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Abstract

Translating to and from low-resource polysyn-
thetic languages present numerous challenges
for NMT. We present the results of our sys-
tems for the English–Inuktitut language pair
for the WMT 2020 translation tasks. We in-
vestigated the importance of correct morpho-
logical segmentation, whether or not adding
data from a related language (Greenlandic)
helps, and whether using contextual word em-
beddings improves translation. While each
method showed some promise, the results are
mixed.

1 Introduction

This paper presents the neural machine transla-
tion (NMT) systems submitted by the University
of Groningen to the WMT 2020 translation task1

between Inuktitut and English in both directions
(EN↔IU), describing both constrained and uncon-
strained systems where we investigated the follow-
ing research questions:

• RQ1. Does morphological segmentation ben-
efit translation with polysynthetic languages?
Existing NMT research showed that mor-
phological segmentation outperforms byte-
pair encoding (BPE) (Sennrich et al., 2016)
for some agglutinative languages. For ex-
ample, rule-based morphological segmen-
tation improved English-to-Finnish transla-
tion (Sánchez-Cartagena and Toral, 2016).
and unsupervised morphological segmen-
tation improved Turkish-to-English transla-
tion (Ataman et al., 2017). We investigate
if morphological segmentation also improves
translation performance for polysynthetic lan-
guages, and if effects differ depending on
translation direction.

1http://www.statmt.org/wmt20/
translation-task.html

• RQ2. Does the use of additional data from a
related language, Greenlandic (KL), improve
the outcome? Due to the scarcity of EN–IU
parallel data, we investigate if adding Green-
landic data to the Inuktitut data to train a multi-
lingual NMT system (Johnson et al., 2017),
improves the performance of the NMT sys-
tems on the unconstrained task (Zoph et al.,
2016).

• RQ3. Does the translation benefit from us-
ing contextual word embeddings? The use
of such embeddings has proven beneficial
for many tasks in natural language process-
ing (Devlin et al., 2019), including MT (Zhu
et al., 2020), so we deem it sensible to test this
for a polysynthetic language, which we will
do by means of masked language modelling
pre-training.

In section 2 we present the main data and evalu-
ation measures used. In section 3 we present exper-
iments with morphological segmentation methods.
Section 4 presents the results of our translation sys-
tems, and in section 5 we present our conclusions.

2 Corpora and Evaluation

The preprocessing followed the procedure of Joanis
et al. (2020), carrying out the following steps in or-
der: spelling normalisation and romanisation (only
for IU), punctuation normalisation, tokenisation,
and truecasing (only for EN). Parallel data is addi-
tionally filtered (ratio 15, minimum and maximum
length 1 and 200, respectively). As monolingual
data we use the Common Crawl (CC) corpus for
Inuktitut, and the 2019 version of Newscrawl for
English. For CC we also filter out duplicate lines,
lines of which more than 10% of the characters are
neither alphanumerical nor standard punctuation,
and lines that contain more than 200 words. These

http://www.statmt.org/wmt20/translation-task.html
http://www.statmt.org/wmt20/translation-task.html
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steps reduce the amount of data considerably, from
164,766 to 28,391 lines. Line deduplication is also
applied to Hansards.2

Since the parallel training data contains only
Hansards, we used part of the news from the dev
set as additional training data by splitting the news
part of the dev set: the first 1859 lines are used
for training and the last 567 for development. We
refer to these subsets as newsdevtrain and
newsdevdev, respectively.

Tables 1 and 2 show the parallel and monolin-
gual datasets, respectively, used for training after
preprocessing.

Words
Corpus Sentences EN IU
Hansards 769810 17303903 8236210
Newsdevtrain 1859 40154 24121

Table 1: Preprocessed EN–IU parallel training data.

Lang. Corpus Sentences Words
IU Common Crawl 28391 381805
EN Newscrawl 5000000 143776337

Table 2: Preprocessed monolingual training data.

During development, we evaluated our systems
on the news and Hansards portions of the devel-
opment set, separately. We used two automatic
evaluation metrics: BLEU (Papineni et al., 2002)
and CHRF (Popović, 2015). CHRF is our primary
evaluation metric for EN→IU, due to the fact that
this metric has been shown to correlate better than
BLEU with human evaluation when the target lan-
guage is agglutinative (Bojar et al., 2016). BLEU
is our primary evaluation metric for IU→EN sys-
tems, as the correlations with human evaluation
of BLEU and CHRF are roughly on par for EN
as the target language. Prior to evaluation the MT
output is detruecased (only EN) and detokenized
with Moses’ scripts.

