent the meal discussing general
topics.
Sentence 2 : General Zod is an enemy of Superman.

The word general, in the above sentences, car-
ries different meaning depending on the context in
which it is used. Thus, in order to record the context
of a particular word, i.e. the words surrounding the
word under consideration, RNNs are used. There
are different ways to capture the context of a par-
ticular word, each having its unique mechanism
to model the meaning of the word depending on
words coming before and after the word.

The RNN model equations and corresponding
notation have been taken from (Yu et al., 2015).
Given an input sequence x = (x1, x2, ..., xt-1, xT),
the output vector sequence y = (y1, y2, ..., yT-1, yT)
and hidden vector sequence h = (h1, h2, ..., hT-1,
hT) are computed in a standard recurrent neural



11

network by evaluating the below equations from t
= 1 to t = T:

ht = H (Wxhxt +Whhht−1 + bh)

yt =Whyht + b0

where weight matrices are denoted by W terms,
bias vectors are denoted by b terms, and hidden
layer function is given byH.

Long Short-Term Memory (LSTM): LSTMs
have been successfully applied to binary text clas-
sification problems like political text classification
(Rao and Spasojevic, 2016), by capturing the
appropriate context. Also, the vanishing gradient
problem in RNNs has been addressed successfully
by LSTMs (Hochreiter and Schmidhuber, 1997).
The context of a word depends on the words occur-
ring before the word under consideration. In order
to model this scenario, an LSTM based network
is constructed.The LSTM design comprises of
a set of repetitively associated subnets, known
as memory blocks. Each block contains at least
one self-associated memory cells along with three
multiplicative units - the input, output and forget
gates - that give regular functionality of write, read
and reset operations to the cells.

A LSTM network is framed precisely like a
basic RNN, other than the nonlinear units in the
hidden layers being supplanted by memory blocks.
The multiplicative gates permit LSTM memory
cells to store and access data over extensive
stretches of time, in this manner maintaining a
strategic distance from the vanishing gradient issue.
For instance, as long as the input gate stays shut (
has an activation near 0), the activation of the cell
won’t be overwritten by the new inputs showing
up in the network, and can in this manner be made
accessible to the net a lot later in the succession,
by opening the output gate. This allows the LSTM
network to carry forward semantic qualities of
initial parts of the sentence to the later parts. In
our architecture, an LSTM layer is appended to
the embedding layer in turn followed by 2 dense
fully connected layers. The final output layer has
a single neuron carrying out the classification
depending on the extracted context based features.
LSTM blocks have the structure as shown in
Figure 3, and are based on the equations presented
below :

Figure 3: LSTM block structure

it = σ (Wxixt +Whiht−1 +Wcict−1 + bi)

ft = σ (Wxfxt +Whfht−1 +Wcfct−1 + bf )

ct = ftct−1 + it tanh (Wxcxt +Whcht−1 + bc)

ot = σ (Wxoxt +Whoht−1 +Wcoct + bo)

ht = ot tanh (ct)

where logistic sigmoid function is denoted by
σ, the input gate, forget gate, output gate, and cell
activation vectors are denoted by i, f, o and c, all
having the same size as the hidden vector h. The
hidden-input gate matrix is represented by Whi,
and the input-output gate matrix is represented by
Wxo.

Bi- directional LSTM: Bi-directional LSTMs
have been applied and proved to be successful in
capturing the context for text classification tasks
(Wang et al., 2016). The context of a word not
only depends on the words occurring before it, but
also on the words occurring after it. Modelling this
requires memory cells in the backward direction
which maintain the history of words along with
cells in the forward direction for the words not
yet explored. To achieve this and capture the
composition semantics of Hindi-English code
mixed data, two LSTM layers are appended to the
input embedding layer. The output features from
the two layers, after concatenation (

−→
ht ,
←−
h1), are

flattened and fed to 2 dense fully connected layers.
The classification is performed by a single neuron,
as in all other models. The BiLSTM computes
the forward hidden sequence

