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Abstract

This report describes YerevaNN’s neural

machine translation systems and data

processing pipelines developed for WMT20

biomedical translation task. We provide

systems for English-Russian and English-

German language pairs. For the English-

Russian pair, our submissions achieve the

best BLEU scores, with en→ru direction

outperforming the other systems by a

significant margin. We explain most of

the improvements by our heavy data

preprocessing pipeline which attempts to

fix poorly aligned sentences in the parallel

data.

1 Introduction

Biomedical machine translation is a perfect

playground to develop narrow domain neural

machine translation models. In such tasks, the

available parallel in-domain data is usually limited

and noisy which creates many challenges.

In the previous works (Bawden et al., 2019),

researchers focused on transfer learning methods

(Saunders et al., 2019) or attempted to mix the

training data with other sources (Peng et al., 2019)

to address the issue of data scarcity. In this work,

we show that the transfer performance is very

dependent on the quality of the training data, and

with a little effort, it is possible to improve the given

MEDLINE training data and gain a significant

performance boost.

We have manually created a much higher quality

subset of the original MEDLINE training data for

local evaluation purposes. The insights collected

during this manual analysis was then used to fix

the most common issues within the training data.

In particular, we noticed that the original dataset

contained paper abstracts in two languages without

sentence-level alignments, and the training corpus

provided by the organizers was created using an

automated sentence segmentation and alignment

process, which was not perfect. We built a data

pipeline1 that handles 1) cleanup, 2) sentence

segmentation, 3) alignment of translation sentence

pairs and 4) preprocessing.

In our experiments, we did not use any data

source other than MEDLINE. We chose our

baseline model and two other models with the

highest BLEU scores on a local test set as our three

submissions. The best ones got 35.2% BLEU on

English-German and 41.3% on German-English

test sets. For English-Russian and Russian-English

directions we reached BLEU scores of 37.9%

and 43.2% respectively, which are the best scores

among all submissions of WMT20 Biomedical

Translation Task. Moreover, our models are cheap

to train: the average training time of our best models

is approximately 30 minutes on a single NVIDIA

Titan V GPU.

The paper is organized as follows: Section 2

presents fine-tuning details and evaluation methods

for our NMT systems, Section 3 describes the data

used in the experiments and the data processing

pipeline, Section 4 presents our novel method

of monotonic alignment based on multilingual

language models. Section 5 discusses the results.

2 System Description

2.1 Pretrained Models

All our NMT models are built on top of WMT19

News Translation task winner models by Ng et al..

We employ FairSeq library (Ott et al., 2019) to fine-

tune pretrained models on the in-domain translation

data.

The pretrained models are based on

transformer_wmt_en_de_big architecture

(Vaswani et al., 2017) with a modified feedforward

1Our data pipeline is available at https://github.com/
YerevaNN/parasite

https://github.com/YerevaNN/parasite
https://github.com/YerevaNN/parasite
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dimension (8192) and a shared matrix for input and
output embeddings. Additionally, en↔de models

share vocabulary and embeddings for both source

and target sides.

2.2 Fine-Tuning

We start fine-tuning single_model versions of

Facebook’sWMT19models2 on in-domain parallel

data and stop the training when the perplexity on the

validation set does not improve for 5 consecutive
epochs.

To fight noisy training data we use label-

smoothed cross-entropy loss (Müller et al., 2019).

The neural architecture and related

implementation details cannot be changed in

the fine-tuning scenario. While this limited our

experimental setup, however, it also allowed us to

care less about hyperparameter tuning and focus

on other parts of the pipeline.

2.3 Implementation Details

The hyperparameters for our baseline models

(run1) are as follows. The models are fine-tuned
on the training data using an inverse-square-root

learning rate schedule with 4000 warm-up steps
with an initial learning rate of 10−5. Instead of

using a fixed batch size, we make batches of

maximum 3584 tokens to fit in the memory. For
label smoothing, we set a smoothing coefficient of

0.1. Unlike the pretrained models, we use standard
Adam betas and disable dropout.

Training with bigger batches (implemented using

gradient accumulation, a single update per 128
batches) not only helped us to reduce total training

time 4x but also resulted in better models (including
our best submissions run2 and run3).
All the models are trained on a single NVIDIA

Titan V GPU with 16-bit floating-point operations.

The average duration of fine-tuning with bigger

batches was 30 minutes.

Finally, we use a beam size of 32 in the inference
mode.

