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Abstract

Independence assumptions during sequence
generation can speed up inference, but paral-
lel generation of highly inter-dependent tokens
comes at a cost in quality. Instead of assuming
independence between neighbouring tokens
(semi-autoregressive decoding, SA), we take
inspiration from bidirectional sequence gener-
ation and introduce a decoder that generates
target words from the left-to-right and right-to-
left directions simultaneously. We show that
we can easily convert a standard architecture
for unidirectional decoding into a bidirectional
decoder by simply interleaving the two direc-
tions and adapting the word positions and self-
attention masks. Our interleaved bidirectional
decoder (IBDecoder) retains the model sim-
plicity and training efficiency of the standard
Transformer, and on five machine translation
tasks and two document summarization tasks,
achieves a decoding speedup of ∼2× com-
pared to autoregressive decoding with compa-
rable quality. Notably, it outperforms left-to-
right SA because the independence assump-
tions in IBDecoder are more felicitous. To
achieve even higher speedups, we explore hy-
brid models where we either simultaneously
predict multiple neighbouring tokens per direc-
tion, or perform multi-directional decoding by
partitioning the target sequence. These meth-
ods achieve speedups to 4×–11× across dif-
ferent tasks at the cost of <1 BLEU or <0.5
ROUGE (on average).1

1 Introduction

Neural sequence generation aided by encoder-
decoder models (Bahdanau et al., 2015; Vaswani
et al., 2017) has achieved great success in recent
years (Bojar et al., 2018; Song et al., 2019; Raf-
fel et al., 2019; Karita et al., 2019), but still suf-
fers from slow inference. One crucial bottleneck

1Source code is released at https://github.com/
bzhangGo/zero.

lies in its generative paradigm which factorizes the
conditional probability along the target sequence
y = {y1, y2, . . . , yn} of length n as follows:

p(y|x) =
n∏

t=1

p (yt|y<t,x) , (1)

where x = {x1, x2, . . . , xm} is the source se-
quence of length m. This factorization determines
that target words can only be generated one-by-one
in a sequential and unidirectional manner, which
limits the decoding efficiency.

A promising direction to break this barrier is
to generate multiple target words at one decoding
step to improve the parallelization of inference (Gu
et al., 2018; Stern et al., 2018). However, this intro-
duces independence assumptions that hurt transla-
tion quality, since words produced in parallel are in
fact likely to be inter-dependent. We hypothesize
that there are groups of words that are less likely
to be strongly inter-dependent than neighbouring
words, which will allow for better parallelization.
Inspired by bidirectional modeling (Zhang et al.,
2019b, 2020), we resort to an alternative probabilis-
tic factorization:

pBD(y|x) =
dn/2e∏
t=1

p
(−→yt ,←−yt′ |−→y<t,

←−−y>t′ ,x
)
, (2)

Introducing an independence assumption between
t and t′ = n− t+ 1 allows for parallel word pre-
diction from both the

−−−−−−−→
left-to-right and

←−−−−−−−
right-to-left

directions. Based on this factorization, Zhou et al.
(2019) propose synchronous bidirectional trans-
lation using a dedicated interactive decoder, and
report quality improvements compared to left-to-
right semi-autoregressive decoding (Wang et al.,
2018, SA) in translation quality. However, their
success comes along with extra computational over-
head brought by the specialized decoder. Empir-
ically, Zhou et al. (2019) only report a decoding

https://github.com/bzhangGo/zero
https://github.com/bzhangGo/zero
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Figure 1: Overview of the interleaved bidirectional decoder (IBDecoder, 1a), the semi-autoregressive decoder (SA, 1b), the
interleaved multi-directional decoder (IMDecoder, 1d) and the bidirectional semi-autoregressive decoder (IBDecoder+ SA,
1e) on target sequence y = {y1, y2, . . . , y6}. We reorganize the target sequence (purple), the word positions (green) and the
self-attention mask (circles) to reuse the standard Transformer decoder. During inference, multiple target words are generated
simultaneously at each step (dashed rectangles), improving the decoding speed. The self-attention masks are given in (1c) and
(1f), where sold black circles indicate allowed attention positions. Red arrows indicate generation directions (h is the direction
number), whose length denotes the number of words produced per direction (c). Blue rectangles denote words generated at the
first step. The direction embedding (red rectangles) reflects the direction each target word belongs to. Apart from the left-to-right
generation, IBDecoder jointly models the right-to-left counterpart within a single sequence. IMDecoder extends IBDecoder by
splitting the sequence into several equal segments and performing bidirectional generation on each of them, while IBDecoder+SA
allows each direction to produce multiple words.

speedup of 1.38×, slower than SA, although the
factorization halves the decoding steps.

