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Abstract

This paper describes our submission of the
WMT 2020 Shared Task on Sentence Level
Direct Assessment, Quality Estimation (QE).
In this study, we empirically reveal the
mismatching issue when directly adopting
BERTScore (Zhang et al., 2020) to QE. Specif-
ically, there exist lots of mismatching errors
between source sentence and translated candi-
date sentence with token pairwise similarity.
In response to this issue, we propose to expose
explicit cross lingual patterns, e.g. word align-
ments and generation score, to our proposed
zero-shot models. Experiments show that our
proposed QE model with explicit cross-lingual
patterns could alleviate the mismatching is-
sue, thereby improving the performance. En-
couragingly, our zero-shot QE method could
achieve comparable performance with super-
vised QE method, and even outperforms the
supervised counterpart on 2 out of 6 directions.
We expect our work could shed light on the
zero-shot QE model improvement.

1 Introduction

Translation quality estimation (QE) (Blatz et al.,
2004; Specia et al., 2018, 2020) aims to pre-
dict the quality of translation hypothesis without
golden-standard human references, setting it apart
from reference-based translation metrics. Existing
reference-based evaluation metrics, e.g. BLEU (Pa-
pineni et al., 2002), METEOR (Banerjee and Lavie,
2005), NIST (Doddington, 2002), ROUGE (Lin,
2004), TER (Snover et al., 2006), are commonly
used in language generation tasks including transla-
tion, summarization, and captioning but all heavily
rely on the quality of given references.

Recently, (Edunov et al., 2020) show that
reference-based automatic evaluation metrics, e.g.,
BLEU, are not always reliable because the human
translated references are translationese (Koppel and
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Figure 1: Example of mismatching error,
Russian→English. On the left, token “Назва” is
mismatched to “The” with the maximal probability
(within the red rectangle) only. On the right, guided
by our proposed cross-lingual patterns, “Назва” is
correctly matched to the token “named” with the
maximal probability (within the green rectangle.)

Ordan, 2011; Graham et al., 2019). Thus, an auto-
matic method with no access to any references, i.e.,
QE, is highly appreciated.

In this paper, we mainly focus on sentence level
QE metrics, where existing studies categorize it
into two classes: 1) supervised QE with human
assessment as supervision signal: a feature ex-
tractor stacked with an estimator (Yankovskaya
et al., 2019; Wang et al., 2016b; Fan et al., 2019);
2) unsupervised QE without human assessment,
which normally based on the pre-trained word
embeddings, for example, YISI (Lo, 2019) and
BERTScore (Zhang et al., 2020). Our work follows
the latter, where we adopt BERTScore (Zhang et al.,
2020) without extra fine-tuning. In particular, we
implement our approach upon the pre-trained multi-
lingual BERT (Devlin et al., 2019) and XLM (Con-
neau and Lample, 2019).

We first empirically reveal the mismatching is-
sue when directly adopting BERTScore (Zhang
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et al., 2020) to QE task. Specifically, there exist
lots of mismatching errors between source tokens
and translated candidate tokens when performing
greedy matching with pairwise similarity. Figure 1
shows an example of the mismatching error, where
the Russian token “Назва” is mismatched to the
English token “The” due to lacking of proper guid-
ance.

To alleviate this issue, we design two explicit
cross-lingual patterns to augment the BERTScore
as a QE metric:
• CROSS-LINGUAL ALIGNMENT MASKING:

we design an alignment masking strategy to
provide the pairwise similarity matrix with ex-
tra guidance. The alignment is derived from
GIZA++ (Och and Ney, 2003).
• CROSS-LINGUAL GENERATION SCORE: we

obtain the perplexity, dubbed ppl, of each
target side token by force decoding with a
pre-trained cross-lingual model, e.g. multilin-
gual BERT and XLM. This generation score
is weighted added on the similarity score.

2 Methods

2.1 BERTScore as Backbone

A pre-trained multilingual model generates con-
textual embeddings of both source sentence and
translated candidate sentence, such that this pair of
sentences in different language can be mapped to
the same continuous feature space. Given a source
sentence x = 〈x1, . . . , xk〉, the model generates a
sequence of vectors 〈x1, . . . ,xk〉 while the candi-
date ŷ = 〈ŷ1, . . . , ŷl〉 is mapped to 〈ŷ1, . . . , ŷl〉.
Different from the reference-based BERTScore,
where they compute the pairwise similarity be-
tween reference sentence and translated candidate
sentence, we calculate the pairwise similarity be-
tween the source and translated candidate with dot-
production, i.e., x>

i ŷj. We adopt greedy matching
to force each source token to be matched to the
most similar target token in the translated candidate
sentence. The QE function based on BERTScore
backbone therefore can be formulated as:

RBERT =
1

|x|
∑
xi∈x

max
ŷj∈ŷ

x>
i ŷj,

PBERT =
1

|ŷ|
∑
ŷj∈ŷ

max
xi∈x

x>
i ŷj,

FBERT = 2
PBERT ·RBERT

PBERT +RBERT
.

