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Abstract

True-casing, the task of restoring proper case
to (generally) lower case input, is important in
downstream tasks and for screen display. In
this paper, we investigate truecasing as an in-
trinsic task and present several experiments on
noisy user queries to a voice-controlled dia-
log system. In particular, we compare a rule-
based, an n-gram language model (LM) and
a recurrent neural network (RNN) approaches,
evaluating the results on a German Q&A cor-
pus and reporting accuracy for different case
categories. We show that while RNNs reach
higher accuracy especially on large datasets,
character n-gram models with interpolation
are still competitive, in particular on mixed-
case words where their fall-back mechanisms
come into play.

1 Introduction

Truecasing is a natural language processing task
that consists of assigning proper case to all words
within a text where such information is not avail-
able. For many natural language applications, it is
an important pre-processing step, shown to be use-
ful in downstream tasks such as named entity recog-
nition (Bodapati et al., 2019), automatic content
extraction (Cucerzan, 2010) and machine transla-
tion (Etchegoyhen and Gete, 2020). For languages
with complex casing rules (e.g., German), determin-
ing part of speech (POS) or named entity becomes
almost impossible without casing information:

(1) Was
what

fressen
eat

Fliegen?
flies

(2) Wie
how

hoch
high

fliegen
fly

Vögel?
birds

In this example, the token ‘fliegen’ in (1) is a
noun and therefore should begin with a capital let-
ter, while in (2) it is a verb and is hence lowercased.

Truecasing is particularly hard in the German
language, as it follows multiple capitalization rules,
some of which we describe below. For instance, all
nouns (including both common nouns and proper
nouns) and nominalized verbs must be capitalized.
Furthermore, German adjectives should be capi-
talized when used as substantive (e.g., bei Grün),
while not being confused with their true adjective
form (which is not capitalized). Another common
ambiguity is the formal pronoun Sie, capitalized in
all of its form (as opposed to informal sie which
must be lowercased).

Truecasing becomes particularly important in
dialog systems that aim to correctly interpret the
natural language of user queries. Such systems
often rely on automatic speech recognition (ASR)
output, often quite noisy and non-grammatical as
users frequently engage with their devices using
highly colloquial speech. This output is used by
downstream modules such as spoken language un-
derstanding (SLU) or entity resolution (ER). An-
other use case is displaying such output, e.g., on
a device with screen, where casing information is
necessary for readability and customer experience.

In this paper, we investigate different approaches
to truecasing German user queries in the context of
a voice-controlled dialog agent. We focus on infor-
mational and world knowledge queries, in which
the users ask the device questions about, e.g., recent
events, famous people, general world knowledge
etc. In particular, we pit a rule-based approach
against two learnt models, a character n-gram one
and a neural one. We report the results across dif-
ferent case categories and discuss the benefits and
the drawbacks for each of the approaches.

This paper is organized as follows: In Section
2, we provide an overview of related work on
text truecasing. Next, we describe our experiment
(Section 3), giving the overview of the truecasing
approaches and datasets used. In Section 4, we
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present the results of the experiment and provide
a detailed error analysis. Finally, we discuss the
results and outline future directions of research
(Section 5).

2 Related work

The simplest approach to truecasing is to use uni-
gram tagging, converting all tokens to their most
frequent form in the training data. It is typically
used as a baseline in capitalisation experiments
which improve over this straightforward approach
(e.g. (Lita et al., 2003; Chelba and Acero, 2006)).

Most of the earlier approaches to truecasing rely
on statistical modeling and work mostly at word
level. For instance, one of such approaches was
proposed by Lita et al. (2003) who used a trigram
language model and sentence level context to pre-
dict the most probable case sequence in a sentence.
Next, Wang et al. (2006) proposed a CRF-based
probabilistic model, which exploited bilingual in-
formation and was able to improve over monolin-
gual methods on machine translation output, while
Chelba and Acero (2006), Batista et al. (2008)
used an approach based on maximum entropy mod-
els. Benefiting from larger computational power,
the more recent approaches advocate modelling
at character level. Susanto et al. (2016) first pro-
posed to use a character-level RNN for truecasing,
demonstrating the superiority of a character-level
approach to word-based approaches. They show
that the benefits of such approaches over word-
based are that they are able to better generalise on
“unseen” words and they also perform better on
mixed-case1. Following this argument, we com-
pare their architecture with based large character
n-gram models with various smoothing.

