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Abstract

This paper describes the Resource Descrip-
tion Framework (RDF) triples verbalizer de-
veloped for the WEBNLG CHALLENGE 2020
shared task. After reviewing representative
works in Natural Language Generation in the
context of the Semantic Web, the task is then
described. We then sketch the symbolic ap-
proach we used for verbalizing RDF triples:
once the triples are grouped by subject, each
group is realized as one or more sentences
using templates written in Python whose out-
put is feed to an English realizer written in
Javascript. The system was developed using
the test data of the previous edition of the
task and the train and development data of
this year’s task. The automatic scores for this
year’s test data are quite competitive. We con-
clude with a critical review of the data and dis-
cuss the suitability of this competition results
in a wider Natural Language Generation set-
ting.

1 Introduction

This paper describes our system developed for
participating to the RDF-to-text generation for
English subtask of the WEBNLG CHALLENGE

2020 (Castro-Ferreira et al., 2020) as a follow-
up to 2017 edition (Gardent et al., 2017b). The
WEBNLG CHALLENGE 2020 data was developed
for pushing the development of Resource Descrip-
tion Framework (RDF) verbalizers for realizing
short texts while dealing with micro-planning prob-
lems such as sentence segmentation and ordering,
referring expression generation and aggregation.
The first edition of the data featuring 15 DBpe-
dia categories was created in 2017 (Gardent et al.,
2017a). The 2020 challenge covers more categories
and an additional language, Russian and a new task:
Text-to-RDF semantic parsing for converting a text
into the corresponding set of RDF triples.

Our English RDF verbalizer is based on a sym-
bolic approach using Python: each RDF triple cor-
responds to a sentence in which the subject and the
object of a triple are mapped almost verbatim as
subject and object of the sentence. The predicate of
the triple corresponds to a verb phrase which deter-
mines the structure of the sentence. The predicates
are ordered to create a meaningful story and parts
of sentences are merged when they share subjects
or predicates. The final realization is performed
using JSREALB1, a French-English realizer that
we upgraded in recent years.

After presenting some representative natural lan-
guage generation works dealing with Semantic
Web information, we describe our approach and
analyze the scores of the automatic evaluation on
WEBNLG CHALLENGE 2020 test data. We then
give a personal appraisal on the data for WEBNLG
CHALLENGE 2020 and how it is representative of
real Semantic Web data and conclude by giving
ideas for future development.

2 Related work

Generating text from ontologies and RDF has
a long history, because it is a typical case of
computer-oriented data about entities that need to
be explained to a human in order to be understood
or modified. Bouayad-Agha et al. (2014) present
a comprehensive discussion of Semantic Web con-
cepts and its relation with Natural Language Gen-
eration. One challenge of RDF verbalization is
the fact that the information is spread over a graph
linking many entities that must be linearized as a
coherent text. RDF triples cannot be lexicalized
directly as they need links with other information
in order to be conveyed correctly. Fortunately, most
well-organized RDF triples depend on an ontology,

1See https://github.com/rali-udem/
jsRealB for documentation, a tutorial and examples
of use.
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a hierarchy of concepts, that allows inferencing to
help drive the generation process.

Some systems target the generation of texts for
explaining ontologies while other use ontologies
for explaining facts expressed in RDF which re-
flects two trends in the Semantic Web area: on-
tology construction using the Web Ontology Lan-
guage (OWL) with an emphasis on the logical con-
sistency, or the publication of a large number of
linked data without necessarily ensuring consis-
tency. WEBNLG CHALLENGE 2020 targets the
latter because it is limited to the verbalization of
a few RDF triples, but we think it is interesting
to briefly look at the former, because it gives a
broader view of potential applications for future
developments.

2.1 Explaining or Using Ontologies
Aguado et al. (1998) motivate the use of text gener-
ation for explaining ontologies to help their reuse.
They illustrate their approach by generating Span-
ish explanations in the domain of chemical sub-
stances. They combine the General Upper Model
(GUM) (Bateman et al., 1995) approach with the
KPML (Bateman, 1997) text realizer. Wilcock
and Jokinen (2003) use the information in the on-
tology as background information for a dialogue
system that provides information about a public
transportation system. The ontology serves both
as a source of information and for identifying mis-
conceptions and suggesting alternative reasonable
questions. Bontcheva and Wilks (2004) show how
to generate reports from domain ontologies; they
present a use case in the area of breast cancer in
which the concepts of the ontology were manually
mapped to words of a specialized lexicon.