We combine the strengths of bidirectional mod-
eling and SA, and propose interleaved bidirectional
decoder (IBDecoder) for fast generation. As shown
in Figure 1a, we interleave target words from the
left-to-right and right-to-left directions and sep-
arate their positions to support reusing any stan-
dard unidirectional decoders, such as the Trans-
former decoder (Vaswani et al., 2017). We reor-
ganize the self-attention mask to enable inter- and
intra-direction interaction (Figure 1c) following
SA. Unlike SA, we show through experiments that
distant tokens from different directions are less
inter-dependent, providing a guarantee for better
performance. Compared to previous studies (Zhang
et al., 2018d, 2019b, 2020; Zhou et al., 2019), our
approach has no extra model parameters and brings
in little overhead at training and decoding.

IBDecoder is speedup-bounded at 2×. To push
this ceiling up, we explore strategies for multi-
word simultaneous generation, including multi-
directional decoding (IMDecoder, Figure 1d) and
SA (Figure 1b). The former extends Eq. 2 by in-
serting more generation directions, while the latter
allows each direction to produce multiple target
words (Wang et al., 2018). These strategies offer
us a chance to aggressively improve the decoding
speed albeit at the risk of degenerated performance.
To encourage multi-word generation in parallel, we
propose a modified beam search algorithm.

We extensively experiment on five machine
translation tasks and two document summarization
tasks, with an in-depth analysis studying the im-
pact of batch size, beam size and sequence length
on the decoding speed. We close our analysis by
examining the capacity of our model in handling
long-range dependencies. On these tasks, IBDe-
coder yields ∼2× speedup against Transformer at
inference, and reaches 4×–11× after pairing it with
SA. Still, the overall generation quality is compara-
ble. When we pair our method with sequence-level
knowledge distillation (Kim and Rush, 2016), we
outperform a Transformer baseline on 6 out of 7
tasks.

Our contributions are summarized below:

• We propose IBDecoder, following a bidirec-
tional factorization of the conditional probabil-
ity, for fast sequence generation. IBDecoder
retains the training efficiency and is easy to
implement.

• We extend IBDecoder to enable multi-word
simultaneous generation by investigating in-
tegration with IMDecoder and SA. Results
show that IBDecoder + SA performs better
than IMDecoder.

• We propose a modified beam search algorithm
to support step-wise parallel generation.

• On several sequence generation benchmarks,
IBDecoder yields∼2× speedup against Trans-
former at inference, and reaches 4×–11× af-
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ter pairing it with SA. Still, the overall gener-
ation quality is comparable.

2 Related Work

Efforts on fast sequence generation come along
with the rapid development of encoder-decoder
models (Vaswani et al., 2017). A straightfor-
ward way is to reduce the amount of computa-
tion. Methods in this category range from teacher-
student model (Kim and Rush, 2016; Hayashi et al.,
2019), constrained softmax prediction (Hu et al.,
2015), beam search cube pruning (Zhang et al.,
2018c), float-point quantization (Wu et al., 2016;
Bhandare et al., 2019), model pruning (See et al.,
2016), to simplified decoder architectures, such as
lightweight recurrent models (Zhang et al., 2018b;
Zhang and Sennrich, 2019; Kim et al., 2019), aver-
age attention network (Zhang et al., 2018a), merged
attention network (Zhang et al., 2019a), dynamic
convolution (Wu et al., 2019), and hybrid atten-
tions (Shazeer, 2019; Wang et al., 2019), .etc.

Nonetheless, the above methods still suffer from
the inference bottleneck caused by the sequen-
tial nature of autoregressive models. Instead, Gu
et al. (2018) propose non-autoregressive generation
where target words are predicted independently,
leading to great speedup, albeit at a high cost to
generation quality. Follow-up studies often seek
solutions to recover the performance (Libovický
and Helcl, 2018; Guo et al., 2019; Shao et al.,
2020; Ghazvininejad et al., 2020; Ran et al., 2020),
but also reveal the trade-off between the quality
and speed in terms of autoregressiveness. This
motivates researchers to discover the optimal bal-
ance by resorting to semi-autoregressive model-
ing (Wang et al., 2018; Stern et al., 2018), iterative
refinement (Lee et al., 2018; Stern et al., 2019;
Ghazvininejad et al., 2019) or in-between (Kaiser
et al., 2018; Akoury et al., 2019).

