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Abstract
Users of machine translation (MT) may want
to ensure the use of specific lexical terminolo-
gies. While there exist techniques for incor-
porating terminology constraints during infer-
ence for MT, current APE approaches can-
not ensure that they will appear in the final
translation. In this paper, we present both
autoregressive and non-autoregressive models
for lexically constrained APE, demonstrating
that our approach enables preservation of 95%
of the terminologies and also improves trans-
lation quality on English-German benchmarks.
Even when applied to lexically constrained
MT output, our approach is able to improve
preservation of the terminologies. However,
we show that our models do not learn to copy
constraints systematically and suggest a sim-
ple data augmentation technique that leads to
improved performance and robustness.

1 Introduction

Automatic post-editing (APE) aims to improve the
quality of the output of an arbitrary machine trans-
lation (MT) system by pruning systematic errors
and adapting to a domain-specific style and vocab-
ulary (Simard et al., 2007; Chatterjee et al., 2018).
Although previous work has shown the usefulness
of APE to prune errors by focusing on improving
the translation error rate (TER), few have studied
the effect of incorporating lexical constraints.

There are several use cases where such a sys-
tem would be beneficial. For example, content
providers meticulously curate lists of terminolo-
gies for their domains that indicate preferred trans-
lations for technical terms. Lexically constrained
APE would also be useful for cross-lingual infor-
mation retrieval. When displaying snippets from
retrieved documents, the query term should appear
in the translation output (if it does in the source) as
it can make relevance clear to the end user. Here,
the query serves as the term.

While recent approaches allow inference time
adaptation of NMT systems using these terminolo-
gies (Dinu et al., 2019; Post and Vilar, 2018), post-
editing translations with a generic APE system may
lead to dropped terms. A constraint-aware APE sys-
tem would allow to fix systematic translation errors,
while keeping the terminologies intact.

Inspired by Dinu et al. (2019), we consider a
range of representations which augment input se-
quences with constraint tokens and factors for use
in an autoregressive Transformer (AT) APE model.
Using this approach, the constraints are explicitly
represented in the encoder input sequence, and the
model learns to prefer translations that contain the
supplied terminologies during decoding. We also
explore the use of the Levenshtein Transformer
(LevT) (Gu et al., 2019), a non-autoregressive
Transformer (NAT) model. The LevT model ap-
plies neatly to the APE task since the decoder can
be initialized with an incomplete sequence to be
refined. Additionally, multiple corrections can be
made simultaneously, yielding a decoding speedup
over autoregressive models.

We then show that constrained APE improves
translation quality and terminology preservation
on top of both unconstrained and constrained MT.
While both constrained and unconstrained APE
models perform similarly on reducing systemic er-
rors in the MT output, they differ in their ability to
preserve terminology constraints. When applying
unconstrained APE on top of constrained MT, we
find a 12.6% relative drop of supplied terminology
constraints as compared to a fully constrained MT
to APE pipeline.

We experiment extensively with variations of
both AT and LevT models, testing on both PBMT
and NMT English to German WMT APE tasks
(Chatterjee et al., 2018). Under all scenarios, the
model performs post-editing while satisfying ter-
minology constraints when supplied.
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Our evaluation of both constrained AT and NAT
models on PBMT and NMT APE benchmarks
shows that both models correctly translate more
than 95% of terminology constraints, with the NAT
model achieving the highest coverage of terminolo-
gies at the expense of post-editing quality.

Finally, using constraints constructed with syn-
onyms and antonyms, we show that our models do
not learn to copy constraints systematically, and
introduce a simple data augmentation strategy to
improve the preservation of unusual constraints.

To summarize, our contributions are as follows:

1. We propose the terminology constrained APE
task and evaluate several AT and LevT model
variants for incorporating lexical constraints.

2. We empirically show that constrained APE is
necessary to preserve terminology constraints
in a MT to APE pipeline.

3. We analyze the robustness of the constraint
translation behavior and suggest a simple data
augmentation technique that both improves
translation quality and increases the number
of correctly translated terms.

2 Related Work

2.1 MT with Terminology Constraints

Integrating terminology constraints into translation
can be divided into two approaches: constrained
decoding and input sequence modification.

Constrained decoding modifies the decoding pro-
cess to enforce the generation of the specified termi-
nologies. This includes methods that modify beam
search, such as grid beam search (Hokamp and Liu,
2017) and dynamic beam allocations (Post and Vi-
lar, 2018). While these approaches are effective
in including terminologies, they come with an in-
crease in inference time due to the added overhead
in the search algorithm.

The LevT (Gu et al., 2019), which uses a non-
autoregressive decoding procedure, can initialize
its decoder with a partial or incomplete output se-
quence. By initializing the decoder output with ter-
minology constraints, Susanto et al. (2020) train a
LevT model to perform constrained decoding. Un-
like constrained search methods in autoregressive
models, this initialization technique does not add
any significant overhead to the decoding process.
When modified to disallow deletion of terms and
insertion between consecutive terminology tokens,

LevT is able to retain all terminologies without
affecting the performance and speed.