−→
ht by traversing the



12

Figure 4: Attention based Bi-directional LSTM model architecture

forward layer from t = 1 to T, the backward hidden
sequence

←−
ht by traversing the backward layer from

t = T to 1, and updates the output yt as :

−→
ht = H

(
W

x
−→
h
xt +W−→

h
−→
h
~ht+1 + b−→

h

)
←−
ht = H

(
W

x
←−
h
xt +W←−

h
←−
h
←−
h t+1 + b←−

h

)
yt =W−→

h y

−→
h t +W←−

h y

←−
h t + by

Attention based Bi-directional LSTM: Here,
we propose a technique based on attention along
with the bi-directional LSTM network. The atten-
tion based network focuses on filtering the noisy
elements of a sentence by learning the words which
cause the greatest effect towards deciding the fi-
nal output (sarcastic or not sarcastic) of the sen-
tence under consideration. While the bi-directional
LSTM network uses concatenated (

−→
hT,
←−
h1) which

is then fed to the dense layers, attention based bi-
directional LSTM network is different in the con-
catenation process. Along with the above state
representations, (

−→
hT denoting the final state repre-

sentation in the forward direction and
←−
h1 denoting

the first state representation in the backward direc-
tion), the attention based network inculcates the
weighted summation, calculated by detecting the
influence of each word, of all the time steps (de-
noted by

−→
ht ,
←−
ht ). Thus, all these hidden states are

concatenated and passed on to 2 dense fully con-
nected layers. Final classification is performed by
a single neuron, as usual.

3 Experimental Settings

For the training sessions, we made a ten percent
validation split and shuffled the training dataset, so
that the model does not capture sequence trends, if
any, in the training data, for a total of 20 epochs.
The model checkpoints were saved at every epoch
and those checkpoints which were saved before
the model begins to overfit and the difference
between the training and validation accuracies
becomes significant, were used to calculate the
accuracy numbers on the ten percent test dataset
split. There are many important hyper-parameters
in the training script of embeddings as well as the
proposed models, which are tuned to produce the
best training results on the validation data split.
For training the word embeddings (both Word2Vec
and FastText), we used an embedding size of
300, window length of 10 and negative sampling
polarity. In all the models, adam optimizer
along with binary cross entropy loss function has
been used. All the layers have relu activation
function with the exception of output layer having
sigmoid activation function. We evaluated the
performance of CNN models with different values
for kernel size, number of kernels, dropouts and
strides. The best results are obtained with the
following values :

stride = 1, number of kernels = 200, dropout = 0.5
ks1

1.2 = 3, ks2
1.2 = 6, ks3

1.2 = 9,
ks4

1.2 = 12, ks1
1.1 = 7

For all the proposed RNNs, the following



13

Traditional Models Accuracy
Naive Bayes 54.17
Random Forest 63.37
Linear SVM 69.04
RBF Kernel SVM 71.23

Table 2: Accuracy of ML models

DL
Models

Hinglish
Data

Hinglish + English
Data

Word2Vec (a) FastText (b) Word2Vec (a) FastText (b)
1.1 Series CNN 72.86 72.65 74.09 73.51
1.2 Parallel CNN 74.28 73.41 75.00 74.32
2.1 LSTM 76.19 75.25 77.24 75.55
2.2 Bi-LSTM 77.12 76.25 78.28 77.12
2.3 Attention Bi-LSTM 78.19 77.11 78.40 78.06

Table 3: Accuracy of DL Models

hyper parameter combination is used :

dropout for recurrent state = 0.2,
dropout for input state = 0.2,
number of LSTM units = 150

We used the same hyper parameter values
for models 2.2 and 2.3, as in model 2.1, so as to
study the impact of imposing bidirectional nature
to the LSTM layer, as well as exploring the effect
of attention introduction. The parameters resulted
in best outputs as confirmed later by trying out
different values for the same.