2.4 Evaluation and Model Selection

We use two kinds of validation sets for model

selection. For early stopping, we calculate the

perplexity on a regular validation set which is

extracted from the training data. To determine our

2 wmt19.en-de.joined-dict.single_model ,
wmt19.de-en.joined-dict.single_model,
wmt19.en-ru.single_model,
wmt19.ru-en.single_model

best models for submissions, we use a separate

in-domain dataset which we call “local test set”

and calculate BLEU score on it. All BLEU scores

are calculated with SacreBLEU case-insensitive

configuration.

3 Data

3.1 Parallel Data

For all directions, we use only MEDLINE training

data provided by the shared task organizers. We

take random 50 documents from the training data

as the validation set. In case of en↔de we use OK-

tagged sentence-pairs from WMT’19 biomedical

translation test set (Bawden et al., 2019) as the local

test set. To have a local test set of a similar quality

for en↔ru, we take another random 50 documents,
then manually fix misaligned sentences and filter

out a few pairs with incorrect translations.

During the manual review of the en↔ru local

test set we noticed that the provided data was poorly

aligned, and it was possible to get high-quality

sentence pairs by re-aligning the sentences (only 9
sentences were dropped except the titles/subtitles,

out of 504 sentences). Then we tried to use these
insights to build a new automated system for

monotonic alignment of the sentences (described

in Section 4).

Table 1 exhibits the most common issues found

in the MEDLINE training data:

• The bitext documents may be misaligned: the

translation of a source sentence may appear

on a different line, or even on multiple lines,

in the target side,

• Headings and section names may occur next to

a sentence on one side only, or on both sides,

• English documents may start with titles (often

wrapped in brackets), while the Russian ones

do not.

These issues are too common in the training set,

and simply removing incorrect pairs of sentences

would significantly reduce the dataset. Instead, we

decided to fix the misaligned sentences to preserve

as much parallel content as possible. The solution

is described in Section 4.

3.2 Monolingual Data

Although the base models we use are already

trained with backtranslation, we try to fine-tune

with backtranslation as well. We obtain translations
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1 [Risk factors of stroke in men exposed to environmental

factors at workplace]. OBJECTIVE

Цель исследования - изучение факторов риска раз-

вития инсульта у мужчин разных возрастных групп,

подвергающихся воздействию неблагоприятных про-

изводственных факторов.

2 To explore risk factors of stroke in men of different

age groups exposed to adverse environmental factors at

work.

Материал и методы.

3 MATERIAL AND METHODS Four hundred and eleven

men after stroke, aged from 30 to 65 years, including

335 patients, who had been exposed to adverse

environmental factors at work, were compared to

76 patients who had not been exposed to adverse

environmental factors.

Обследованы 411 мужчин в возрасте от 30 до 65 лет,

перенесших инсульт, из них 335 пациентов подвер-

гались влиянию неблагоприятных производственных

факторов и 76 пациентов, которые воздействия вред-

ных факторов не испытывали (группа сравнения).

4 RESULTS Результаты.

5 The distribution of the frequencies of risk factors of

stroke depending on the character of adverse factors was

shown.

Установлена частота распределения факторов риска

развития инсульта у мужчин в зависимости от харак-

тера профессиональных вредностей.

Table 1: A hand picked example from MEDLINE en↔ru training set (document #26978637) which demonstrates
the most common issues in the dataset. The first line in English includes the title of the paper which is not present

in Russian. The English version of the main content of the first line in Russian is given on the second line. Line 3

in English has an extra heading which corresponds to Line 2 on the right side. The rest of the third line on the left

matches to the third line on the right side, and the last two lines are correct.

with the fine-tuned models mentioned above, then

fine-tune newmodels on a mixed data consisting of

the regular parallel training data and backtranslated

data with equal proportions.

To perform backtranslation we need a set of in-

domain monolingual sentences that do not overlap

with the test set. To train backtranslated de↔en and

ru↔ en directions, we took all English sentences

from all parallel corpora available from MEDLINE

(both training and test sets) excluding the parallel

corpora we would eventually train on. This way we

collected 296,052 (236,379) English sentences for

German (for Russian). To obtain a parallel corpus

we translated them using our models, and then

filtered them using the same process as with the

regular training data (see the next subsection). We

ended up with 281,054 (220,916) sentence pairs for

en↔de (en↔ru).

We did not perform backtranslation from

Russian or German (directions en→de and en→ru),

as we did not expect to find in-domain sentences

that are not present in MEDLINE.