Alternatively, Dinu et al. (2019) propose modi-
fying the encoder input sequence to represent ter-
minology constraints. During training, the model
learns to identify constraints in the input sequence,
and translate them appropriately during decoding.
This approach has the benefit of not adding addi-
tional overhead during inference.

2.2 Automatic Post-Editing

The APE task has gone through many iterations,
since it was originally proposed by Simard et al.
(2007). Initially, the task was to improve an un-
known phrase-based machine transition (PBMT)
system. An additional task to fix errors of an NMT
system was introduced at WMT 2018 (Chatterjee
et al., 2018).

For the APE tasks, the use of the multi-source
variant of the neural encoder-decoder model is
the most popular approach (Bojar et al., 2017),
with the Multi-source Transformer (MST) instanti-
ation (Junczys-Dowmunt and Grundkiewicz, 2018)
achieving state-of-the-art results in 2018. Based
on the AT model (Vaswani et al., 2017), the MST
model consists of two Transformer encoders and
a single decoder. The source sentence and the MT
system output are fed separately to the two en-
coders, where the outputs are concatenated and
then fed into the decoder to perform post-editing.

Recent work has explored alternative architec-
tures for APE. The winner of 2019 APE tasks
(Lopes et al., 2019), for example, uses a BERT-
based encoder and decoder. Gu et al. (2019) both
introduce the LevT model and demonstrate its util-
ity on an APE task.

3 Constrained APE

The task of APE is to correct systematic errors in
an MT system output. An APE model takes as
input two sequences: the source language sentence
to be translated and the translation of this sentence
into the target language by an MT system. The
intended output is a corrected version of the MT
system’s initial translation (Simard et al., 2007).

Constrained APE allows for the specification of
terminology constraints: a translation for one or
more phrases in the source language input may be
pre-specified as additional input. The constrained
APE model must use the supplied terminology con-
straints when performing the APE task.
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Source (x) The Gradient tool also provides most of the same features as the Gradient panel .

Append (x+) The0 Gradient0 tool0 also0 provides0 most0 of0 the0 same0 features1 Funktionen2

as0 the0 Gradient0 panel0 .0
Replace (x−) The0 Gradient0 tool0 also0 provides0 most0 of0 the0 same0 Funktionen2 as0 the0

Gradient0 panel0 .0

MT (γ) Das3 Verlaufswerkzeug3 bietet3 außerdem3 die3 meisten3 der3 gleichen3 Merkmale3
wie3 das3 Verlaufsbedienfeld3 .3

Post-Edit (y) Das Verlaufswerkzeug bietet fast dieselben Funktionen wie das Verlaufsbedienfeld .

Figure 1: An example of the inputs and output for the constrained APE task. Source is the source sentence. Post-
Edit is the corrected MT sentence. We show the Append and Replace method to incorporate terminologies on the
source side. Factors indicated for each word as source word (0), source constraint (1), target constraint (2), and
MT word (3). The terminology pair for this example is (features, Funktionen).

Formally, let x = [x1, . . . , xm] and γ =
[γ1, . . . , γn] be the source language sentence and
the initial MT translation respectively. The to-
kens xi and γi are drawn from the source and tar-
get language vocabularies S and T respectively.
The target post-edited sentence is a sequence y =
[y1, . . . , yo], with tokens yi also drawn from T .

We are also given a series of t translation con-
straints, C =

{(
x̌(1), y̌(1),

)
, . . . ,

(
x̌(t), y̌(t),

)}
,

where each constraint
(
x̌(i), y̌(i)

)
∈ S∗×T ∗ is a tu-

ple of source language phrase, x̌(i) = [x̌1, . . . , x̌j ] ,
and its desired translation, y̌(i) = [y̌1, . . . , y̌k], into
the target language.

The goal of the constrained APE task is to learn
a mapping of x,γ, and C to the target post-edited
translation y. Crucially, when a source side con-
straint x̌(i) matches a sub-sequence in x, it is re-
quired that the sub-sequence be translated as y̌(i).
See Figure 1 for an example.

4 Models

While there are existing models to address the APE
task, and the lexical constrained MT task, it is not
clear how to represent lexical constraints for APE
models which, unlike MT models, take two se-
quences as input. We propose several techniques
to incorporate constraints as additional inputs to
the APE encoder by combining the input sequence
modification used in constrained MT (Dinu et al.,
2019) with the MST method of (Tebbifakhr et al.,
2018). For decoding, we experiment with both the
AT and the LevT decoders. The LevT decoder can
additionally take advantage of different decoder
initialization strategies for constrained decoding.

We first briefly show how we encode terminol-
ogy constraints in the input sequence, before de-

Model Input Init.

MST x,γ –
MST Append x+,γ –
MST Replace x−,γ –

LevT x γ
LevT Append x+ γ
LevT Replace x− γ

MS LevT x,γ y̌1, . . . , y̌(t)

Figure 2: Setup for the models by the input and initial-
ization at inference.

scribing how they are incorporated into the MST
and LevT APE models specifically.