(1)

where RBERT, PBERT and FBERT are inherited
from Zhang et al. (2020), representing Recall rate,
Precision rate and F-score, respectively.

2.2 Alignment Masking Strategy

With aforementioned QE function, we can follow
Zhang et al. (2020) to obtain the distance between
the source sentence and translated candidate sen-
tence via directly adding up the maximum simi-
larity score of each token pair. However, because
there exist lots of mismatching errors (as shown
in Figure 1), above sentence-level similarity cal-
culation may be sub-optimal. Moreover, Zhang
et al. (2020)’s calculation is suitable for mono-
lingual scenario, which may be insensitive for
cross-lingual computation. Thus, we propose to
augment our QE metric with more cross-lingual
signals.

Inspired by Ding et al. (2020), where they show
it’s possible to augment cross-lingual modeling by
leveraging cross-lingual explicit knowledge. we
therefore employ word alignment knowledge from
external models, e.g., GIZA++1, as additional in-
formation.

Alignment masking Both BERT (Devlin et al.,
2019) and XLM (Conneau and Lample, 2019) uti-
lize BPE tokenization (Sennrich et al., 2016). It
should be noted that in this paper, by word align-
ment we mean alignment of BPE tokenized word
and subword units. Given a tokenized source sen-
tence x and candidate sentence ŷ, alignment (Och
and Ney, 2003) is defined as a subset of the Carte-
sian product of position, A ⊆ {(i, j) : i =
1, . . . , k; j = 1, . . . , l}. Alignment results repre-
sented byM is defined as:

M =

{
1 (i, j) ∈ A

0 ≤ a ≤ 1 otherwise
(2)

M is a penalty function over the similarity of un-
aligned tokens. It’s a mask like matrix to assign a
penalty weight a 2 to the similarity of unaligned to-
kens while keeping that of aligned ones unchanged,
as illustrated in Figure 2. Thus, greedy matching is
performed on a renewed similarity matrix, which
is defined as the average of x>

i ŷj and masked
x>
i ŷj by word alignment. For example, RBERT

1https://github.com/moses-smt/giza-pp
2In our preliminary studies, a = 0.8 picking from

{0.0, 0.2, 0.4, 0.8, 1.0} performs best, which then leaves as
the default setting in the following experiments.

https://github.com/moses-smt/giza-pp
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# Metrics en-de en-zh ro-en et-en ne-en si-en ru-en

1 Baseline (test) 0.146 0.190 0.685 0.477 0.386 0.374 0.548

2 BERT 0.120 0.167 0.650 0.306 0.475 - 0.354
3 BERT (align) 0.091 0.170 0.672 0.307 0.478 - 0.340
4 BERT (ppl) 0.068 0.187 0.671 0.321 0.468 - 0.311
5 BERT (align+ppl) 0.099 0.189 0.677 0.324 0.477 - 0.332

Table 1: Pearson correlations with sentence-level Direct Assessment (DA) scores. The results of supervised
baseline (Kepler et al., 2019), provided by the organizer, show it’s agreement with DA scores on the test set of
WMT20 QE. As DA scores on test set aren’t available at this point, we report our experiment results on valid set.

# Metrics en-de en-zh ro-en et-en ne-en si-en ru-en

1 BERT 0.143 0.131 0.389 0.217 0.318 - 0.259
2 BERT (align) 0.122 0.133 0.422 0.219 0.322 - 0.251
3 BERT (ppl) 0.105 0.145 0.416 0.225 0.315 - 0.240
4 BERT (align+ppl) 0.132 0.152 0.439 0.228 0.320 - 0.247

Table 2: Kendall correlations with sentence-level Direct Assessment (DA) scores.

a 1 a a

a a 1 a

1 1 a a
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Figure 2: Word alignment as a mask matrix

is changed into:

RBERT(align) =
1

2|x|
∑
xi∈x

max
ŷj∈ŷ

(x>
i ŷj+M·x>

i ŷj)

(3)
which can be characterized as balancing our pro-
posed extra explicit cross-lingual patterns, i.e.,
word alignment.