3 Segmentation with intrinsic evaluation

Like many polysynthetic languages, Inuktitut has a
high degree of inflection and agglutination, leading
to very long words with a very high morpheme-to-
word ratio (Mager et al., 2018). By our estimation,

2We used Hansards for training with and without dedupli-
cation and the former led to better results.

Inuktitut has an average of around 4.39 morphemes
per word.

This means on average there are more potential
boundaries, as well as more actual segmentation
boundaries to locate per word, making segmenta-
tion particularly challenging.

Inconsistent segmentation harms an NMT
model’s ability to extract knowledge, because it
reduces the frequency and activation of all vocabu-
lary items during training, such that for each indi-
vidual element in the vocabulary is found in fewer
contexts. At inference, inconsistent segmentation
can result in morphs that are out-of-vocabulary,
resulting in information loss.

We hypothesize that linguistically correct seg-
mentation may be particularly beneficial for transla-
tion with polysynthetic languages because it could
provide more consistent isolation of concepts into
subwords.

We evaluated a broad pool of segmenters to de-
termine how close various methods can achieve lin-
guistically correct segmentation, comparing results
to reference segmentations obtained from the Inuk-
titut Computing GitHub repository3. This reposi-
tory contains 1096 Inuktitut words, manually seg-
mented at the National Research Council of Canada
(NRC).

Our experiments include: Rule-based with
Uqailaut4; Morfessor Baseline (semi-supervised)
(Creutz and Lagus, 2002); Morfessor FlatCat (semi-
supervised) (Grönroos et al., 2014); LMVR (unsu-
pervised) (Ataman et al., 2017); and Neural Trans-
former segmentation (supervised).

We used Uqailaut’s rule-based segmenter to cre-
ate additional annotated segmentations used to train
the supervised and semi-supervised systems. In to-
tal 600,000 segmentations of unique words from
the Hansard training dataset were created. All semi-
supervised and unsupervised systems were trained
with the Hansard training corpus. For training semi-
supervised methods, we use 60,000 of the collected
segmentations with Uqailaut as annotated training
data, and another 3,000 as validation data. For
LMVR we set the maximum lexicon size to 20,000.

Related to our work, a previous study (Kann
et al., 2018) compared segmentation methods based
on their ability to generate linguistically correct
segmentations for several low-resource Mexican
polysynthetic languages. Their proposed RNN-

3https://github.com/LowResourceLanguages/InuktitutComputing
4http://www.inuktitutcomputing.ca/Uqailaut/info.php
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based neural approach outperformed baselines of
other common approaches, so we also tested a neu-
ral segmentation method, but instead of an RNN
we use a Transformer architecture. We implement
this neural segmenter using Marian5. On the source
side, the unsegmented words are used as input data.
The corresponding segmented words are used as
target data. On the target side we denote the seg-
mentation boundary by adding a boundary token
(@), like in the following example:
Source: a k i r a q t u q t u t
Target: a k i r a q @ t u q @ t u t

We trained three neural segmentation models:
one on all 600,000 annotated segmentations, plus
two with 45,000 annotated segmentations, one with
only unambiguous annotations6 and one with a
random selection from the pool of 600,000.

Table 3 shows the intrinsic evaluation results.
Similar to Kann et al. (2018), the neural segmen-
tation model improves over existing segmentation
methods by a considerable margin. The neural
model trained on the 45,000 unambiguous data out-
performed the model trained on all the 600,000
segmentations, suggesting that the consistency of
the data is more important than the quantity. The
other segmenters clearly struggled with the long
words, often splitting words into a combination of
very long root, and very short morphs. FlatCat
scored the highest of the existing methods on both
F1 and accuracy.