4.1 Encoding Lexical Constraints for APE in
the Input Sequence

In the APE setting, the input to the model is the
source language sentence x and its initial MT trans-
lation γ. We also need to represent in x the transla-
tion constraints C.

For clarity, we describe the case of represent-
ing a single translation constraint (x̌, y̌) where
x̌ = [x̌1, . . . , x̌j ] is a source language constraint
and y̌ = [y̌1, . . . , y̌k] is its target language transla-
tion. Our approach trivially generalizes to multiple
constraints. We represent the constraint (x̌, y̌) in x
in one of two ways. Either by appending the target
language constraint y̌ after the occurrence of x̌ in
the input sequence, or by replacing occurrences of
x̌ in x with y̌.

For example, if we had the constraint, (x̌, y̌) =
([x̌1, x̌2] , [y̌1]) and the source input x =
[x1, x2, x3, x4], with [x̌1, x̌2] = [x2, x3], we would
obtain the following input sequences for the append
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and replace methods:

• (Append) x+ = [x1, x2, x3, y̌1, x4]

• (Replace) x− = [x1, y̌1, x4] .

To further differentiate the constraint terms from
other tokens in the source sentence, a “source fac-
tor” is associated with each input token. The source
factor is equal to 1 or 2 to indicate a source or target
side terminology constraint, while 0 indicates an
unconstrained source token. For the above exam-
ples, we would obtain the following source factors:

• (Append) s+ = [0, 1, 1, 2, 0]

• (Replace) s− = [0, 2, 0] .

The source input sequence and source factor se-
quence are separately embedded and concatenated
before they are fed into the encoder. See Figure 1
for examples of the append and replace methods
applied to a source sentence.

We now describe how we use these modified in-
put sequences in the MST and LevT models. See
Figure 2 for an overview of the the proposed mod-
els and their configuration.

4.2 Multi-source Transformer
The input to an APE model is a pair of sequences,
the source sentence and the MT output to be post-
edited. To accommodate these two sequences, we
use the MST model of Tebbifakhr et al. (2018),
which uses a separate Transformer to encode each
sequence. The outputs of each encoder are concate-
nated and attended to by the decoder.

We augment the encoder for the source sentence
with the append and replace methods. Figure 1
shows an example of the inputs for the append
and replace methods, x+ and x− respectively. To
account for the additional input of MT, γ, for the
source factors, we use 3 for each token in γ. For
Byte-Pair Encoding (BPE) (Sennrich et al., 2016),
the corresponding source factor token is applied for
all subword units.

We train three variants based on MST: an un-
constrained version as the baseline (MST), and
two constrained versions using the append (MST
Append) and replace (MST Replace) methods as
described in subsection 4.1.

4.3 Levenshtein Transformer
The LevT follows the Transformer encoder-
decoder architecture. However, instead of a regular

Transformer decoder, the model uses three consec-
utive layers to simulate the edit operations. The
first layer predicts whether each token should be
deleted or kept. The second layer predicts how
many placeholder tokens to insert between every
two consecutive tokens. The final layer then pre-
dicts the actual target token for each placeholder.

One benefit of using the LevT is its ability to
initialize the decoding process with an arbitrary se-
quence. The first iteration of the decoding process
is typically initialized with y0 = [<s>,</s>], but
it is possible to initialize it with MT (i.e. γ) and
allow it to be subsequently refined.

Since LevT retains the single encoder and de-
coder structure, the changes to incorporate lexical
constraints are straightforward; we apply the ap-
pend and replace methods to the encoder input.

We also try augmenting the LevT similarly to the
MST. Here, we have two encoders for the source,
x, and MT, γ, respectively. During inference, we
initialize the decoding string with target-side con-
straint terms, y̌, similar to the constrained decoding
setup in Susanto et al. (2020).

For multiple constraints, we sort the target side
terms y̌(i) by the order of the occurrence of x̌(i)

in the source x. When source and target word or-
der diverge, we hope that the model will learn to
reorder constraints correctly, but leave experimen-
tation with constraint ordering for future work.

We train four variants of the LevT model. An
unconstrained baseline model (LevT), and two con-
strained variants, with the same architecture as
the base LevT, that incorporate constraints in the
source using the append (x+) (LevT Append) and
replace (x−) (LevT Replace) methods described
in subsection 4.1. The decoder initialization for
these models is the MT sentence, γ, that needs to
be edited. The final variant has a multi-source en-
coder, where x and γ are fed into separate encoders.
The decoder in this case is initialized with the target
sequence of the terminology constraint(s).

5 Data

5.1 APE Datasets

We use two standard English-to-German APE
benchmark datasets, WMT18 PBMT (Chatterjee
et al., 2018) and WMT19 NMT (Chatterjee et al.,
2019). Both datasets are in the IT domain. Each
example from these datasets consists of three se-
quences: (1) the source sentence x, (2) its MT
output γ, and (3) its post-edited target y.
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Dataset
# of Triplets

Term% TER BLEU
Train Valid Test

PBMT
artificial 4M 4,390,180 1,000 - - - -

artificial 500K 526,368 - - - - -
WMT’18 APE 24,000 2,000 2,000 88.83 24.57 62.39

NMT
eSCAPE NMT 4,999,102 1,000 - - - -
WMT’19 APE 13,442 1,000 1,023 89.52 16.92 74.60

Table 1: Statistics for data used. Term%, TER, and BLEU are provided for do-nothing case of test set.