We hypothesize that generation order affects the
felicity of independence assumptions made in semi-
autoregressive modelling. Unlike generation with
flexible orders (Emelianenko et al., 2019; Stern
et al., 2019; Gu et al., 2019a), we employ deter-
ministic generation order for model simplicity and
training efficiency, specifically focusing on bidirec-
tional decoding. The study of bidirectional model-
ing dates back to the era of phase-based statistical
machine translation (Watanabe and Sumita, 2002;
Finch and Sumita, 2009) and recently gained pop-
ularity in neural machine translation (Liu et al.,

2016; Sennrich et al., 2016a; Zhang et al., 2019c,b;
Zheng et al., 2019). Unfortunately, these methods
either design complex neural decoders, which hurts
training efficiency, and/or perform the left-to-right
and right-to-left inference separately followed by
rescoring, which slows down decoding. By con-
trast, our model speeds up inference while main-
taining training speed.

Our work is closely related to SA (Wang
et al., 2018) and synchronous bidirectional gen-
eration (Zhou et al., 2019). IBDecoder extends
SA to incorporate information from different direc-
tions. In contrast to Zhou et al. (2019), we only
make minimal changes to the standard Transformer
decoder, which benefits efficiency during training
and inference, and makes our method easy to imple-
ment. We also find improvements in both decoding
speed and translation quality compared to (Wang
et al., 2018; Zhou et al., 2019).

3 Autoregressive Transformer

Transformer (Vaswani et al., 2017), the state-of-the-
art neural sequence generation model, follows the
autoregressive factorization as in Eq. 1. To handle
the dependency of target word yt on previous target
words y<t, Transformer relies on a masked self-
attention network in the decoder:

ATT(Yl,M) = f

(
QlKlT

√
d

+M

)
Vl (3)

where Ql,Kl,Vl = Wl
qY

l,Wl
kY

l,Wl
vY

l ∈
Rn×d, f(·) denotes softmax operation, d is model
dimension and l is layer depth. Wq,Wk,Wv ∈
Rd×d are trainable parameters.

The mask matrix M ∈ Rn×n limits the access
of attention to only the past target words. Formally,
given the target sequence length n, this matrix can
be constructed by the following masking function:

Mi,j(h, c) =

{
0, if di/(h·c)e ≥ dj/(h·c)e
−∞, otherwise

.

(4)
where 0 < i, j < n, h denotes the number of
generation directions, and c is the number of tar-
get words predicted per direction. By default, the
Transformer decoder is unidirectional and gener-
ates words one-by-one. Thus, M =M(1, 1). The
infinity here forces softmax output a probability of
0, disabling invalid attentions.

The input layer to Transformer’s decoder is the
addition of target word embedding Ey and word



506

position encoding PET , i.e Y0 = Ey + PET ∈
Rn×d. T maps y to its word position sequence,
which is a simple indexing function (Figure 1b):

Tt = t− 1, (5)

where t = 1 . . . n. Transformer adopts the sinu-
soidal positional encoding to project these indexes
to real-space embeddings, and uses the last-layer
decoder output YL to predict the respective next
target word. We explain how to accelerate genera-
tion by reordering y, adjusting h, c and T next.

4 Interleaved Bidirectional Decoder

The structure of Transformer is highly paralleliz-
able, but the autoregressive schema (h = 1, c = 1)
blocks this parallelization during inference. We
alleviate this barrier by exploring the alternative
probabilistic factorization in Eq. 2 to allow words
predicted from different directions simultaneously.

We propose IBDecoder as shown in Figure 1a.
We reuse the standard decoder’s architecture in
a bid to largely inherit Transformer’s paralleliza-
tion and avoid extra computation or parameters,
rather than devising dedicated decoder architec-
tures (Zhou et al., 2019; Zhang et al., 2020). To
make the left-to-right and right-to-left generation
collaborative, we reorganize the target sequence
and the word positions below (purple and green
rectangles in Figure 1a):

yBD =
[
y1yn, y2yn−1, ..., ybn/2c+1

]
, (6)

T BD
t = (−1)(t−1)dt/2e. (7)

By following the generation order defined by
Eq. 2, the sequence yBD interleaves y1:bn/2c and
ybn/2c+1:n and converts a bidirectional generation
problem to a unidirectional one. We introduce neg-
ative positions to T BD to retain the locality bias of
sinusoidal positional encodings in yBD.2 Compared
to (y, T ), the reorganized sequences (yBD, T BD)
have the same length, thus with no extra overhead.

We also adapt the self-attention mask to permit
step-wise bidirectional generation:

MBD =M(2, 1), (8)

where IBDecoder has h = 2 generation directions.
This corresponds to the relaxed causal mask by

2Consider Figure 1a. We cannot reorder position encod-
ings along with embeddings (1,6,2,5,...) because we do not
know sentence length at test time. Simply using vanilla po-
sition encodings (1,2,3,4,...) would increase the embedding
distance between positions within a direction.