When translating the monolingual sentences, we

tried sampling, sampling-top5, greedy, beam,
beam+noise decoding methods similar to (Edunov
et al., 2018), but no major difference in terms of

the final BLEU score has been observed.

3.3 Preprocessing

The preprocessing pipeline for our models has to be

identical to the one used for pretrainedmodels. First,

we perform punctuation normalization (quotation,

commas, numbers, replacing punctuation and

removing control characters) using SacreMoses
library. Then, we tokenize the resulting sentences

using Moses (Koehn et al., 2007) tokenizer with

aggressive dash splits and escaping XML entities.

Finally, we use subword segmentation (Sennrich

et al., 2016) (fastbpe implementation) with BPE

codes from pretrained models, with 24k and 32k

splits for Russian and for joint English & German,

respectively.

We perform additional filtering of the parallel

data before the training: we skip those sentence

pairs where 1) source or target sentence has more

than 250 subwords and/or 2) the ratio of lengths of

the source and target sentences is more than 3/2.

During inference, we truncate sentences to the

first 1024 subwords (the number of the positional
embeddings).

During our early experiments we noticed several

issues with our preprocessing pipeline which we

fixed for the later experiments. In particular,

we noticed that some sacremoses command

line flags were broken, and the out-of-the-box

inference tool from FairSeq did not fully replicate
the preprocessing pipeline used for training

(punctuation normalization and vocabulary-aware

subword segmentation). The original pipeline

(called v1) was used for our baseline models. The

later experiments used the fixed implementations

of sacremoses and FairSeq (denoted by v2).
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4 Monotonic Alignments

The problems of the training set described in

Section 3.1 can be caused by poor 1) XML

parsing, 2) sentence segmentation, or 3) monotonic

segment alignment method. Here we describe a

novel method for monotonic sentence alignment

using multilingual language models and discuss

the contribution of its hyperparameter choices.

Multilingual language models have been previously

shown to be effective in parallel data mining

(Kvapilíková et al., 2020). We also compare our

approach to the baseline data pipeline by the

shared task organizers which is based on Syntok
segmentation system and GMA (Melamed, 2001).

Our method of monotonic sentence alignments

is as follows: we calculate a similarity matrix of all

source-target candidate pairs and decode pairs to

maximize the similarity of the resulting sentence

pairs. We consider two approaches for the decoding

step: greedy and dynamic.

4.1 Similarity Matrix

The similarity matrix is calculated using Euclidean

distances of sentence embeddings from a pretrained

multilingual language model. We found xlm-
roberta-large (Conneau et al., 2019) to be the

best one. In order to obtain a fixed size vector for

each sentence, we simply take the average of the

wordpiece embeddings (Cer et al., 2018; Artetxe

and Schwenk, 2019).

We also attempt to address some common issues

concerning the given MEDLINE abstracts that may

harm the quality of the alignments: 1) we remove

titles from the English version that are absent in

the Russian version, 2) we detect the headings that

often get attached to adjacent sentences, 3) we

lowercase the text before obtaining embeddings

(as the English headings are written in capitals,

unlike the Russian ones), 4) we experiment with

different sentence segmentation systems such as

SciSpacy (Neumann et al., 2019) (in-domain, for

English) and Razdel3 (focused on Russian), 5)

we also penalize candidates with source/target

length ratios exceeding 2. Additionally, we consider
using normalized distances and the margin based

approach described in (Artetxe and Schwenk,

2019).

3https://github.com/natasha/razdel

4.2 Greedy Approach

In greedy approach, we construct the set of correct

sentence pairs in an iterative process. Given the

similarity matrix, at each step we add the sentence

pair with the maximum similarity score. As there

is an assumption that the alignments should be

monotonic, after each step we exclude all remaining

candidate sentence pairs that would break the

monotonicity. Our implementation finds at most

one target sentence for a source sentence (and vice

versa).

Algorithm 1: Greedy decoding

SN , TM ← source and target sentences

Di,j ← Sim(Si, Tj)
Res← {}
while |Align| < min(N,M) do

i, j ← argmax(D)
Align← Align ∪ {i, j}
Di..N,0..j , D0..i,j..M ← 0

end

Result: Align

4.3 Dynamic Algorithm

In the dynamic algorithm, we consider maximizing

the sum of the similarity scores of the selected

sentence pairs according to the given matrix. Our

implementation of this approach, unlike the greedy

one, can produce sentences consisting of multiple

(up to K) segments on each side. To find the

mapping with the best total similarity score we use

dynamic programming.