4 Results

The dataset, as presented in (Swami et al., 2018),
being insufficient and skewed for our deep learn-
ing model architectures, we ran the state-of-the-
art models on our proposed dataset to carry out
unbiased accuracy comparison of state-of-the-art
techniques and neural network based models.

The results for the same have been presented in
Table 2. Using all features, the traditional state-
of-the-art models: RBF kernel SVM, random for-
est and linear SVM, proposed the best accuracy
of 71.23% on the proposed corpus. We tested all
the deep learning models with both Word2Vec and
FastText based word representations. The results of
both have been presented in Table 3 where model
(a) and (b) refer to application of Word2Vec and
FastText generated word embeddings respectively.

To the best of our knowledge, we are the first

to implement and analyze deep learning model ar-
chitectures and different word representations for
detection of sarcasm in Hindi-English code-mixed
data with a dataset large enough for deep learning
models. All the proposed deep learning models per-
formed better than the traditional state-of-the-art
models, where the attention based Bi-directional
LSTM network produced the best accuracy of
78.49%. In Table 3, we present the results of our
proposed deep learning models for both Word2Vec
and FastText based word representations, differing
in the type of datatsets being used to produce the
word embeddings. Overall accuracies of all models
are greater when embeddings trained on Hinglish
plus English data, rather than just Hinglish data
are used. One possible reason for this observation
can be the additional coverage of semantics and
coorelations between the word vectors of English
data, which can be used for code mixed Hinglish
data, thus providing additional knowledge and serv-
ing as prior information for Hinglish embeddings
data. The process works analogous to a knowledge
transfer step in which embeddings for English data
are used as prior knowledge for embeddings of
Hinglish data. Moreover, Word2Vec embeddings
produce better results than FastText embeddings,
for all the models. One major reason for this ob-
servation is the presence of code mixed data which
does not allow character n-grams to be the primary
criteria for classification, in the case of FastText
embeddings, since the character n-grams belong
to the constructs of two different languages. Due



14

to the same reason, context based word vectors i.e.
the Word2Vec representations perform better than
the character n-grams representations in case of
FastText embeddings.

The lack of clean data and linguistic complexi-
ties associated with code-mixed data are the major
challenges related to the task of sarcasm detection
in Hindi-English code mixed data. To allow the
model to accommodate the noise in textual data,
spelling errors, multiple contexts, and stemming
words, even larger data is required along with cau-
tiously labelled classes.

5 Conclusion

Social media, in recent years, has become a
medium widely used by people for expression of
thoughts and opinions, further leading to the real-
isation of tasks like emotion analysis and opinion
mining. Sarcastic content in these texts make it
even more challenging to figure out the overall sen-
timent of the text, thus needing proper processing
and analysis.

In this paper, we presented a class-balanced
Hindi-English code mixed dataset for the prob-
lem of sarcasm detection, by scraping relevant
tweets from twitter. We compared two representa-
tions, FastText and Word2Vec, both based on differ-
ent word representation learning mechanisms and
trained on custom scraped data from scratch. We
created two versions of embeddings, one trained
with purely Hinglish data, the other with a mixture
of Hinglish and English data, and compared the
performance in each case. We analyzed the per-
formance of different deep learning models, which
take as input the generated word embeddings, to
solve the problem of sarcasm detection. As fu-
ture work, we plan to compare the vectors aligned
with multilingual word embeddings after genera-
tion using MUSE with FastText pre aligned word
embeddings. We can also explore BERT embed-
dings and evaluate their performance on the same
task.

References
David Bamman and Noah Smith. 2015. Contextualized

sarcasm detection on twitter.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Özlem Çetinoğlu, Sarah Schulz, and Ngoc Thang Vu.
2016. Challenges of computational processing of
code-switching. In Proceedings of the Second Work-
shop on Computational Approaches to Code Switch-
ing, pages 1–11, Austin, Texas. Association for
Computational Linguistics.