Wang et al. (2018), which ensures access to all pre-
dictions made in previous time steps3 and allows
for interactions among the tokens to be produced
per time step. Although two words are predicted in-
dependently at each step, the adapted self-attention
mask makes their corresponding decoding context
complete; each word has full access to its cor-
responding decoding history, i.e. the left-to-right
(y1:t) and right-to-left (yn−t+1:n) context. Except
for (yBD,MBD, T BD), other components in Trans-
former are kept intact, including training objective.

4.1 Beyond Two-Word Generation

Eq. 2 only supports two-word generation, which in-
dicates an upper bound of 2× speedup at inference.
To improve this bound, we study strategies for
multi-word generation. We explore two of them.

Multi-Directional Decoding Similar to IBDe-
coder, IMDecoder also permutes the target se-
quence. It inserts multiple generation directions
(i.e. increases h), with each direction producing
one word per step (i.e. c = 1). As shown in Figure
1d, it splits the target sequence into several roughly
equal segments followed by applying IBDecoder to
each segment (thus an even h required). Formally,
IMDecoder reframes the target sequence and word
positions as follows:

yMD =
[
yBD
1,k,y

BD
2,k, . . . ,y

BD
h/2,k

]dn/he
k=1

, (9)

T MD
t = (bt−1/hc, t− 1 mod h) , (10)

where yBD
i,k denotes the k-th word of yBD

i , which is
the i-th segment of y reordered by IBDecoder(h/2
segments in total). T MD decomposes the word po-
sition into two parts. The first one represents the in-
dex of decoding step where each word is predicted;
the second one denotes the generation direction
each target word belongs to. Specifically, we record
the corresponding direction indices and add a group
of trainable direction embeddings (red rectangles
in Figure 1d) into the decoder input. IMDecoder
uses the following self-attention mask:

MMD =M(h, 1) (11)

Semi-Autoregressive Decoding Instead of par-
titioning the target sequence, another option is to
produce multiple target words per direction at each

3Note that with two tokens produced per time step, decoder
inputs are shifted by two.
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Algorithm 1 Beam search with step-wise multi-
word generation.
Input: Decoder dec, beam size B, word number

z = h · c, maximum length T
Output: Top-B finished hypothesis

. initial hypothesis (z start symbols, score 0)
1: H0 ← {([‘[s]’]z, 0)}
2: Hfinish ← ∅
3: t← 0
4: while |Hfinish| < B & t < T do
5: for (ht, st) ∈ Ht do

. words Wp of probability P ∈ Rz×B

6: P,Wp ← topB(dec(ht))
. ⊕: outer addition for vectors

7: s,Ws ← topB(⊕z
i=1 logPi)

. extract words by index, W ∈ RB×z

8: W← tracewords(Ws,Wp)
9: for (w, s) in (W, s) do

. meet end-of-hypothesis condition
10: if finish(w) then
11: add ([ht,w], s+ st) toHfinish

12: else
13: add ([ht,w], s+ st) toHt+z

14: end if
15: end for
16: end for
17: pruneHt+z to keep top-B hypothesis
18: t← t+ z
19: end while

. post(·): process ht to recover word order
20: return sort (post(ht), st) ∈ Hfinish by st

t

step (i.e. increase c, Wang et al., 2018). SA as-
sumes that neighbouring words are conditionally
independent, despite the fact that tokens in natural
language are typically highly inter-dependent.

We combine SA with IBDecoder (Figure 1e)
with the expectation that producing 2 neighbouring
tokens independently per direction is less harmful
than producing 4 neighbouring words in parallel.
We reuse the sequence yBD and T BD(n) for the
decoder input, but enlarge the attention range in the
self-attention mask to assist multi-word generation
(Figure 1f):

MSA =M(2, c). (12)

4.2 Inference
To handle multiple predicted words per decoding
step simultaneously, we adjust the beam search
algorithm as in Algorithm 1. For each partial hy-

pothesis ht, we predict z = h · c words in parallel.
We thus first extract the B top-scoring predictions
Wp of probability P for all z positions (line 6),
followed by pruning the resulting search space of
size O(Bz) through an outer-addition operation
to size B (line 7). The scores s ∈ RB (line 7)
and the backtraced words W ∈ RB×z (line 8) are
then used for normal decoding. Note that each
complete hypothesis requires a simple determin-
istic post-processing to recover its original word
order (line 20). In contrast to Zhou et al. (2019),
we do not separate the left-to-right beam from the
right-to-left beam.

End-of-Hypothesis Condition With multiple
predicted target words, determining whether one
hypothesis is complete or not becomes challenging.
We adopt a simple strategy: one hypothesis is as-
sumed complete once any word in the predictions
hits the end-of-sentence symbol (“[/s]”) (line 10).
We leave the study of alternatives for the future.