Galanis et al. (2009) describe NATURALOWL2,
a plug-in for the PROTÉGÉ3 ontology editor that
produces template-based descriptions of entities
and classes from OWL ontologies that have been
annotated with linguistic and user modeling infor-
mation expressed in RDF. Given that it is open-
source and embedded in a widely used ontology
editor, it has been used as a baseline in many sub-
sequent works.

2.2 Verbalizing RDF statements
The first step in generating texts from RDF is
finding an appropriate subset of RDF statements.

2https://protegewiki.stanford.edu/
wiki/NaturalOWL

3https://protege.stanford.edu

Duboue and McKeown (2003) were pioneers in de-
termining relevant content for NLG using statistical
methods for the extraction of facts from texts and
coupling them with the associated data. This ap-
proach inspired most recent learning methods given
the availability of a large number of texts and asso-
ciated data in DBPedia and Wikipedia. Duboue and
McKeown had to parse HTML pages and databases
to find a large set of biographies. For WEBNLG
CHALLENGE 2020, this essential but difficult step
has already been done by the organizers of the com-
petition (Gardent et al., 2017a).

Sun and Mellish (2006) take advantage of the
fact that RDF representations are not only logical
representations, but that they also contain rich lin-
guistic information useful for generating text. After
studying many published ontologies, they found
systematic patterns in class and relation names that
can be exploited for lexicalization without develop-
ing special purpose dictionaries.

Duma and Klein (2013) propose a system that
can automatically learn sentence templates and doc-
ument planning from parallel RDF data and text
from the Simple English Wikipedia. They first
match named entities in the sentence with a graph
related to a specific entity in order to extract a tem-
plate in which named entities are replaced by a
variable. To prune entities and their dependents in
the sentence not appearing in the graph, the sen-
tences are first parsed and a few hand-written rules
operating on the syntactic tree are applied as sug-
gested by Gagnon and Da Sylva (2006) for sum-
marization purposes. The content selection uses
the method originally suggested by Duboue and
McKeown. To determine relevant predicates, they
determine a prototypical class by looking at the
most frequent subwords in the class names which
often use camelCase. Given the URI of an entity
to be described, they determine the relevant class
and its associated templates that are used for creat-
ing many sentences from which the best ones are
chosen.

Ell and Harth (2014) show how to extract verbal-
ization templates for RDF graphs from DBPedia
and the corresponding Wikipedia documents about
specific types of entities. Sentences that mention
the entities are aligned with a data graph using
language-independent transformations. The con-
nected entities in the graph are then iteratively ex-
plored to find commonalities that allow some ab-
straction of the entities using variables. They thus
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obtain a set of abstracted sentences from which
templates are created. They applied their technique
on English and German with promising results.

Dong and Holder (2014) present Natural Lan-
guage Generation from Graphs (NLGG) with three
processing stages: model preparation and content
determination, document structuring, and lexical-
ization, aggregation and realization to create En-
glish text. It uses templates that code linguistic
information about each class such as its English
label both singular and plural; the relations are also
coded with templates that indicate the type of its
subject and object and priority to drive the text orga-
nization. Model preparation uses an RDF reasoner
to infer new triples and remove redundant ones.
Document structuring consists in deciding the or-
der of output: first classes, then attributes and fi-
nally relationship information. SIMPLENLG (Gatt
and Reiter, 2009) is used for creating the English
text. Our system follows a similar approach.

Vougiouklis et al. (2018) describe a statistical
model for NLG by adapting the encoder–decoder
framework to generate textual summaries for triples
related to biographies. They use sequence to se-
quence methods to jointly perform content selec-
tion and surface realization without any rules or
templates. Since triples are not sequentially corre-
lated, they develop a feed-forward neural network
that encodes each triple into a vector of fixed dimen-
sionality in a continuous semantic space in which
triples having similar semantic meaning have sim-
ilar positions. This encoder is coupled with an
RNN-based decoder that generates the textual sum-
mary one token at a time.

Gardent et al. (2017b) present the results of the
WEBNLG CHALLENGE 2017 that compared the
output produced by 8 submissions by 6 teams:
three submissions used a template or grammar-
based pipeline framework combined with a sym-
bolic realizer similar to our approach. One sys-
tem used a statistical machine translation frame-
work and four submissions used an attention-based
encoder-decoder architecture built using existing
neural machine translation frameworks.

Zhu et al. (2019) propose a way of improving
the quality of the text at the expense of diversity
by optimizing the inverse KL divergence for condi-
tional language generation. Their paper presents a
detailed discussion on the fundamental problems
of minimizing KL divergence in training for this
problem and justify the inverse KL divergence as

Alan_Shepard | mission | Apollo_14
Alan_Shepard | deathPlace | California
Alan_Shepard | birthPlace | New_Hampshire
Alan_Shepard | dateOfRetirement | "1974-08-01"
Apollo_14 | operator | NASA
Alan_Shepard | birthDate | "1923-11-18"

Alan Shepard was born on November 18, 1923 in New
Hampshire and he was a crew member of Apollo 14 that
is operated by NASA. He went into retirement on August
1, 1974 and passed away in California.