Unfortunately, both the neural and rule-based
models sometimes fail to segment the input word.
This makes them unfit to use in a translation sys-
tem; since some words are left unsegmented, and
this leads to a very large vocabulary size which
hurts the translation performance. Micher (2017)
previously explored improving the coverage of the
Uqailaut morphological analyser with the use of an
RNN based approach. In Micher (2018), an SRNN
extension to the Uqailaut morphological analyzer
is used in an SMT system, and yields a statistically
significant improvement for IU→EN translation
compared to the unextended rule-based analysis.
Similar to their approach, we combined the best
performing models of the intrinsic evaluation, to
construct a custom 3-step segmenter to improve
the coverage. This method initially applies the
rule-based segmenter. If the rule-based segmenter
fails, it falls back on the Transformer (unambigu-

5https://marian-nmt.github.io/
6Out of the 600,000 words, Uqailaut produces unambigu-

ous segmentations for 45,000 words

Method F1 Acc. Fail (%)
M. Baseline 0.317 0.222 -
M. FlatCat 0.397 0.328 -
LMVR 0.296 0.240 -
Trf. (45K rand.) 0.378 0.297 -
Trf. (45K single) 0.680 0.539 0.09
Trf. (all 600K) 0.625 0.433 0.55
3-Step 0.741 0.696 -
3-Step + LMVR 0.292 0.258 -
Rule-based 0.716 0.681 11.50

Table 3: Results of the intrinsic evaluation for each seg-
mentation approach. The F1 score is calculated on seg-
mentation boundaries, while the accuracy is calculated
on the full segmentation. The fail statistic signifies the
percentage of words that the approach failed to recon-
struct for the methods for which that can occur.

ous 45K) model. For non-alphabetic tokens we
apply the BPE 5K model, because the Transformer
fails for these tokens.

Preliminary experiments with this approach still
resulted in a very large vocabulary size. To re-
duce the vocabulary size further and combine all
steps into a single model, afterwards we perform
vocabulary reduction using LMVR. We specify a
lexicon size of 20,000, which results in an actual
vocabulary size of 41,024. The vocabulary reduc-
tion applied to the 3-step model leads to a drop in
F1 and accuracy. This could be either because the
vocabulary reduction leads to fewer segmentation
boundaries per word, or because LMVR changes
the model too much.

4 Translation experiments

Unless mentioned otherwise, the translation models
are trained using Marian (Junczys-Dowmunt et al.,
2018) v1.9.0 on an Nvidia V100. The translation
models use the transformer model type with
default settings. We use the ce-mean-words
cost function. We perform a validation run every
5,000 update steps and apply early stopping after
the validation cost stalls 5 times in a row. The
model with the best translation score on the valida-
tion set (Section 2) is stored for each experiment.

4.1 Constrained Systems

Our constrained systems can be divided into four
groups according to the techniques used: tags,
backtranslation and domain-specific data (sec-
tion 4.1.1), morphological segmentation (4.1.2),
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contextual word embeddings (4.1.3) and ensem-
bling and fine tuning (4.1.4).

4.1.1 Initial Systems
In these systems, following Joanis et al. (2020),
we segment the training data with BPE (Sennrich
et al., 2016) separately on each language. 5,000
and 2,000 merges are performed on both languages
for MT systems into EN and IU, respectively.

Table 4 shows our initial constrained systems
and their results on the development set.

IU→EN EN→IU
System News Hansards News Hansards
1 14.73 29.62 40.29 52.97
2 17.96 29.7 47.47 54.20
3 17.24 28.88 51.31 53.86
4 22.24 30.05 NA NA

Table 4: Results of the initial constrained systems for
both translation directions and both dev sets. The
scores are BLEU (IU→EN) and CHRF (EN→IU). Best
result shown in bold.

Initial Systems System 1 is trained on Hansards.
System 2 adds newsdevtrain, oversampled (5
times) given its small size compared to the other
corpus used for training, i.e. Hansards (see Table 1).
This results in a notable improvement for news
(over 3 points into EN and over 7 into IU) and, as
expected, a minor difference for Hansards.

Tags System 3 differs from system 2 in that each
source sentence is preprended with a tag (<H> for
Hansards and <N> for news); this degrades results
into EN, but improves results into IU considerably
for news (almost 4 points), with minimal change to
Hansards.

Backtranslation In system 4 different amounts
of newscrawl 2019 were backtranslated and con-
catenated to the training data of previous systems
3 and 2, with (<B>) and without a tag, respec-
tively. This system is used only for IU→EN and its
best results were obtained with 1 million sentences
without tags; compared to system 2, adding back-
translation results in over 3 points improvement
for news (22.2 vs 18) and a smaller increase for
Hansards (30 vs 29.7).