5 Experiments

Setup We test our model on machine transla-
tion (MT) and document summarization. We
train MT models on five different language pairs:
WMT14 English-German (En-De, Bojar et al.,
2014), WMT14 English-French (En-Fr, Bojar et al.,
2014), WMT16 Romanian-English (Ro-En, Bo-
jar et al., 2016), WMT18 English-Russian (En-
Ru, Bojar et al., 2018) and WAT17 Small-NMT
English-Japanese (En-Ja, Nakazawa et al., 2017).
Translation quality is measured by BLEU (Papineni
et al., 2002), and we report detokenized BLEU us-
ing the toolkit sacreBLEU (Post, 2018)4 except for
En-Ja. Following Gu et al. (2019b), we segment
Japanese text with KyTea5 and compute tokenized
BLEU. We train document summarization models
on two benchmark datasets: the non-anonymized
version of the CNN/Daily Mail dataset (CDMail,
Hermann et al., 2015) and the Annotated English
Gigaword (Gigaword, Rush et al., 2015). We
evaluate the summarization quality using ROUGE-
L (Lin, 2004).

We provide details of data preprocessing and
model settings in Appendix A. We perform thor-
ough analysis of our model on WMT14 En-De. We
also report results improved by knowledge distilla-
tion (KD, Kim and Rush, 2016).

4Signature BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.4.3
5http://www.phontron.com/kytea/
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ID Model B h c BLEU↑ +KD↑ Latency↓ Speedup↑ Train↑

1 Transformer 4 1 1 26.9 27.3 387 1.00× 1.00×1 26.0 26.8 294 1.32×

2 IBDecoder 4 2 1 26.2 27.1 204 1.90× 0.98×1 25.0 26.8 166 2.33×

3 2 + SA 4 2 2 23.0 26.3 117 3.31× 0.98×1 21.7 26.0 89 4.35×

4 IMDecoder 4 4 1 21.5 24.6 102 3.79× 0.98×1 19.7 24.1 85 4.55×

Table 1: Performance on WMT14 En-De for different models with respect to beam size (B), generation direction number (h, Eq.
4) and predicted token number per step (c, Eq. 4). BLEU: detokenized BLEU for models trained from scratch, +KD: detokenized
BLEU for models trained with knowledge distillation. Latency (in millisecond) and Speedup are evaluated by decoding the test
set with a batch size of 1, averaged over three runs. We report the latency and speedup for 2©, 3© and 4© trained with KD. Train
compares the training speed averaged over 100 steps. Time is measured on GeForce GTX 1080.

5.1 Results on WMT14 En-De

Table 1 compares the performance of our models
on WMT14 En-De. Relaxing the autoregressive-
ness with IBDecoder yields slightly worse transla-
tion quality compared to Transformer (-0.7 BLEU,
1©→ 2©, w/o KD, B = 4). Unlike Zhang et al.

(2020), we observe no quality improvement, but
our model delivers a speedup of 1.90×∼2.33× at
inference, clearly surpassing the simple greedy de-
coding baseline (1.32×) and BIFT (0.89×) (Zhang
et al., 2020). The dropped quality is easily re-
covered with knowledge distillation (+0.2 BLEU,
1©→ 2©, w/ KD, B = 4).

Going beyond two-word generation, which en-
hances independence, greatly decreases the per-
formance ( 2©→ 3©, 4©, w/o KD) while enlarging
the speedup to 3.3×–4.5×. Compared to SA, the
quality degradation with IMDecoder is larger, both
w/ and w/o KD. We ascribe this to the difficulty
of structure planning, as IMDecoder has to guess
words in the middle of the sequence at the start
of generation. We employ SA for the following
experiments.

In contrast to existing work (Zhang et al., 2018d,
2019b, 2020; Zhou et al., 2019), our models
marginally affect the training efficiency (0.98× vs
0.61× (Zhang et al., 2020)), and require no extra
linguistic information (Akoury et al., 2019). Our
results also suggest that the degree each model ben-
efits from KD varies. Follow-up studies should
report performance w/ and w/o KD.