2.3 Generation Score

In additional to token similarity score, we introduce
force-decoding perplexity of each target token as
a cross-lingual generation score. For better coor-
dination and considering our cross-lingual setting,
we use the same pre-trained cross-lingual model,
e.g. multilingual BERT, for both token embedding
extraction and masked language model (MLM) per-
plexity generation. This cross-lingual generation

score is added as:

FBERT(ppl) = (1−λ)∗FBERT+λ∗pplMLM (4)

where the λ can be seen as a variable that regulates
the interpolation ratio between FBERT and our pro-
posed pplMLM, making the generation score after
combination more wisely. The effect of λ will be
discussed in the experiments.

3 Experimental Results

3.1 Data

Main experiments were conducted on the WMT20
QE Shared Task, Sentence-level Direct Assessment
language pairs. The task contains 7 directions, in-
cluding:

• English→German (en-de)

• English→Chinese (en-zh)

• Romanian→English (ro-en)

• Estonian→English (et-en)

• Nepalese→English (ne-en)

• Sinhala→English (si-en)

• Russian→English (ru-en)

Each of them consists of 7K training data, 1K vali-
dation data and 1K test data.
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Figure 3: Pearson correlations with Direct Assessment
(DA) scores when λ ∈ [0, 0.03].

3.2 Setup

Based on our proposed QE metric in Section 2.1,
we conduct the validataion and main experiments
with two pre-trained cross-lingual model: bert-
base-multilingual-cased3 (12-layer, 768-hidden,
12-heads, trained on 104 languages) and xlm-
mlm-100-12804 (16-layer, 1280-hidden, 16-heads,
trained on 100 languages) for both contextual em-
bedding representation and generation score. The
9th layer of multilingual BERT and the 11th of
XLM are used to generate contextual embedding
representations. Furthermore, we obtain bidirec-
tional word alignment of all the training, validation
and test dataset with GIZA++. Notably, this work
is a zero-shot approach that doesn’t involve training
on Direct Assessment (DA) scores, which makes
our method suitable for real industry scenarios.

3.3 Ablation Study

In order to maximize the advantages of our pro-
posed method for zero-shot translation QE, we con-
ducted extensive ablation studies. We report the
results of ablation studies on the validation dataset.

Effect of λ We conduct ablation studies to em-
pirically decide the value of of λ in Equation 4
when introducing generation scores. We observe
positive effect of proper weighted additional gen-
eration score on en-zh, ro-en, et-en, ne-en, si-en.

3https://huggingface.co/
bert-base-multilingual-cased

4https://huggingface.co/
xlm-mlm-100-1280

mBERT XLM

en-de 0.120 0.056
en-zh 0.167 0.008
ro-en 0.650 0.568
et-en 0.306 0.254
ne-en 0.475 0.398
si-en - 0.362
ru-en 0.354 0.228

Table 3: This is a comparison between multilingual
BERT (“mBERT”) and XLM in terms of the Pearson
correlations with Direct Assessment (DA) scores. Mul-
tilingual BERT performs better than XLM.

As illustrated in Figure 3, considering the average
performance, we pick λ = 0.01 from [0, 0.03].

Effect of different pretrained models We also
investigated the effect to deploy our proposed fixed
cross-lingual patterns on different state-of-the-art
large scale pre-trained models, e.g., XLM (Con-
neau and Lample, 2019) (xlm-mlm-100-1280),
BERT (Zhang et al., 2020) (bert-base-multilingual-
cased). Table 3 lists a comparison of multilingual
BERT and XLM in terms of the Pearson correla-
tions with Direct Assessment (DA) scores. As seen,
multilingual BERT outperforms XLM on almost all
language pairs, excepting for si-en. One possible
reason is that multilingual BERT is not pre-trained
on Sinhala corpus while XLM does. In this end,
we generate our final submission with XLM in si-
en direction, and with multilingual BERT in other
directions.

3.4 Main Results

In the main experiments, we evaluate the agree-
ment of our approach with Direct Assessment (DA)
scores on validation dataset, as DA scores of the
test set are not available at this point. Baseline re-
sults, which are evaluated on test set though, are
also listed for general comparison.