We also explored the use of backtranslation for
EN→IU. CC (backtranslated into EN) was concate-
nated to the training data of the previous systems 3
and 2, with and without a tag, respectively. Results

IU→EN EN→IU
Model News Hans. News Hans.
BPE 5K 14.77 28.31 32.52 39.81
Morfessor 13.39 26.82 28.75 38.20
FlatCat 12.86 26.49 23.25 29.88
LMVR 14.98 27.50 34.84 41.25
Trf. (single) 11.31 24.56 31.34 39.33
3-St.+LMVR 15.25 28.06 34.51 40.54

Table 5: Results of the extrinsic evaluation for the se-
lected segmentation methods. Scores for IU→EN are
in BLEU, and for EN→IU are in CHRF. Best results
for each dataset and metric are in bold. All models are
trained only on the Hansard training data.

were very similar. We conjecture this was due to
its limited size and noisy nature, since it is web
crawled.

Topic-specific News Because the texts in both
dev sets concern (mostly) events in Nunavut,
we hypothesised that Nunavut-related news only
from our backtranslated news might be beneficial.
We selected only documents from the document-
delimited version of newscrawl that contain any
word from a topic list.7 Topic words were picked
due to being frequent in newsdevtrain and un-
ambiguosly related to Nunavut. 2,845 newssto-
ries were extracted, after preprocessing 150,472
sentences and 3,220,925 words. We trained sys-
tems with this topic-specific backtranslated news
as well as a similar amount of news randomly se-
lected. Contrary to our hypothesis, the random
news outperformed topic-specific news: 18.92 vs
20.2 BLEU on the news part of the dev set.

4.1.2 Morphological segmentation
We train translation models for the segmentation
methods described in Section 3. For these experi-
ments, the English data was segmented using BPE
with 5,000 merges. Results are reported in Ta-
ble 5. Both models that use LMVR for vocabulary
reduction perform well for translation into IU, out-
performing BPE on both Hansard and News data.
There seems to be no benefit from the use of a more
morphologically correct segmenter, as the highest
scoring segmenters on the intrinsic evaluation (Ta-
ble 3) generally performed worse on the extrinsic
evaluation.

Based on the results of this extrinsic evaluation,
we decide to use the BPE, LMVR, and 3-Step seg-

7Baffinland, Inuit, Inuits, inuits, Inuktut, Inuktitut, Iqaluit,
Kivalliq, Nunatsiaq, Nunavik, Nunavut and Savikataaq.
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mentations in our best systems so far (system 3 into
IU and 4 into EN, see Table 4). Different amounts
of BPE merges were tried for EN. The best results
were obtained with 32,000 into IU and 20,000 into
EN, whose results are reported in Table 6. The
LMVR segmenter improved the translation into IU
for the Hansard data, but not for news. For transla-
tion into EN there was no improvement from using
a different segmenter.

IU→EN EN→IU
System News Hans. News Hans.
Sys. 4 & 3 resp. 22.24 30.05 51.31 53.86
LMVR 21.89 29.20 50.36 54.45
3-Step + LMVR 21.79 29.66 50.19 52.18

Table 6: Results of the constrained systems that use
morphological segmentation for both translation di-
rections and both dev sets. The scores are BLEU
(IU→EN) and CHRF (EN→IU). Best results shown
in bold. The IU→EN models are based on system 4,
while the EN→IU models are based on system 3 (Sec-
tion 4.1.1).

4.1.3 Contextual Word Embeddings
With the recent success of pretrained contextual
embeddings in MT (Lample and Conneau, 2019;
Zhu et al., 2020), we try using this technique for
a polysynthetic language. Specifically, we use the
XLM model (Lample and Conneau, 2019), not only
as a means of having contextual embeddings, but
also to leverage available monolingual data for the
task. For our XLM experiments, pretraining uses
both masked language modeling (MLM) and trans-
lation language modeling (TLM). For the NMT
training step, we include both denoising and back-
translation for the monolingual data, as well as
the standard MT training with the parallel data.
Both the pretraining step and the NMT step use the
monolingual data and the parallel data.

Pretraining IU→EN EN→IU
No 19.32 48.36
Yes 18.58 49.10

Table 7: Comparison of pretrained and non-pretrained
XLM systems on the News dev set. The scores are
BLEU (IU→EN) and CHRF (EN→IU).

To observe the effect of language model pretrain-
ing, we train a model using the same data used
in system 4 (see Table 4), with 10,000 BPE joins

applied jointly to both languages.8 See results in
Table 7. Interestingly, the performance decreases
for IU→EN but increases for EN→IU when pre-
training is added. A possible explanation for this
is that Inuktitut stands to benefit more from pre-
training as it uses more of the total joint vocabulary
(around 90% of the tokens compared to 70%).