Table 1: The top part shows a triple set from
/dev/en/6triples/Astronaut.xml. The bot-
tom part shows the realized sentence produced by
RDFJSREALB from this input.

their optimization objective.
We now present the method we have designed to

organize the text and determine lexicalization.

3 Text Generation

To illustrate our NLG process, we use the set of
triples shown in Table 1 with the corresponding
generated English sentence.

The first step in text generation is determining
the information to be conveyed in the text. In the
context of WEBNLG CHALLENGE 2020, this is
given: it is a set of at most 7 triples. As the predi-
cate of a triple indicates a relation between its sub-
ject and object, in our case, it is mapped to a verb
linking the subject and the object of the sentence
realizing to this triple.

3.1 Microplanning
Triples being unordered, the first critical step is
organizing them to build an interesting story. The
triples are first grouped by their subject and the
triples are sorted within their group. For example,
to describe a person, the birth date and place could
first be given, then some activities, finally the re-
tirement and death; for a University or a company,
first its creation date, then its activity. To achieve
this ordering, we associate with each predicate a
priority used for sorting the input triples. We also
submitted for automatic scoring a version of the
system that skipped this sorting process. Although
the automatic scores were highly similar for both
versions (see Section 4), we conjecture the sorting
process is still useful to make the texts easier to
follow.

The sorted groups are then processed in decreas-
ing number of triples. We also query DBPedia (see
Appendix A.1) to determine if the category of a
group subject is the current one, if it is the case

146



Alan_Shepard
birthDate "1923-11-18";
birthPlace New_Hampshire;
mission Apollo_14;
dateOfRetirement "1974-08-01";
deathPlace California.

Apollo_14
operator NASA.

Table 2: mtriples from Table 1 sorted and grouped,
shown as a Turtle-like formalism, used as input for
RDFJSREALB. Predicates and objects sharing the
same subject are shown indented and separated by
semicolons.

then its score is increased so that the text will start
with this subject similarly to what we saw in the
lexicalizations in the training corpus. Each group
forms a sentence as a coordination of subsentences.
As a long coordinated sentence is often difficult to
follow, groups of more than 3 triples are split into
two sentences. In order to avoid very short sen-
tences, groups with only one triple are combined
using a subordinate when its subject is the object
of another triple in a bigger group.

Table 2 shows the result of the sorting and
grouping process on the example of Table 1. The
five triples having Alan_Shepard as subject are
grouped and sorted to form a coherent biography.
This input will be used for realizing the two sen-
tences shown in the bottom part of Table 1 using
JSREALB.

3.2 Surface realization

For the final realization step, we use
JSREALB (Molins and Lapalme, 2015), a
surface realizer written in Javascript similar in
principle to SIMPLENLG (Gatt and Reiter, 2009)
in which programming language instructions create
data structures corresponding to the constituents
of the sentence to be produced. Once the data
structure is built, it is traversed to produce the list
of words in the sentence, dealing with conjugation,
agreement, capitalization, all the small details
that are important for easing the reading by the
users and evaluators. Unfortunately, a large part
of this hard work is not taken into account by the
automatic evaluation process which often works
with lowercased tokens.

For RDFJSREALB, we use Python to create the
structure sent to a local JSREALB web server that
returns the realized sentence. The data structure
is built by calls to constructors whose names were
chosen to be similar to the symbols typically used

S(Q("Alan Shepard"), # quoted string
VP(V("be").t("ps"), # auxiliary to the simple past

V("born").t("pp"), # verb to past participle
PP(P("on"), # prepositional phrase

DT("1923-11-18").dOpt(...)),# date
PP(P("in"), # prepositional phrase

Q("New Hampshire"))))# another quoted string

Table 3: Top: Python/JavaScript functional notation for
a JSREALB expression with comments at the right real-
ized by JSREALB as: Alan Shepard was born on Novem-
ber 18, 1923 in New Hampshire.

for constituent syntax trees such as a Terminal (e.g.
N (Noun), V (Verb), A (adjective), D (determiner), Q
which quotes its parameter thus allowing canned
text) or a Phrase (e.g. S (Sentence), NP (Noun
Phrase), VP (Verb Phrase)).