As shown in Table 1, our method could achieve
improvements on 4 out of 6 directions, including
en-zh, ro-en, et-en and ne-en. Particularly, com-
bination of two strategies, i.e., CROSS-LINGUAL

ALIGNMENT and CROSS-LINGUAL GENERATION

SCORE, could achieve better performance on en-zh,
ro-en and et-en directions.

Besides Pearson correlations, we also calculated
Kendall correlations for all language pairs. As
seen in Table 2, the trends of Kendall correlations

https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/xlm-mlm-100-1280
https://huggingface.co/xlm-mlm-100-1280
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Ours Kepler et al. (2019)

en-de 0.111 0.146
en-zh 0.085 0.190
ro-en 0.650 0.685
et-en - -
ne-en 0.488 0.386
si-en 0.388 0.374
ru-en 0.400 0.548

Table 4: Comparison of our submission and supervised
baseline (Kepler et al., 2019) on WMT20 sentence-
level QE official test set, in terms of Pearson correla-
tions.

are same as Pearson correlations, validating the
effectiveness of our proposed methods.

3.5 Official Evaluations
The official automatic evaluation results of our sub-
missions for WMT 2020 are presented in Table 4.
We participated QE (Sentence-Level Direct Assess-
ment) in following language pairs: en-de, en-zh,
ro-en, ne-en, si-en, ru-en, except for et-en. From
the official evaluation results (Specia et al., 2020) in
terms of absolute Pearson Correlation, our submis-
sion achieves higher performance than supervised
baseline (Kepler et al., 2019) in ne-en and si-en
(As shown in Table 4).

Encouragingly, our proposed zero-shot QE met-
ric could achieve comparable performance with
supervised QE method, and even outperforms the
supervised counterpart on 2 out of 6 directions.

4 Related Work

MT evaluation Taking sentence-level evaluation
as an example, reference-based metrics describe to
which extend a candidate sentence is similar to a
reference one (Sellam et al., 2020). BLEU (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,
2005), NIST (Doddington, 2002), ROUGE (Lin,
2004) measure such similarity through n-gram
matching, which is restricted to the exact form of
sentences. TER (Snover et al., 2006) and CHAR-
ACTER (Wang et al., 2016b) use edit distance at
word or character level to indicate the distance
between candidate and reference. Different from
these metrics that are restricted to the exact form of
sentences, recent dominated neural model metrics
learn to evaluate with human assessment as supervi-
sion signal, such as BEER (Stanojević and Sima’an,
2014) and RUSE (Shimanaka et al., 2018), or oth-

ers as YiSi (Lo, 2019) and BERTScore (Zhang
et al., 2020) , evaluate with pre-trained word em-
bedding, without using human assessment.

Incorporating Explicit Knowledge Several ap-
proaches have incorporated pre-defined or learned
features into neural networks. Tai et al. (2015)
demonstrate that incorporating structured seman-
tic information could enhance the representations.
Sennrich and Haddow (2016) feed the encoder cell
combined embeddings of linguistic features includ-
ing lemmas, subword tags, etc. Ding et al. (2017)
leverage the domain knowledge to perform data se-
lection to improve the machine translation models.
Ding and Tao (2019) incorporate the structure pat-
terns of sentences, i.e., syntax, into the Transformer
network to enhance seq2seq modeling performance.
Raganato et al. (2020) utilize the pre-defined fixed
patterns to replace the attention weights and show
promising results. Inspired by above works, we
propose to augment zero-shot QE model with cross-
lingual patterns.

5 Conclusion and Future Work

In this work, we revealed a mismatching issue in
zero-shot QE modeling. To alleviate it, we intro-
duced two explicit cross-lingual patterns based on
BERTScore backbone. Extensive experiments in-
dicated that our proposed patterns, without fine-
tuning, the QE model can be improved marginally.
Notably, our zero-shot QE method outperforms su-
pervised QE model on 2 out of 6 directions, shed-
ding light on zero-shot QE researches.

In the future, we plan to explore more strate-
gies for incorporating various auxiliary informa-
tion and better in-domain fine-tuning (Gururangan
et al., 2020) or introduce an non-autoregressive
refiner (Wu et al., 2020) to address our revealed
mismatching issue. Also, it will be interesting to ap-
ply QE metrics on document-level machine transla-
tions with considering the dropped pronoun (Wang
et al., 2016a, 2018).
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and André FT Martins. 2020. Findings of the wmt
2020 shared task on quality estimation. In WMT.

Lucia Specia, Frédéric Blain, Varvara Logacheva,
Ramón Astudillo, and André FT Martins. 2018.
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