To use the existing monolingual data (Section 2),
we train XLM models with the News Crawl data
for English and Common Crawl data for Inuktitut,
as specified in Table 2. We also use Hansards and
Newsdevtrain oversampled 5 times for parallel
data. We try both tagging the data (with the Com-
mon Crawl data receiving its own tag, <C>) and
leaving it untagged. We report the results in Table
8. The results indicate an improvement with tagged
data in the EN→IU direction. This is consistent
with our observations with Marian-run models (sys-
tems 2 and 3 in Table 4). The XLM model results

Tagged IU→EN EN→IU
No 18.96 48.9
Yes 16.76 49.97

Table 8: Results of the XLM models using monolingual
data on the News dev set. Scores are BLEU (IU→EN)
and CHRF (EN→IU).

show that despite removing back-translated parallel
data, results are similar. This is almost certainly
due to the on-the-fly back-translation present in the
training scheme. The results for EN→IU are im-
proved, which is likely due to even a small amount
of Inuktitut Common Crawl data being indeed use-
ful for training.

The best result with XLM (19.32 BLEU for
IU→EN) is almost 3 points behind the result of
the system trained with Marian on the same data
(22.24, system 5 in Table 4). A difference between
these two systems is that XLM uses joint BPE
(since the encoder is shared by both languages),
while with Marian we used separate BPE models
for each language, following Joanis et al. (2020).
To have a fairer comparison, we train the same Mar-
ian model with joint BPE, which leads to a score
of 21.43, still 2 points ahead of the XLM model.

This difference in performance can be attributed,
we hypothesise, to two reasons: (i) the XLM mod-
els use a joint encoder and decoder for both lan-
guages so the model must learn to translate in both

8We apply BPE jointly as it follows the methods of Lample
and Conneau (2019).
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directions and (ii) differences in implementation of
the Transformer model in both toolkits.

4.1.4 Ensembles

For our final submissions, we depart from the best
system so far (3 into IU and 4 into EN) and exper-
iment with the use of ensembling and fine-tuning
techniques. While some systems that used mor-
phological segmentation performed similarly to
those with BPE, their ensembles lagged behind.
We therefore focused on BPE-based systems. In
the following experiments we varied the value of
the decoder’s penalty length based on results on the
dev set (until now we had used the value 1.0): for
IU→EN we use 0.8 for news and 1.4 for Hansards
while for EN→IU 1.2 was used for both dev sets.
The results are shown in Table 9.

IU→EN EN→IU
System News Hans. News Hans.
best single system 22.38 38.41 51.83 54.35
ens normal 23.72 39.07 52.92 55.05
ens FT 24.01 39.72 53.19 55.31
ens normal + FT 24.25 39.67 53.46 55.39

Table 9: Results of the constrained systems that use
ensembling (referred to as ens) and fine tuning (FT)
for both translation directions and both dev sets. The
scores are BLEU (IU→EN) and CHRF (EN→IU). Best
results shown in bold.

Ensembles are built by training the same system
with different seeds (4 into EN and 3 into IU) and
picking the model from each training seed with
the highest score. These bring consistent improve-
ments for both directions and dev sets: from 0.66
points for IU→EN Hansards to 1.34 for news in
the same direction (row “ens normal” in Table 9).

We fine tune on newsdevtrain on its own
and together with backtranslated news (only into
EN) for the news dev set and on Hansards for the
Hansards dev set. The ensembles of fine-tuned
models bring consistent improvements compared
to ensembles of non fine-tuned systems (row “ens
FT” versus “ens normal” in Table 9). Finally, en-
sembling both fine-tuned and no fine-tuned sys-
tems (row “ens normal + FT” in Table 9) pushes
the scores further (except for Hansards IU→EN)
though rather slightly.

4.2 Unconstrained Systems
4.2.1 Data Acquisition
We use three additional parallel corpora that we
acquired. First, we use data from the Inuktitut mag-
azine9, which contains parallel articles about Inuit
culture and society in Inuktitut (IU), English (EN),
and French; we manually extracted the text (IU
syllabics, romanized IU, and EN) from several re-
cent issues. Second, we use data from a Kalaallisut
(KL) magazine10 containing parallel news articles
in Danish (DA) and KL. These texts were also
manually extracted. Thirdly, parallel data from 21
multilingual websites containing DA and KL texts,
was crawled using bitextor11.