Since the official collections are relatively small,
we augment them with large synthetic datasets
for pretraining: artificial (Junczys-Dowmunt and
Grundkiewicz, 2016) and eSCAPE (Negri et al.,
2018). The artificial dataset is generated using
round-trip translation of two PBMT systems. It
is already cleaned and tokenized. The eSCAPE
dataset, containing 7,258,533 triplets, is created
using NMT generated output from various parallel
corpora. The data for eSCAPE is noisy, and we
follow Lee et al. (2019)’s procedure to filter the
dataset, which results in around 5 million triplets.
We then tokenize the filtered data using Moses
(Koehn et al., 2007).1 For pretraining on the syn-
thetic corpora, we set aside 1,000 randomly sam-
pled triplets as our validation set. Table 1 sum-
marizes the statistics of both the evaluation and
pretraining datasets.

For both tasks, we use the same preprocessing
steps. After tokenization, we truecase the data
using Moses. We then use BPE with 32,000 merge
operations on the joined vocabulary of source and
target language.

5.2 Terminology Dataset
We create terminology sets for each APE dataset us-
ing Wiktionary.2 We follow the procedure of Dinu
et al. (2019), finding term translation pairs (x̌, y̌)
in Wiktionary such that x̌ is present in the source
sentence x and y̌ is present in the post-edited target
sentence y. We ignore stop words that appear on
the source and target side. To include more morpho-
logical variations, we include matches on stemmed
versions of x̌ and y̌ using Snowball stemming.3

We recover the unstemmed words from the pairs
to be included in the terminology dataset. In order

1www.statmt.org/moses/
2We use the latest dump as of 06/18/2020
3www.nltk.org/_modules/nltk/stem/

snowball.html

for the model to perform the APE task well when
no constraints are supplied, we keep only 25% of
matched terminology constraints (i.e. we remove
75% of constraints at random).

We split the terminology dataset into training and
test sets so that terminology constraints provided
at test time are not seen during training. We only
use the training set for the training corpora of APE
datasets, and use the test sets of the terminology on
the validation and test set of the APE datasets. See
Table 2 for statistics of terminology coverage on
the training, validation, and test splits.

With the given MT system, we can evaluate on
terminology percentage for the do-nothing case,
which is shown in Table 1. The original MT model
already achieves a high term percentage of around
90% for PBMT and NMT tasks.

6 Experiments

We use the FAIRSEQ toolkit (Ott et al., 2019) for
implementing the MST and extending the LevT.4

We evaluate the models on translation error rate
(TER) (Snover et al., 2006) and BLEU (Papineni
et al., 2002) using the official evaluation script5 for
analyzing the post-editing performance. We also
compute the percentage of target language term
constraints present in the output (Term %) to mea-
sure the performance of the constrained models.

6.1 Constrained MT-to-APE Cascades

In our first experiment, we attempt to demonstrate
the utility of constrained APE when applied to con-
strained MT. That is, we have some terminology
constraints that we want to preserve throughout
the application of MT and subsequent APE. We

4Our code is publicly available at https://github.
com/zerocstaker/constrained_ape.

5www.dropbox.com/s/5jw5maariwey080/
Evaluation_Script.tar.gz?dl=0

www.statmt.org/moses/
www.nltk.org/_modules/nltk/stem/snowball.html
www.nltk.org/_modules/nltk/stem/snowball.html
https://github.com/zerocstaker/constrained_ape
https://github.com/zerocstaker/constrained_ape
www.dropbox.com/s/5jw5maariwey080/Evaluation_Script.tar.gz?dl=0
www.dropbox.com/s/5jw5maariwey080/Evaluation_Script.tar.gz?dl=0
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Dataset
# of Triplets with Term. Avg # of Term.

Train Valid Test Train Valid Test

PBMT
artificial 4M 1,605,075 345 - 1.25 1.25 -

artificial 500K 207,225 - - 1.27 - -
WMT’18 APE 6,037 834 528 1.15 1.24 1.34

NMT
escape NMT 1,768,587 335 - 1.28 1.30 -

WMT’19 APE 3,450 262 408 1.16 1.14 1.25

Table 2: The number of training/validation/test instances that have at least one terminology constraint and the
average number of terminology constraints for those instances.

conjecture that unconstrained APE applied on top
of constrained MT will potentially discard or re-
translate previously translated constraints.

We experiment with all possible pipelines of MT
to APE, i.e. the product of {MT,Const. MT} ×
{No APE,APE,Const. APE} with six total
pipelines possible.

MT Models To obtain MT models for this ex-
periment we train both a constrained and uncon-
strained AT MT model using the default FAIRSEQ

Transformer hyperparameters and use the embed-
ding size of 16 for the source factor embedding. We
follow the settings of Dinu et al. (2019), training an
unconstrained transformer and a constrained model
with append method to perform English-to-German
translation using the Europarl and News Commen-
tary data, and using the WMT 2013/2017 test set
as validation and test set respectively. The prepro-
cessing steps follows that of the APE datasets.