Ablation Study We carry out an ablation study
as shown in Table 2. Replacing the attention mask
with the vanilla one ( 1©→ 2©) introduces unneces-
sary independence assumptions and reduces perfor-
mance by 0.5 BLEU. Using vanilla positional en-

ID Model h c BLEU↑

1 IBDecoder 2 1 26.2

2 1 + vanilla mask 2 1 25.7
3 1 + vanilla positions 2 1 25.9
4 1 + middle-to-side 2 1 20.7
5 1 + indep. directions 2 1 23.9
6 vanilla SA 1 2 24.1

7 1 + SA 2 2 23.0
8 vanilla SA 1 4 18.7

Table 2: Ablation study on WMT14 En-De. Beam size 4.
All models are trained from scratch. vanilla mask/vanilla
positions: the self-attention mask (M(1, 1), Eq. 4) and word
positions (T , Eq. 5) used in Transformer. middle-to-side:
generate words from the middle of the sequence to its two
ends, a reverse mode of IBDecoder. indep. directions: disable
cross-direction interaction. vanilla SA: predict multiple target
words per step following one direction (Wang et al., 2018).

codings ( 3©) also reduces performance -0.3 BLEU,
indicating that we benefit from preserving the lo-
cality bias of sinusoidal encodings within each di-
rection. Changing the generation direction from
the side-to-middle ( 1©) to the middle-to-side ( 4©)
dramatically increases the learning difficulty (-5.5
BLEU).

In IBDecoder, the two translation directions are
interlinked, i.e. predictions are conditioned on the
history of both directions. We can remove cross-
direction attention, essentially forcing the model
to produce the left and right half of sequences in-
dependently. Such an independent generation per-
forms poorly (-2.3 BLEU, 1©→ 5©), which supports
the importance of using bidirectional context and
resonates with the finding of Zhou et al. (2019).

Vanilla SA vs. IBDecoder Our IBDecoder
shares architectural properties with vanilla
SA (Wang et al., 2018), namely the independent
generation of two tokens per time step, and the
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Left-to-Right Bidirectional

Autoregressive 4.04 4.86
Semi-Autoregressive 6.95 4.72

Estimated PMI 0.235 -0.014

Table 3: Perplexity of autoregressive and semi-autoregressive
models with different factorizations, and estimated average
point-wise mutual information between words that are pre-
dicted independently. Measured on WMT14 En-De test set.
Left-to-Right: h = 1, Bidirectional: h = 2; Autoregressive:
z = 1, Semi-autoregressive: z = 2. The estimated PMI
shows that the inter-dependence of word pairs predicted in
parallel by vanilla SA is stronger than for those predicted
simultaneously by IBDecoder.

Model L/h/c BLEU↑ Speedup↑

Transformer 6/1/1 26.9 1.00×
+ student 2/1/1 26.0 2.19×
+ KD 2/1/1 26.7 2.32×

IBDecoder 6/2/1 26.2 1.90×
+ student 2/2/1 25.0 4.29×
+ KD 2/2/1 26.6 4.41×

IBDecoder + SA 6/2/2 23.0 3.31×
+ student 2/2/2 21.5 7.13×
+ KD 2/2/2 24.5 7.24×

Table 4: Detokenized BLEU and decoding speedup for stu-
dent models on WMT14 En-De with reduced decoder depth
L (encoder depth remains constant). Beam size 4.

adapted self-attention mask, but crucially differ in
their generation order and independence assump-
tions, with vanilla SA operating from left-to-right,
and IBDecoder interleaving left-to-right and
right-to-left decoding.

Our ablation results in Table 2 show that IBDe-
coder substantially outperforms vanilla SA (2.1/4.3
BLEU, 1©→ 6©/ 7©→ 8©). To further investigate the
difference in independence assumptions between
the two approaches, we compare estimated point-
wise mutual information (PMI) of the words being
predicted independently by IBDecoder and vanilla
SA.6 Results in Table 3 show that the PMI in IB-
Decoder (−0.014) is significantly smaller than that
in vanilla SA (0.235), supporting our assumption
that distant words are less inter-dependent on aver-
age. This also explains the smaller quality loss in
IBDecoder compared to vanilla SA.

On Teacher-Student Model One classical ap-
proach to improving decoding efficiency is train-
ing a small student model w/ KD. Results in Ta-
ble 4 support this: Transformer with a student
model produces similar performance w/ KD but
runs 2.32× faster, even better than IBDecoder (1.90

6Details about PMI estimation are given in Appendix B
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Figure 2: Speedup against Transformer vs. batch size and
beam size on WMT14 En-De. Comparison is conducted under
the same batch size and beam size. IBDecoder (+SA) is trained
with KD. Our model consistently accelerates decoding.
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Figure 3: BLEU (solid lines, left) and speedup (dashed lines,
right) as a function of source sentence length on WMT14
En-De. We sort the test set according to the source sentence
length and uniformly divide it into 10 bins (274 sentences
each). IBDecoder (+SA) is trained with KD. Beam size 4.