Features added to the structures using the dot
notation can modify their properties. For terminals,
their person, number, gender can be specified. For
phrases, the sentence may be negated or set to a
passive mode; a noun phrase can be pronominal-
ized, these features were not used here, but we use
the automatic processing of coordinated phrases
that insert appropriate commas and conjunction be-
tween coordinated elements. Table 3, shows the
Python calls to create an internal structure that is se-
rialized and sent to the JSREALB server to realize
the English sentence.

3.3 Sentence Templates

The challenge is thus to transform the structure
of Table 2 to the one in Table 3. We manually
defined 200 templates associated with the most
frequent predicates in the training set, those with 20
or more occurrences. A default template (described
in Section 3.4) is used when no defined template
is found which in less than 10% of cases in the
training and development sets, but in 24% of cases
in the test set.

A predicate p corresponds to a Python lambda
expression whose parameter is the object o. The
predicate is called to create a sentence with the sub-
ject s. The actual parameters are quoted strings of
the subject or object of the triple, but replacing un-
derscores by spaces with special cases for numbers
and dates.

For example, given the two following Python
definitions:
birthP = lambda o:VP(V("be").t("ps"),

V("born").t("pp"),
PP(P("in"),o))

sentence = lambda s,p,o: S(Q(s),
p(Q(o)))
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"birthDate":(2,True,[
lambda o:VP(V("be").t("ps"),

V("born").t("pp"),PP(P("on"),o)),
]),
"birthPlace":(3,True,[
lambda o:VP(V("be").t("ps"),

V("born").t("pp"),PP(P("in"),o)),
]),
"birthYear":(2,True,"birthPlace"),
"dateOfRetirement":(90,True,[

lambda o:VP(V("retire").t("ps"),PP(P("on"),o)),
lambda o:VP(V("go").t("ps"),P("into"),

N("retirement"),PP(P("on"),o)),
]),
"deathPlace":(100,True,[

lambda o:VP(V("die").t("ps"),PP(P("in"),o)),
lambda o:VP(V("pass").t("ps"),Adv("away"),

PP(P("in"),o)),
]),
"mission":(22,True,[

lambda o:VP(V("be").t("ps"),D("a"),
N("crew"),N("member"),PP(P("of"),o))

,
lambda o:VP(V("become").t("ps"),N("member"),

PP(P("of"),o)),
]),
"operator":(51,False,[

lambda o:VP(V("be"),V("operate").t("pp"),PP(P("
by"),o)),

]),

Table 4: A few Python templates

the call
sentence("Alan Shepard",

birthP,"New Hampshire")

creates the following structure:
S(Q("Alan Shepard"),

VP(V("be").t("ps"),
V("born").t("pp"),
PP(P("in"),Q("New Hampshire"))))

which is verbalized as Alan Shepard was born in New
Hampshire. by JSREALB. This is the basic mech-
anism for creating sentence structures that can be
combined in various ways.

Templates are organized in a dictionary (see Ta-
ble 4) having the name of the predicate as a key
associated with a value which is a 3-tuple with the
following elements: a priority (a number between
0 and 100) used for sorting, a boolean indicating
if its subject can be a human and a list of lambda
expressions that can verbalize this predicate, one of
which is randomly chosen at the realization time.

Templates associated with predicates were de-
veloped by looking at lex elements in the train-
ing corpus. When two templates have the same
realizations, the third element of the pair is the
name of the original predicate (see birthYear in
Table 4). Currently a template only depends on the
name of the predicate, but it would be interesting
to develop specialized templates according to the
category of the set of triples; for example, the predi-
cate language used for triples of the WrittenWork
category should be verbalized as written in, but in

categories Artist or a Politician, it could be
speaks or sings in.

Once the above structure for the templates was
settled after a few false starts, it became relatively
easy to write them. Reading lexicalizations associ-
ated with a predicate, it takes less than minute to
write a lambda defining a constituent expression to
reproduce some of them. This is possible because
we noticed that many lexicalizations are often very
similar, having been created by crowdworkers who
seemed to often rely on copy-pasting the subject
and the object. We conjecture that it should be fea-
sible to develop a learning algorithm to go from the
lexicalizations to the lambdas, the final realization
being left to JSREALB.

3.4 Default template

When an unknown predicate is encountered then
a default template is created. By detecting case
changes, the name of the predicate is split into
words. and taken as subject of the be auxiliary, the
object is used as attribute. For example,
elevationAboveTheSeaLevel =>

Q("elevation above the sea level")

In the final sentence, the subject of the triple is
taken as subject of the be auxiliary, the object of
the triple is used as attribute. For example, the
triple
Aarhus_Airport |

elevationAboveTheSeaLevel | 25.0

is realized as Aarhus Airport elevation above the sea
level is 25.0.