3 Experiments

3.1 Dataset
For our experiments, we rely on two different
datasets: (a) an internal German Q&A dataset, and
(b) the German part of the Leipzig corpus collec-
tion2 (Goldhahn et al., 2012). The Q&A dataset is
a corpus that consists of frequent questions coming
from a spoken dialog system users and answers
provided by the same system3. It contains 30K

1Mixed-case words are those that contain upper-cased char-
acters in the middle of a word, such as ‘Rheinland-Pfalz’.

2https://corpora.uni-leipzig.de?corpusId=deu newscrawl-
public 2018

3The Q&A data is a subset of the questions and answers
that can be accessed via https://alexaanswers.amazon.de.

sentences, or 410K tokens, covering mostly the In-
formation domain. All of the data used in this paper
was anonymized prior to the experiment, to make
sure that it does not include any user identifying
information. A typical example from the corpus
would be the following query:

(3) [User:] Welche Farben hat der Regenbo-
gen? (‘What is the color of the rainbow?’)

[Device]: Die Regenbogenfarben
sind Rot, Orange, Gelb, Grün, Hellblau,
Dunkelblau und Violett. (‘The rainbow
colors are Red, Orange, Yellow, Green,
Blue, Indigo, and Violet.’)

Leipzig Corpus collection is a freely available
corpus of newspaper articles. For our experiment,
we have taken a cleaned dataset consisting of news-
paper texts of 20154, from which we have randomly
selected 100K sentences (around 2M tokens) for
the experiment.

For both datasets, we used a 80/20 random split
for training and test purposes, and use the same
split for both the n-gram and neural language mod-
elling approaches. A small portion (5%) of the
train set was kept as development set, to tune the
hyper-parameters of each model.

3.2 Truecasing approaches
3.2.1 Majority rule with tagged LM as

baseline
We provide a simple baseline, using the majority
rule and a tag-based model. The majority rule
consists in turning each token of the test-set into
the most common capitalized form in the training
set. Words that have not been seen in the training
corpora are left untouched and tallies are broken by
lexicographic order (therefore picking the lower-
cased form first).

As a standard way of taking into account se-
quence correlations, we tag each training exam-
ple with the case category (upper, lower, mixed
and punct)5 and train a 10-gram LM over the tags
sequences, built with Kneser-Ney interpolation
method. Finally, we compose this LM with the
above majority baseline.

4https://www.kaggle.com/rtatman/3-million-german-
sentences

5“Upper” contains tokens that have a capital letter only at
the beginning, while “lower” means that all letters in a token
are lowercased. “Mixed” category includes tokens that have
capital letters in the middle of a token as well as acronyms
(e.g., NASA).
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Q&A Leipzig
∆Acc ∆P ∆R ∆F1 ∆Acc ∆P ∆R ∆F1

Baseline Majority rule -8,98 -0,03 -26,47 -17,08 -3,50 +0,28 -11,13 -6,78
Rule-based -2.43 -8.74 +0.62 -3.82 -4.31 -18.07 +3.88 -6.76
Kneser-Ney 5-gram leipz -1.24 -7.74 +2.37 -2.45 +0.07 -7.31 +7.80 +0.78
Kneser-Ney 10-gram leipz +0.11 -5.90 +4.30 -0.56 +3.00 -2.14 +11.93 +5.44
Kneser-Ney 15-gram leipz +0.19 -5.81 +4.35 -0.49 +3.15 -2.01 +12.29 +5.68
Kneser-Ney 5-gram q&a +2.08 -2.37 +8.08 +3.09
Kneser-Ney 10-gram q&a +4.09 +1.15 +10.4 +6.01
Kneser-Ney 15-gram q&a +4.20 +1.25 +10.64 +6.19
char-rnn LSTM leipz +1.43 -3.15 +5.21 +1.27 +4.29 +0.18 +13.52 +7.39
char-rnn GRU leipz +1.26 -3.76 +5.13 +0.92 +4.13 -0.33 +13.27 +7.01
char-rnn LSTM q&a +4.28 +1.22 +10.58 +6.14
char-rnn GRU q&a +3.79 +0.56 +9.39 +5.21
Kneser-Ney 15-gram q&a + leipz +4.58 +1.85 +11.04 +6.68 +3.14 -1.99 +12.26 +5.67
char-rnn LSTM q&a + leipz +4.81 +2.17 +11.28 +6.96 +3.55 -1.21 +12.21 +6.04

Table 1: Truecasing results (%) relative to the tag-based LM baseline: Accuracy, Precision, Recall and F1 across
all approaches evaluated on two datasets - the Q&A corpus (column 2) and the Leipzig corpus (column 3). For
the n-gram LM and the RNN approaches, we also specify the corpus used for training. Majority rule baseline was
trained and evaluated on the same dataset (no cross-domain evaluation). Models trained on the Q&A corpus were
not evaluated on the Leipzig corpus.