Brenda Danet and Susan Herring. 2007. The Multilin-
gual Internet: Language, Culture, and Communica-
tion Online.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010.
Semi-supervised recognition of sarcastic sentences
in twitter and amazon. In Proceedings of the Four-
teenth Conference on Computational Natural Lan-
guage Learning, CoNLL ’10, page 107–116, USA.
Association for Computational Linguistics.

Sakshi Gupta, Piyush Bansal, and Radhika Mamidi.
2016. Resource creation for hindi-english code
mixed social media text.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Comput.,
9(8):1735–1780.

Lichan Hong, Gregorio Convertino, and Ed Huai hsin
Chi. 2011. Language matters in twitter: A large
scale study. In ICWSM.

Aditya Joshi, Pushpak Bhattacharyya, and Mark J. Car-
man. 2017. Automatic sarcasm detection: A survey.
ACM Comput. Surv., 50(5).

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431, Valencia, Spain. Association
for Computational Linguistics.

Amit Mandelbaum and Adi Shalev. 2016. Word em-
beddings and their use in sentence classification
tasks.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems
- Volume 2, NIPS’13, page 3111–3119, Red Hook,
NY, USA. Curran Associates Inc.

Stella Mónica, Mónica Cárdenas-Claros, and Neny
Isharyanti. 2009. Code switching and code mixing
in internet chating: betwen ”yes”, ”ya”, and ”si” a
case study. The jaltcall Journal, Vol 5:67–78.

Adithya Rao and Nemanja Spasojevic. 2016. Action-
able and political text classification using word em-
beddings and lstm. ArXiv, abs/1607.02501.

Sahil Swami, Ankush Khandelwal, Vinay Singh,
Syed Sarfaraz Akhtar, and Manish Shrivastava. 2018.
A corpus of english-hindi code-mixed tweets for sar-
casm detection.

https://www.aaai.org/ocs/index.php/ICWSM/ICWSM15/paper/view/10538
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM15/paper/view/10538
https://doi.org/10.18653/v1/W16-5801
https://doi.org/10.18653/v1/W16-5801
https://doi.org/10.1093/acprof:oso/9780195304794.001.0001
https://doi.org/10.1093/acprof:oso/9780195304794.001.0001
https://doi.org/10.1093/acprof:oso/9780195304794.001.0001
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/3124420
https://www.aclweb.org/anthology/E17-2068
https://www.aclweb.org/anthology/E17-2068
https://doi.org/10.29140/jaltcall.v5n3.87
https://doi.org/10.29140/jaltcall.v5n3.87
https://doi.org/10.29140/jaltcall.v5n3.87


15

Joseph Tepperman, David R. Traum, and Shrikanth S.
Narayanan. 2006. ”yeah right”: sarcasm recognition
for spoken dialogue systems. In (Joshi et al., 2017).

Yequan Wang, Minlie Huang, Xiaoyan Zhu, and
Li Zhao. 2016. Attention-based LSTM for aspect-
level sentiment classification. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing, pages 606–615, Austin,
Texas. Association for Computational Linguistics.

T. Young, D. Hazarika, S. Poria, and E. Cambria. 2018.
Recent trends in deep learning based natural lan-
guage processing [review article]. IEEE Computa-
tional Intelligence Magazine, 13(3):55–75.

Zhou Yu, Vikram Ramanarayanan, David
Suendermann-Oeft, Xinhao Wang, Klaus Zech-
ner, Lei Chen, Jidong Tao, Aliaksei Ivanou, and
Yao Qian. 2015. Using bidirectional lstm recurrent
neural networks to learn high-level abstractions
of sequential features for automated scoring of
non-native spontaneous speech. pages 338–345.

https://doi.org/10.1145/3124420
https://doi.org/10.1145/3124420
https://doi.org/10.18653/v1/D16-1058
https://doi.org/10.18653/v1/D16-1058
https://doi.org/10.1109/ASRU.2015.7404814
https://doi.org/10.1109/ASRU.2015.7404814
https://doi.org/10.1109/ASRU.2015.7404814
https://doi.org/10.1109/ASRU.2015.7404814