×). Combining the student schema with IBDecoder
increases the speedup to 4.41× without hurting the
performance (26.6 BLEU, w/ KD). In exchange
of 2.4 BLEU, we could reach 7.24× faster decod-
ing with SA. The compatibility of our model with
the teacher-student framework reflects the gener-
alization of our bidirectional modeling. The re-
sults also demonstrate that efficiency improvements
from faster autoregressive decoding, here obtained
by reducing the number of decoder layers L7, and
from bidirectional decoding, are orthogonal.

Impact of Batch and Beam Size Figure 2 shows
speedups over a standard Transformer with vary-
ing batch and beam sizes. When batch size < 8,
increasing beam size improves the speedup; while
the impact becomes negative with batch size ≥ 8.
Overall, our model is consistently faster than Trans-
former at inference, regardless of the batch and
beam size.

Impact of Source Sentence Length Although
translation quality fluctuates over the source sen-
tence length, Figure 3 shows that our model shares
the same performance pattern with the baseline.

7Also note the concurrent work by (Kasai et al., 2020).
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subject-verb agreement task in Lingeval97.

With respect to the speedup, our model performs
better when translating longer source sentences.

Effect of c Results in Figure 4 show that c con-
trols the trade-off between translation quality and
speedup. With larger c, more target tokens are
predicted per decoding direction, leading to better
speedup, but causing a larger performance drop
w/ and w/o KD. Further analysis reveals that, as
the dependency between predicted target words
weakens, our model suffers from more serious
over-translation issue, yielding larger OTEM (Yang
et al., 2018). Although n-gram deduplication
slightly improves quality8, it does not explain the
whole performance drop, echoing with Wang et al.
(2018). We recommend using c = 2 for a good
balance. In addition, the reduction of OTEM by
KD in Figure 4 partially clarifies its improvement
on quality.

Analysis on Long-range Dependency We
adopt the subject-verb agreement task from
Lingeval97 (Sennrich, 2017) for analysis. We can
see from the results in Figure 5 that IBDecoder

8we only applied deduplication for results in Figure 4.

Model BLEU↑ SU↑

Existing work
SAT (Wang et al., 2018)∗ 26.09† 2.07 ×
SBSG (Zhou et al., 2019)∗ 27.22† 1.61 ×
SynST (Akoury et al., 2019) 20.74 4.86×
Levenshtein (Gu et al., 2019b)∗ 27.27† 4.01×
CMLM (Ghazvininejad et al., 2019)∗ 27.03† -
AXE (Ghazvininejad et al., 2020)∗ 23.53† -

This work SacreBLEU↑
IBDecoder 25.0 25.73† 2.48×

w/ SA 22.3� 22.95† 4.53×
w/ student 25.0 25.33† 4.29×

IBDecoder∗ 26.8 27.50† 2.33×
w/ SA∗ 26.0� 26.84†� 4.35×
w/ student∗ 26.6 27.00† 4.41×

Table 5: Comparison to several recent fast sequence genera-
tion models on WMT14 En-De. ∗: trained w/ KD. †: tokenized
BLEU. �: deduplication applied. SU: short for speedup.

performs similarly to the original Transformer for
agreement over short distances, but agreement
over longer distances drops on average. In contrast,
models that include SA show steep drops in
accuracy for short distances.

Curiously, KD seems to harm agreement scores
even though it led to higher BLEU. Overall, these
results suggest that BLEU does not show the full
quality loss incurred by our independence assump-
tions. This deficiency also provides evidence for
the performance drop in Figure 4.

Comparison to Previous Work Results in Ta-
ble 5 show that our model outperforms SynST (Ak-
oury et al., 2019) in quality, and slightly surpasses
the Levenshtein Transformer (Gu et al., 2019b) in
speed. Particularly, our model (27.50†/2.33×) sur-
passes SAT (Wang et al., 2018) (26.09†/2.07×)
and SBSG (Zhou et al., 2019) (27.22†/1.61×) in
terms of both quality and speed. Our model doesn’t
heavily rely on extra linguistic knowledge (Akoury
et al., 2019), neither requires complex pseudo train-
ing data construction (Gu et al., 2019b). Compared
to these prior studies, our approach is simple but
effective.