4.2.2 MT with Unconstrained Data
These datasets are pre-processed just like the ones
from the constrained setup. In addition, we select a
subset using their sentence alignment confidence
score.12 The KL crawl is paired with Danish. We
performed language classification on the Danish
data using LangID13, removing any sentence pairs
not classified as Danish. Danish was translated
into English with a pretrained DA→EN system14

from OPUS-MT (Tiedemann and Thottingal, 2020).
Dataset details are presented in Table 10.

Words
Corpus Sentences EN IU/KL
IU Magazine 1134 29312 18152
KL Magazine 657 13009 7491
KL crawl 14778 277159 163468

Table 10: Preprocessed unconstrained parallel training
data.

We added these corpora atop the best constrained
systems (3 into IU and 4 into EN) one at a time and
evaluated on the news part of the dev set. Table 11
shows the results. Into EN, adding IU magazine
(for which we tried different oversampling values)
did not improve results. Due to this and time limi-
tations we did not add the remaining unconstrained

9Inuktitut Magazine, https://www.itk.ca/category/inuktitut-
magazine/.

10Atuagagdliutit, https://timarit.is
11https://github.com/bitextor/bitextor
12The datasets were aligned with Hunalign, which provides

a confidence score. We experimented with different thresholds
and based on results on the dev set and used 0.4 for IU and
KL magazines and 0.5 for KL crawl (Varga et al., 2007).

13https://github.com/saffsd/langid.py
14https://object.pouta.csc.fi/OPUS-MT-models/da-

en/opus-2019-12-04.zip



280

data. Into IU, adding IU magazine (with a tag and
oversampled 5 times) resulted in a slight improve-
ment (51.9 vs 51.3). Adding to this KL magazine
(also oversampled 5 times) degraded results, as did
adding KL crawl (although to a lesser extent).

System IU→EN EN→IU
Best constrained (5, 3 resp.) 22.24 51.31
+ IU magazine 22.22 51.88
+ IU mag + KL mag 50.57
+ IU mag + KL crawl 51.27

Table 11: Results of the unconstrained systems for both
translation directions and both dev sets. The scores are
BLEU (IU→EN) and CHRF (EN→IU). Best results
shown in bold.

5 Conclusions

This paper has reported on the systems sub-
mitted by the University of Groningen to the
English↔Inuktitut translation directions of the
news shared task at WMT 2020.15 Our best results
were obtained using well-established techniques,
including oversampling domain-specific training
data, backtranslation, tags, fine-tuning and ensem-
bling.

The use of morphological segmentation (RQ1)
led to results that were on par with those obtained
by BPE in terms of automatic evaluation metrics.
One problem is that existing morphological seg-
menters for low-resourced languages like Inuk-
titut suffer from poor coverage, which impedes
making a complete comparison with more auto-
matic methods. The extrinsic comparisons between
segmenters showed that a more accurate morpho-
logical segmentation does not lead to improved
translation performance. We further found that
existing language agnostic segmenters struggle to
produce correct segmentations on Inuktitut, and
that neural methods appear to be more suitable for
polysynthetic languages (cf. (Kann et al., 2018)) .
Note also the importance of limiting the vocabulary
size of morphological segmentation for MT, which
could be explored further.

The use of additional data from Inuktitut did
improve the results slightly, but not the addition of
data from a related language, Greenlandic (RQ2).
The fact that its usefulness was limited could be
due to the fact that half of the test set was from a

15We will provide links to the additional datasets we used
in the camera-ready version.

specific domain for which considerable amounts of
data were already available to train (Hansards).

Finally, the use of contextual embeddings (RQ3),
led to mixed results since it resulted in an improve-
ment for one direction but a degradation for the
other.

Acknowledgments

We would like to thank the Center for Information
Technology of the University of Groningen for their
support and for providing access to the Peregrine
high performance computing cluster. Thanks also
to Ben Shaffrey, Barbera de Mol and Adna Bliek
for help preparing the Inuktitut magazine data.

References
Duygu Ataman, Matteo Negri, Marco Turchi, and Mar-

cello Federico. 2017. Linguistically motivated vo-
cabulary reduction for neural machine translation
from turkish to english. The Prague Bulletin of
Mathematical Linguistics, 108(1):331–342.
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