For the constrained MT model we used the ap-
pend input modification method to make the model
constraint aware. Terminology constraints are gen-
erated according to the method described in sub-
section 5.2. Dinu et al. (2019) also released their
Wiktionary terminology set (Wikt975)6 and we also
show evaluation results using this terminology col-
lection. We report BLEU and terminology cover-
age (Term %) for our MT models on the WMT
2017 test set in Table 3.

APE Models We use the MST and the append
method as the unconstrained APE and constrained
APE respectively. We evaluate the MT to APE
pipelines using the WMT’19 APE test set, replac-
ing the provided MT in the triplet with the outputs
from our unconstrained or constrained MT models.

6https://github.com/mtresearcher/
terminology_dataset

Our Term. Wikt 975

MT Term% BLEU Term% BLEU

AT 71.70 23.76 74.78 24.00
AT App. 93.62 24.62 93.07 24.14

Table 3: Translation result of vanilla and lexically con-
strained translation.

We train the APE models using the eSCAPE cor-
pus, where 1,000 triplets are used as validation set.
We use the default FAIRSEQ Transformer hyper-
parameters. For the constrained APE, we use the
embedding size of 16 for the source factor tokens.

6.2 Benchmark APE Tasks

The APE models are trained in two step fashion.
First, a general APE system is trained using a syn-
thetic dataset until convergence. Then the model
is refined on the official dataset. For the PBMT
task, we follow the training procedure of Gu et al.
(2019). The model is pretrained on the artificial 4M
dataset, and fine-tuned on the joined dataset of the
500K artificial dataset and the 10 times up-sampled
official PBMT data. For the NMT task, we pretrain
on eSCAPE and fine-tune on the official NMT data.

We use the default Transformer parameters for
the MST variants, with an embedding size of 16 for
source factors of the constrained APE models. For
the LevT models, we follow the same setup and
hyper-parameters as described in Gu et al. (2019).

We compare our models to the do-nothing case,
where the output of the MT, γ, is treated as the pre-
dicted post-edited sentence ŷ. The unconstrained
variant also serve as a basis for comparing the per-
formance of the constrainted APE models. We also
compare our models to the winning system for the
tasks, MS UEdin (Junczys-Dowmunt and Grund-

https://github.com/mtresearcher/terminology_dataset
https://github.com/mtresearcher/terminology_dataset
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Pipeline Term%↑ TER↓ BLEU↑

MT 45.33 70.78 15.28
cMT 86.33 70.24 15.47

MT → APE 55.35 59.56 22.87
cMT → APE 77.22 59.78 23.03
MT → cAPE 80.18 58.70 23.95

cMT → cAPE 88.38 59.77 23.08

Table 4: Result of different combinations of MT and
APE systems. Constrained MT and APE are indicated
cMT and cAPE respectively.

kiewicz, 2018) for PBMT 2018 and Unbabel BERT
Lopes et al. (2019) for NMT 2019.

7 Results and Discussions

7.1 Constrained MT-to-APE Cascade

Table 4 shows the result of the various combina-
tions of MT and APE systems. Since the MT sys-
tem is trained on news/parliamentary proceedings
and not on the IT domain of the APE data, the
translation quality is relatively low. Nevertheless,
the constrained MT can include almost twice as
many terminologies as the original model. Both
APE systems improve the quality of the MT out-
puts, with constrained APE performing slightly
better. However, constrained APE excels at includ-
ing terminologies, as it consistently increases the
terminology percentage from the previous MT out-
put. When supplied with a constrained MT, the
vanilla APE actually decreases the percentage of
correct terminologies by 9% (86.33% to 77.22%),
whereas the constrained APE model can increase it
by 2% (86.33% to 88.38%).

7.2 Benchmark APE on PBMT Output

Table 5 shows the results on the PBMT task. All
MST variants improve from the do-nothing case,
where the output is unchanged, i.e.γ = ŷ. Using
either the append or replace methods shows simi-
lar improvements in Term%, increasing about 7%
points absolutely over the do nothing case. The
terminology aware MST models also see small
decreases in TER and small increases in BLEU
relative to the unconstrained MST model. These
results are encouraging as it shows that introducing
terminology constraints does not interfere with the
APE system’s ability to fix systematic errors.

We were unable to reproduce the result by Gu
et al. (2019); we see only small improvements with

Models Term%↑ TER↓ BLEU↑

Do-nothing 88.48 24.25 62.99
MS UEdin 88.70 18.01 72.52

MST 90.11 19.34 70.44
MST Append 95.54 18.97 70.63
MST Replace 95.43 19.17 70.34

LevT 90.76 24.21 63.47
LevT App. 90.98 23.88 64.97
LevT Rep. 91.41 23.94 64.96
MS LevT 97.50 20.39 68.57

Table 5: Results for PBMT 2018.

models Term%↑ TER↓ BLEU↑

Do-nothing 90.22 16.84 74.73
Unbabel BERT 89.98 16.06 75.96

MST 90.66 16.46 75.61
MST Append 94.08 16.62 75.16
MST Replace 94.08 16.56 75.39

LevT 90.41 17.28 74.17
LevT App. 91.59 17.32 74.25
LevT Rep. 90.61 17.14 74.46
MS LevT 98.04 17.71 73.64

Table 6: Results for NMT 2019.

the LevT models relative to the do-nothing case.
Additionally, the append and replace variants yield
only small increases in Term% but are around 4-5%
points behind the equivalent MST model. The MS
LevT, however, achieves the highest terminology
percentage of all models, while slightly underper-
forming the MST models on TER and BLEU.