3.2.2 Rule-based approach

For this approach we compiled grammars based on
regular expressions into weighted finite-state trans-
ducers (FSTs) using OpenGrm and Thrax libraries
(Roark et al., 2012). The system consists of token
lists, each associated with a POS (e.g., pronouns,
adjectives, verbs, etc.) and several rules containing
POS patterns frequently preceding tokens in upper-
case. If an input token matches one of the lists, a
path with decreased local weight is generated and
the following token, if not in one of the lists, is
uppercased. Each additional match within a rule
adds a further decreased local weight, reflecting
the assumption, that the probability for an token
in uppercase increases with the number of known
predecessors. By applying these rules on input
text, we end up with several possible paths for each
sentence, and select the path with lowest global
weight as best candidate. Rules were hand-tuned
on a development subset of the Q&A dataset.

3.2.3 N-gram language modelling with FSTs

This approach also relies on the FST machinery,
but makes use of a trained language model (LM)
to re-rank the possible hypothesis. The approach
is standard (Manning et al. (2008)), except from
the fact we employ it with characters rather than
words.

We first build an FST that, when composed with
a lower-cased input, returns a lattice of all possi-
ble capitalized variants (for example, “hi” being
transformed to “Hi”, “hI” and “HI”).

To estimate the probability of each hypothesis
produced by the above lattice, we collect N -gram
counts from the capitalized training corpus and
re-normalize them into probabilities. Especially
for high N values, N -gram models are sparse (as
some sequences of characters are seen only a few
times) and require some back-off or smoothing
strategies. We pick the Kneser-Ney interpolation
scheme (using the OpenGrm library), a widely used
scheme which estimates the probability of a given
N -gram based on lower order statistics (Ney et al.
(1994)).

Finally, model prediction is obtained by compos-
ing the lattice of capitalized variant with the LM,
and extracting the path of lowest cost.

We tried models with various smoothing
schemes (Katz, Witten-Bell and Kneser-Ney) on
the dev set, and kept the interpolated Kneser-Ney
for its superior accuracy. For completeness, we
also report the results for different n-gram sizes
(5, 10 and 15) and observe that larger values lead
to higher accuracy, albeit greatly increasing the
required memory (1Gb for the largest models).
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Rule KN 15-gram q&a KN 15-gram leipz char-rnn q&a char-rnn leipz
Upper 90.2 97.0 95.3 97.3 96.9
Lower 92.6 98.6 97.8 98.6 98.9
Mixed 68.1 94.0 84.9 89.6 75.6

Table 2: Token accuracy per case category (upper, lower, mixed case)

q&a leipz
Upper 21 691 101 177
Lower 46 171 245 225
Mixed 6947 23 957

Table 3: Number of tokens with upper, lower, mixed case per test set

3.2.4 Recurrent neural networks
We used the approach of Susanto et al. (2016) to
train a character-level RNN language model. We
use the provided implementation6 to train a small
RNN model with 2 layers and 300 hidden states,
varying the type of the hidden unit (LSTM/GRU).
It uses truncated backpropagation for 50 time steps.
After training, the model with the smallest valida-
tion loss after 30 epochs is chosen.

4 Results and error analysis

In the following, we present a comparison of the
approaches on the the Q&A corpus and the Leipzig
corpus. Improvements for each of the approaches
relative to the tag-based LM baseline are presented
in Table 1. We are also reporting results on a mixed
dataset, i.e., taking all available Q&A training data,
and adding a similar amount of the Leipzig corpus
training data. While we are reporting relative im-
provement results due to privacy concerns on the
Q&A dataset, baselines on this task are known to
be quite strong (over 90% accuracy, e.g. (Lita et al.,
2003)) and state-of-the art approaches such as the
neural networks used in this paper reach accuracy
of the order of 96-98% (Susanto et al., 2016).

4.1 Case categories and mixed-case words

First, we look at accuracy per case category (upper,
lower, mixed), which can be seen in Table 2. The
overall number of tokens belonging to each of the
categories are presented in Table 3.