5 Results

For WMT20 Biomedical Translation Task we

prepared three submissions: run1 for all directions

was the baseline model, while for run2 and run3
we chose the best models according to their BLEU

score on the local test set at the time of the

submission. In run2 and run3, all the models

besides de→en of run2 are trained with our data

pipeline and bigger batches. The official BLEU

scores on samples with “OK” aligned sentences

alongside with our local test set are presented in

Table 2.

For de→en of run2, backtranslation data was
collected with beam search (size of 8), in case of

ru→en, we had noise added similar to Edunov et al.,

and for run3 we used a simple sampling strategy.
Our experiments with backtranslation showed no

https://github.com/natasha/razdel 
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BLEU Scores on WMT20 Test / Local Test

Models en→de de→en en→ru ru→en

run1 35.2 / 34.5 41.3 / 45.4 32.6 / 27.7 NA / 30.7

run2 41.4 / 44.7 39.4 / 31.6 43.3 / 33.0

run3 35.2 / 35.1 41.3 / 45.6 37.9 / 31.8 43.2 / 33.1

Table 2: BLEU scores of our submissions

Algorithm 2: One-to-many (K) dynamic

decoding

SN , TM ← source and target sentences

BestN,M ← 0
ResN,M ← {}
for i = 1→ N do

for j = 1→M do

for u, v = 1→ K do
candidate← Besti−u,j−v +
Sim(Si−u..i, Tj−v..j)
if candidate > Besti,j then

Besti,j ← candidate
Resi,j ← Resi−k,j ∪
{Si−k..i, Tj−v..j}

end

end

end

end

significant advantage of any of those compared to

the others.

For run2 and run3, we used v2 preprocessing,
the sentence splitting was done with scispacy
(for English and German) and a slightly modified

version of razdel (for Russian).

After our submissions, we further improved our

data pipeline. Table 3 is an empirical analysis of the

effect of different components of our data pipeline,

as measured by the performance on the final

translation task. Each row of the table corresponds

to a model trained on the data obtained from a

pipeline with certain components enabled. There is

no other between the rows, all models are trained by

fine-tuning the general domain baseline using our

default hyperparameters. We measure the BLEU

score on the local test set.

Fixing the issues of the standard preprocessing

(v2 vs. v1) gives a significant boost, especially

when decoding to Russian (en→ru direction). The

effect of training with bigger batch sizes gives only

a slight improvement, while the absolute training

duration reduces drastically.

Model en→ru ru→en

baseline model 27.7 30.7

+ v2 preprocessing 30.5 31.3

+ train with bigger batches 30.7 31.3

+ greedy alignments 30.1 31.8

+ detect section names 30.7 32.3

+ remove titles 31.3 32.5

+ optimize total similarity 30.4 32.2

+ normalize distance matrix 30.8 32.1

+ penalize source/target ratio 31.2 31.5

+ one-to-many (K=3) 32.2 32.3

Table 3: The effect of different components of the data

processing pipeline. We report BLEU scores on the

local test set.

As mentioned previously, there were issues with

section names and titles in the provided parsed

documents. After addressing these issues, our

greedy approach gives better alignments.

The total similarity optimization using dynamic

programming is not always better than the greedy

method, but the performance improves for en→ru

with another +1.1% BLEU score. Overall, the

new data pipeline gives an enhancement in NMT

performance: +1.6% BLEU for ru→en and a bigger

gain of +4.5% BLEU score for en→ru.

Although we observe consistent performance

improvement for both directions en↔ru, the effect

for en→ru direction is more significant. We could

not determine the reason for such assymmetry.

6 Conclusion

This work presents the systems our team developed

for English-German and English-Russian language

pair tracks of WMT20 Biomedical Translation

Task. We achieve the best results on the official

test set for English↔Russian language pair,

outperforming competitors by a significant margin

on English→Russian direction. We show that

it is possible to improve the performance of

neural machine translation models by simply

improving the quality of the in-domain parallel
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data. The suggested method for monotonic sentence

segment alignment based on pretrainedmultilingual

language models demonstrated promising results.

We explored how different components of our data

processing pipeline contributed to the quality of the

resulting translation systems. In future work, we

plan to investigate the applicability of this pipeline

to a wider set of language pairs and domains.
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