None of our proposed models beat the SOTA
baseline for this task on TER or BLEU, but our
best model on TER, MST Append, is less than 1
percentage point worse in TER. At the same time,
MST Append successfully translates 6.8% more
terminology constraints than the SOTA baseline.

7.3 Benchmark APE on NMT Output

Table 6 shows the result of the NMT task. This is a
more difficult post editing task as the machine trans-
lated text from NMT systems is of a higher quality
than PBMT systems, and the official training cor-
pus is smaller than that of PBMT APE (Chatterjee
et al., 2018). As further evidence of the difficulty
of this task, the winning system of the WMT2019
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Original

Source (x) increasing the magnification can also make reshaping easier and more accurate .
MT (γ) durch das Vergrößern der Vergrößerung können Sie außerdem das Umformen von Formen

und präziser steuern .
Post-Edit (y) durch das Vergrößern der Vergrößerung können Sie außerdem das Umformen von Formen

präziser steuern .
MST Append Durch das Vergrößern der Vergrößerung können Sie außerdem das Umformen von Formen

erleichtern und präziser steuern .
MS LevT Durch die zunehmende Vergrößerung können Sie außerdem das Umformen von Formen und

präziser steuern .

Synonym

Post-Edit (y) durch das Vergrößern der Magnifizierung können Sie außerdem das Umformen von Formen
präziser steuern .

MST Append durch das Vergrößern der Magnifizierung können Sie außerdem das Umformen von Formen
vereinfachen und präziser steuern .

MS LevT eine Erhöhung der Magnifizierung kann außerdem das Umformen von Formen und präziser
erleichtern .

Antonym

Post-Edit (y) durch das Vergrößern der Verkleinerung können Sie außerdem das Umformen von Formen
präziser steuern .

MST Append durch das Vergrößern der Vergrößerung können Sie außerdem das Umformen von Formen
vereinfachen und präziser steuern .

MS LevT durch die zunehmende Verkleinerung können Sie außerdem das Umformen von Formen und
präziser steuern .

Figure 3: Example of the outputs by the MST Append and MS LevT when a synonym and an antonym is supplied
in place of the original terminology pair (magnification - Vergrößerung). The synonym Magnifizierung (magnifi-
cation) and antonym Verkleinerung (diminishment) is used.

Source (x) if you use the Image Processor , you can save the files directly to JPEG format in the size that you want
them .

Post-Edit (y) wenn Sie den Bildprozessor verwenden , können Sie die Dateien direkt im JPEG-Format in der gewünschten
Größe speichern

Synonym wenn Sie den Bildprozessor verwenden , können Sie die Dateien direkt im JPEG-Format in der gewünschten
Größe sichern

Antonym wenn Sie den Bildprozessor verwenden , können Sie die Dateien direkt im JPEG-Format in der gewünschten
Größe löschen

Figure 4: Example of data augmentation. The original term pair is (save, speichern). We replace the target
terminology speichern with the synonym sichern (to store for future use) or the antonym löschen (to delete).

APE shared task is able to achieve a mere 0.78
point decrease in TER.

The two terminology-aware MST models (ap-
pend and replace) are able to improve Term% over
the baseline, at the cost of a slight increase in TER
and decrease in BLEU, but both are better than
doing nothing. The LevT and its variants perform
worse than doing nothing in terms of TER and
BLEU, but has a small gain in Term%. The MS
LevT again achieves the highest Term% but does
worse than the do-nothing case on TER and BLEU.

8 Analyzing Constraint Translation
Behavior

Terminology constrained APE aims to add some
degree of user control over the APE process with-
out destabilizing the general post-editing behavior
of the decoder. However, the imposition of rare
or unusual terminology constraints will necessar-

ily be in conflict with the decoder language model,
which will give higher probabilities to terminology
translations found frequently in the training data.

In practice, a user may specify a terminology
constraint that is not well represented in the train-
ing distribution. For example, a user may want a
product description translated using location spe-
cific brand names or marketing copy. Ideally, a
terminology constrained model would reliably pro-
duce these terms and use them appropriately even
if they do not rank highly by the decoder.