As one can see from Table 2, mixed case words
are best handled by the n-gram LMs, while the
rule-based approach shows the lowest accuracy
on those. Low scores on mixed case words for
the Leipzig corpus are due to a large portion of

6https://gitlab.com/raymondhs/char-rnn-truecase

proper names coming from newspaper articles (e.g.,
“NewVoiceMedia” or “TecDAX”) that were not cap-
italized properly. The success of n-gram LMs for
mixed cases is naturally explained by the back-
off smoothing mechanism in interpolated n-gram
models, where subwords found capitalized in the
corpora largely contribute to the final cost.

4.2 Unseen words
From the test/train splits, there are 16048 unseen
words in the Leipzig corpora, and 3494 in the Q&A
corpora. Accuracy percentages for those unseen
words are presented in Table 4 (we do not evaluate
unseen words on the rule-based approach, as we
used automatically created POS lists which there-
fore may have contained unseen words). The RNN
approach in this case is the most accurate, follow-
ing the conclusion of Susanto et al. (2016).

We attribute the bulk of the mistakes of the n-
gram model to its inability to capture longer de-
pendencies. Despite a large n-gram value (15), the
model is often unable to implicitly obtain the POS
of the token when the information is contained in
the suffix. The model then defaults to the most
common occurrence. For example, the noun “Gle-
ichstrom” (“direct current”) is normalized as “gle-
ichstrom” because of the commonly seen adjective
“gleich” (“equal”), without considering the suffix
“strom”.

4.3 Accuracy by Part of Speech
We used spacy7 German model to PoS tag our
test corpus, and subsequently extracted most com-
mon categories of errors. Unsurprisingly, common
nouns, adjectives and proper nouns constituted the
highest proportion of errors in all approaches. We
inspected the most frequent failing tokens for each

7https://spacy.io/
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Unseen words
KN 15-gram q&a 76.00
KN 15-gram leipz 78.06
char-rnn LSTM q&a 86.10
char-rnn LSTM leipz 83.20

Table 4: Token accuracy for unseen words on the Q&A corpus

Sentence-based accuracy
KN 15-gram leipz 65.45
char-rnn LSTM leipz 72.60
char-rnn GRU leipz 70.00

Table 5: Sentence-based accuracy on Leipzig corpus

of the approaches on the Q&A dataset, but the
models show no major difference there. For all
of them, the failing tokens belong to the class of
frequent pronouns or prepositions, whose capital-
ization is particularly ambiguous and context de-
pendent, such as “Sie” or “die”.

4.4 Sentence-based accuracy
We report the sentence accuracy for the LM and
RNN approaches as well, in Table 5. Sentence-
based accuracy is computed as the ratio of the num-
ber of sentences where all tokens were predicted
correctly to the overall number of sentences in the
test set. Sentence-based accuracy for the major-
ity rule baseline is extremely low (<15.0) which
is mostly due to the fact that the initial letter in a
sentence is frequently left lowercased.

We distinctly observe that RNNs outperform
simple n-gram LMs on this conservative metric.
This implies that RNNs often perform a flawless
normalization of the whole sentence, while n-gram
approaches scatter mistakes more uniformly across
sentences. However, a more detailed analysis
shows that mistakes done by RNN are more critical.
For instance, it sometimes tends to overgenerate,
which results in hardly readable mixed-cased (e.g.,
“KAffeMaschine”) or conversational words (e.g.,
capitalizing the colloquial form ‘ne’ of the indefi-
nite article ‘eine’).

5 Conclusion and future work

In this paper, we presented a study on truecasing, a
common task in natural language processing, either
as a pre-processing step in a larger pipeline (f.e.
in MT), or as a post-processing one (f.e. when
displaying the output of an spoken language system
on screen). Comparing rule-based, n-gram and

neural models, we showed that, while state of the
art methods such as DNNs unsurprisingly reach
the highest accuracy, standard n-gram models are
still competitive, in particular on mixed-case words,
where their fall-back mechanisms come into play.
They also fair well in noisier corpora (such as the
Q&A corpora).

Truecasing, as a part of text normalization, is
peculiar in that its bulk can be solved simply by a
few hand-written rules, with however a long tail
of very difficult cases such as acronyms, unseen
words. Finding a proper balance between the flex-
ibility of neural approaches, and the controlled,
more interpretable behaviour of FST-based sys-
tems, remains an open and challenging problem
(Mansfield et al. (2019), Sproat and Jaitly (2016),
Zhang et al. (2019)).
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