5.2 Results on Other Tasks

Table 6 shows MT results for other translation di-
rections, and for document summarization. Re-
gardless of syntactic, morphological, transcript and
sequence-length differences, our model achieves
comparable generation quality and 1.75×–11.15×
speedup over different tasks. With KD, our model
even outperforms the Transformer baseline on 5 out
of 6 tasks. In particular, our model succeeds on the



511

B Model KD Machine Translation Document Summarization

En-Fr Ro-En En-Ru En-Ja Gigaword CDMail

4
Quality↑

Transformer no 32.1 32.7 27.7 43.97 35.03 36.88
IBDecoder no 32.1 33.3 27.0 43.51 34.57 36.11

+ SA no 30.3 31.3 25.0 41.75 33.65 35.27
IBDecoder yes 32.7 33.5 27.5 43.76 35.12 36.46

+ SA yes 31.3 32.7 26.4 42.99 34.74 36.27

Latency↓ IBDecoder yes 231/1.75× 205/1.79× 204/1.82× 157/1.86× 83/2.35× 657/3.02×
/Speedup↑ +SA yes 119/3.41× 109/3.37× 112/3.30× 94/3.10× 47/4.20× 303/6.55×

1

Quality↑

Transformer no 31.6 32.3 27.8 42.95 34.88 34.51
IBDecoder no 31.7 32.6 26.8 43.29 34.22 36.74

+ SA no 29.0 30.4 24.3 41.05 33.25 35.04
IBDecoder yes 32.2 33.2 28.2 43.79 35.18 37.03

+ SA yes 30.7 32.4 26.5 42.70 34.63 36.39

Latency↓ Transformer no 357/1.14× 333/1.10× 342/1.09× 260/1.12× 157/1.24× 1447/1.37×
/Speedup↑ IBDecoder yes 186/2.18× 154/2.37× 157/2.37× 121/2.40× 56/3.51× 312/6.36×

+SA yes 96/4.20× 88/4.17× 90/4.14× 67/4.34× 34/5.83× 178/11.15×

Table 6: Generation quality (BLEU for MT, Rouge-L for summarization) and latency(ms)/speedup on different tasks. We
compare IBDecoder (+SA) with Transformer. Best quality is in bold.

CDMail task which previous non-autoregressive
models rarely attempt due to its lengthy target se-
quence, although our model suffers from the long-
range dependency issue as in Figure 5.

6 Conclusion and Future Work

We present interleaved bidirectional sequence gen-
eration to accelerate decoding by enabling gener-
ation from the left-to-right and right-to-left direc-
tions simultaneously. We combine the strengths
of SBSG (Zhou et al., 2019) and SA (Wang et al.,
2018), and propose a simple interleaved bidirec-
tional decoder (IBDecoder) that can be easily im-
plemented on top of a standard unidirectional de-
coder, like Transformer, via interleaving the target
sequence and tweaking the word positions and self-
attention masks. IBDecoder inherits Transformer’s
training parallelization with no additional model
parameters, and is extensible with SA and multi-
directional decoding. We show that the indepen-
dence assumptions we introduce between the two
directions are less harmful to translation quality
than the independence assumptions in left-to-right
SA. On a series of generation tasks, we report com-
parable quality with significant inference speedup
(4×–11×) and little training overhead. We also
show that the approach is orthogonal to speedups
to autoregressive decoding, e.g. by reducing model
size.

In the future, we would like to further improve
multi-directional generation, and will investigate
alternative ways to partition the target sequence
and encode positional information. We are also in-

terested in better measuring and reducing the qual-
ity loss resulting from long-distance dependencies.
Finally, we would like to adapt our interleaving
approach to other sequence-to-sequence architec-
tures.
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A Data Preprocessing and Model
Settings

We use the given well-processed data for WAT17
En-Ja. For other tasks, we apply the byte pair en-
coding model (Sennrich et al., 2016b) with a joint
vocab size of 32K except for WMT18 En-Ru (48K).
We experiment with Transformer Base (Vaswani
et al., 2017): d = 512, L = 6, 8 attention heads
and FFN size of 2048. Dropout of rate 0.1 is used
on residual connections and attention weights. We
employ Adam (β1 = 0.9, β2 = 0.98) (Kingma and
Ba, 2015) for parameter optimization with a sched-
uled learning rate of warm-up step 4K. Gradient is
estimated over roughly 25K target subwords. We
average the last 5 checkpoints for evaluation, and
use beam search (beam size 4, length penalty 0.6)
by default for inference.

B Estimation of the PMI

To evaluate the average point-wise mutual in-
formation (PMI) in Table 3, we compare IBDe-
coder/vanilla SA to its autoregressive counterpart

in terms of testing perplexity (ppl). Take SA
(h = 1, c = 2) as example, we have:

PMI(SA) = log ppl(SA)− log ppl(Base) (13)

where Base denotes the baseline Transformer.
The intuition behind our estimation is that Trans-
former handles neighboring words (y1, y2) au-
toregressively, thus models their joint probability:
p(y1, y2) = p(y1) · p(y2|y1). Instead, vanilla SA
predicts those words independently, i.e. p(y1) ·
p(y2). Comparing the perplexity of SA and Trans-
former gives an estimation of the average PMI. The
method for IBDecoder follows the same spirit.
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