Additionally, it is desirable that the addition
of terminology constraints does not lead to large
changes in the model’s output. Since terminology
constraints are only bound to a word or phrase, the
model should only need to make minimal changes
between the unconstrained and constrained output.
Large changes in output may make it harder for a
user to anticipate the effects of a constraint which
may make constrained APE less useful in practice.
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WMT’19 APE Augmentation

Term%↑ TER↓ BLEU↑ Term%↑ TER↓ BLEU↑
Do-nothing 90.22 16.84 74.73 1.66 24.77 62.56
MST Append 94.08 16.62 75.16 7.47 24.92 61.80
MST Append + pretrain 94.08 16.46 75.25 18.67 23.70 64.38
MST Append + pretrain + ft 93.85 16.29 75.38 43.15 21.85 67.41

MS LevT 98.04 17.71 73.64 43.57 33.07 54.33
MS LevT + pretrain 99.09 17.18 74.22 52.70 29.79 60.24
MS LevT + pretrain + ft 98.41 17.00 74.66 63.07 29.66 60.47

Table 7: Results with data augmentation for the official APE data, as well on the augmented dataset consisting of
synonyms and antonyms generated from Wiktionary. The size of the additional data for test set is 236.

Synonym Antonyms

Term%↑ TER↓ BLEU↑ Term%↑ TER↓ BLEU↑

MST Append 7.33 1.31 97.80 8.88 1.06 98.01
MST Append + pretrain 16.75 2.81 94.19 28.88 3.81 92.94
MST Append + pretrain + ft 38.74 5.48 88.86 66.66 6.46 87.50

MS LevT 41.36 19.57 70.60 57.77 17.56 74.25
MS LevT + pretrain 47.12 18.33 72.27 82.22 13.28 79.42
MS LevT + pretrain + ft 43.97 18.25 73.25 77.78 11.99 80.41

Table 8: Structural change from the output of constrained models using the correct terminology. We split the
dataset by synonyms and anotnyms, consisting of 191 and 45 samples respectively.

We refer to this behavior as systematic copy-
ing, i.e. the model should behave in a transparent
and stable way, enforcing terminology constraints
even when they strongly disagree with the decoder
language model, while only making minimally nec-
essary changes in the output to do so.

By harvesting terminology constraints from the
training data, we run the risk that the model simply
learns to draw some translation hints from the sup-
plied terminology constraints, but does not actually
learn this systematic copying behavior. That is, it
never truly sees an out-of-sample constraint that
is extremely unlikely from the perspective of the
decoder language model.

To test whether our proposed models indeed
learn this systematic copying behavior we perform
a qualitative experiment, comparing model outputs
when supplying different constraints for a source
word, by varying whether the target language con-
straint was (a) the original target language con-
straint specified in the test set, (b) a target language
synonym of the original constraint term, (c) a target
language antonym of the original constraint term,
or (d) a totally random term in the target language.

While antonym and random term constraints
might not seem to correspond to realistic use cases,
they let us to examine the effects of specifying a
constraint where the source and target language
terms are extremely semantically divergent. Addi-
tionally, they simulate scenarios where translations
for names vary dramatically by region. For exam-
ple, the cleaning product called “Mr. Clean” in the
U.S. is called “Meister Proper” in Germany.

As can be seen in Figure 3, our qualitative explo-
ration reveals that synonym, antonym, and random
terminology constraints are frequently not included
in the output. For example the MST model fails to
generate the antonym Verkleinerung. This suggests
that target side constraints that are unseen during
training may be ignored by the model, and that
the models are not learning to systematically copy
arbitrary constraints.

8.1 Data Augmentation Experiment

The results of our qualitative exploration suggests
that the model would benefit from seeing more
semantically divergent terminology constraints dur-
ing training. To that end, we propose a data aug-
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mentation experiment to increase the robustness
of the APE models. We create novel training in-
stances by replacing the target language term con-
straint with either a synonym or antonym (using
Wiktionary), as well as replacing it’s occurrence
in the post-edited target translation. This results
in 837,127 additional samples for eSCAPE corpus,
and 2587 additional samples for official NMT data.
See Figure 4 for examples.

We then train MST append and MS LevT with
the augmented pretraining corpus. We experiment
with using augmented data only for pretraining
(pretrain) and for the fine-tuning process (ft). The
result can be seen in Table 7.

Interestingly, on the WMT19 test set, the data
augmentation helps with TER and BLEU while
having only a slight effect on Term%. For the
LevT, data augmentation helps all metrics.

Since the WMT19 APE test data contains few
unusual constraints, the effect of the augmented
data is relatively small. When we create antonym
and synonyms examples from the WMT19 APE
test data, we see fairly positive trends, with pretrain-
ing and fine-tuning yielding additive reductions in
TER and gains in BLEU. This suggests that the
augmentation method has a positive effect on the
systematic copying behavior of the model.

8.2 Post-Edit Stability

To quantify the stability of the APE models, we
compare the constrained APE output when given
a target side synonym or antonym to the output
of that same model under the original test set con-
straint using TER and BLEU. Under this setting,
higher BLEU and lower TER indicate that the
model makes minimal changes when inserting a
semantically divergent constraint. We also report
Term% to show how often the terminology was
correctly translated given the input. We refer to a
model with high Term% and BLEU but low TER
as a stable model. Results of this experiment are
shown in Table 8.

There are several takeaways from this experi-
ment. First, the LevT TER scores are higher on
average than the MST model suggesting that the
LevT model is less stable, producing different trans-
lations for each target side constraint change.

Second, as sensitivity to constraints increases
(i.e. Term% goes up), TER generally goes up, im-
plying that models make more structural changes
to the overall output in order to accommodate con-

straints. Future work on refinement tasks like APE
may benefit from including an explicit objective
function to encourage output stability.

Finally, synonyms are harder to translate than
antonyms (i.e. Synonym Term% is lower than
Antonym Term% for all models/training config-
urations). This may be because the original target
side constraints are better represented in the de-
coder language model and are likely have higher
probability than a synonym when either could be
plausibly used in the same context. Antonyms may
be less likely and therefore easier to override the
preferences of decoder.

9 Conclusion and Future Work

This work introduces the terminology constrained
APE task and several MST and LevT model vari-
ants for incorporating lexical constraints during
post-editing. Furthermore, we show that con-
strained APE is necessary for preserving lexical
constraints in a MT to APE pipeline. Evaluations
on standard APE benchmarks show that terminol-
ogy constraints are satisfied while improving the
original MT quality. Finally, we show that the
constrained APE models do not learn a robust sys-
tematic copying behavior, and propose a data aug-
mentation method to help mitigate this issue. In
future work, we hope to explore ways of modifying
model architecture or training algorithms to further
improve the systematic copying behavior.
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2019. Unbabel’s Submission to the WMT2019
APE Shared Task: BERT-Based Encoder-Decoder
for Automatic Post-Editing. In Proceedings of the
Fourth Conference on Machine Translation (Volume
3: Shared Task Papers, Day 2), pages 118–123, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Matteo Negri, Marco Turchi, Rajen Chatterjee, and
Nicola Bertoldi. 2018. ESCAPE: a Large-scale
Synthetic Corpus for Automatic Post-Editing. In
Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Re-
sources Association (ELRA).

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A Fast, Extensible
Toolkit for Sequence Modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a Method for Automatic Eval-
uation of Machine Translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Matt Post and David Vilar. 2018. Fast Lexically Con-
strained Decoding with Dynamic Beam Allocation
for Neural Machine Translation. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1314–1324, New Orleans, Louisiana.
Association for Computational Linguistics.

https://doi.org/10.18653/v1/W17-4717
https://doi.org/10.18653/v1/W17-4717
http://www.aclweb.org/anthology/W19-5402
http://www.aclweb.org/anthology/W19-5402
https://doi.org/10.18653/v1/W18-6452
https://doi.org/10.18653/v1/W18-6452
https://doi.org/10.18653/v1/P19-1294
https://doi.org/10.18653/v1/P19-1294
http://papers.nips.cc/paper/9297-levenshtein-transformer.pdf
http://aclweb.org/anthology/P17-1141
http://aclweb.org/anthology/P17-1141
http://aclweb.org/anthology/P17-1141
http://www.aclweb.org/anthology/W16-2378
http://www.aclweb.org/anthology/W16-2378
http://www.aclweb.org/anthology/W16-2378
http://www.aclweb.org/anthology/W18-6468
http://www.aclweb.org/anthology/W18-6468
http://www.aclweb.org/anthology/W18-6468
https://www.aclweb.org/anthology/P07-2045
https://www.aclweb.org/anthology/P07-2045
https://doi.org/10.18653/v1/W19-5412
https://doi.org/10.18653/v1/W19-5412
https://doi.org/10.18653/v1/W19-5412
https://doi.org/10.18653/v1/W19-5413
https://doi.org/10.18653/v1/W19-5413
https://doi.org/10.18653/v1/W19-5413
https://www.aclweb.org/anthology/L18-1004
https://www.aclweb.org/anthology/L18-1004
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119


1204

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Michel Simard, Cyril Goutte, and Pierre Isabelle. 2007.
Statistical Phrase-Based Post-Editing. In Human
Language Technologies 2007: The Conference of
the North American Chapter of the Association for
Computational Linguistics; Proceedings of the Main
Conference, pages 508–515, Rochester, New York.
Association for Computational Linguistics.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of Association for Machine Transla-
tion in the Americas, pages 223–231.

Raymond Hendy Susanto, Shamil Chollampatt, and
Liling Tan. 2020. Lexically Constrained Neural Ma-
chine Translation with Levenshtein Transformer. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3536–
3543, Online. Association for Computational Lin-
guistics.

Amirhossein Tebbifakhr, Ruchit Agrawal, Matteo Ne-
gri, and Marco Turchi. 2018. Multi-source Trans-
former with Combined Losses for Automatic Post
Editing. In Proceedings of the Third Conference
on Machine Translation: Shared Task Papers, pages
846–852, Belgium, Brussels. Association for Com-
putational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://www.aclweb.org/anthology/N07-1064
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.4369
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.4369
https://doi.org/10.18653/v1/2020.acl-main.325
https://doi.org/10.18653/v1/2020.acl-main.325
https://doi.org/10.18653/v1/W18-6471
https://doi.org/10.18653/v1/W18-6471
https://doi.org/10.18653/v1/W18-6471
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