3.5 Text aggregation

In some cases, dealing with related information
(e.g., birth date and place), combining templates us-
ing only their complements (i.e., their last element)
will simplify the text. For this we define groups of
predicates that can be combined at realization time.
For example, birthDate and birthPlace in Ta-
ble 4 or numberOfStudents, academicStaffSize
and numberOfPostgraduateStudents. To this

list are added, the equivalent templates (e.g.
birthYear will be combined with birthDate). A
similar process is used for combining objects shar-
ing their subject and predicate.

When two or three triples are merged into a sin-
gle sentence, the subject is used at the start but a
pronoun is used for the following references. Cur-
rently, a very simple system is used for choosing
the pronoun: if the predicate is coded as being ap-
plicable to a human and the gender of the subject
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S(CP(C("and"), # coordination S(CP(C("and"),
S(Q("Alan Shepard"), S(Pro("I").g("m"),

VP(V("be").t("ps"), VP(V("retire").t("ps"),
V("born").t("pp"), PP(P("on"),
PP(P("on"), # combine objects DT("1974-08-01")))),

DT("1923-11-18")), S(Q(""),
PP(P("in"), VP(V("pass").t("ps"),

Q("New Hampshire")))), Adv("away"),
S(Pro("I").g("m"), PP(P("in"),

VP(V("be").t("ps"), Q("California"))))))
D("a"), # He retired on August 1, 1974 and
N("crew"), # passed away in California.
N("member"),
PP(P("of"),

NP(Q("Apollo 14"),
SP(Pro("that"),

VP(V("be"),
V("operate").t("pp"),
PP(P("by"),

Q("NASA"))))))))))
# Alan Shepard was born on November 18,
# 1923 in New Hampshire and he was a crew
# member of Apollo 14 that is operated by NASA.

Table 5: Two indented structures produced by aRDFJSREALB Python program for the example of Table 1 an-
notated here with Python comments. Each sentence structure is followed by a comment showing the structure
realization produced by JSREALB.

obtained by querying DBPedia is male, he is used,
if it is female then she 4 is chosen, otherwise it is
used. When a single triple whose subject is used as
object of another, it is combined with the subordi-
nate using a pronoun: who if the predicate applies
to a human, otherwise that.

Table 5 shows the result of combining all these
processes on the input of Table 2.

While during development, the default template
was used less than 10% of the time, it was used
24% of the time during the test. There were 78
unseen templates for the tests of which 30 were
used more than 10 times. It would have taken about
30 minutes to develop new templates for dealing
with these new cases and improve the results. The
competition rules did not allow for this type of
modification, although it would probably be done
in a production setting for improving the output.

4There are very few references to a woman in the training
set. A rough estimate: she occurs 119 times in the lex
elements, one of these being a ship, while he has 2,808

occurrences (24 times more). A classical case of gender-bias
inferred from the data. This ratio is quite different in the
test set in which there are 669 references to a female against
768 to a male. Counting occurrences in the same way in the
training set, there are 8,855 males and 900 females, while in
the development set there are 1086 males and 130 females.

4 Results

4.1 Automatic evaluation
During development, RDFJSREALB has been ap-
plied to the test set of WEBNLG CHALLENGE

2017 and to the dev and train set of WEBNLG
CHALLENGE 2020. The system is very fast: it
processes about 1 000 triple sets per second on
Mac laptop; this is much faster than the evaluation
which takes many seconds to process a single cate-
gory with a given number of triples. Table 6 shows
the scores on the WEBNLG CHALLENGE 2020
test set. Only values for the METEOR score are
shown, the others being strongly correlated.

We submitted three versions of our system for
the automatic scoring WEBNLG CHALLENGE

2020:

1. RDFJSREALB: as described in the preceding
sections;

2. RDFJSREALB-unsorted: but skipping sort-
ing the predicates that share a subject. We
wanted to see the effect of ignoring the priori-
ties which might be considered a bit artificial;

3. RDFJSREALB-baseline: a 10 line Python
program shown in Appendix A.2 that creates
a sentence by concatenating the subject, the
words contained in the predicate split as we
do for the default template (Section 3.4) and
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All Seen-Cat Unseen-Cat Unseen-Ent
System MET rank MET rank MET rank MET rank
2020-best 0.42 1 0.44 1 0.40 1 0.42 1
RDFJSREALB id12 0.39 11 0.39 23 0.38 12 0.40 12
RDFJSREALB-unsorted id11 0.38 12 0.39 25 0.37 14 0.40 11
2020-baseline 0.37 16 0.39 28 0.36 15 0.38 15
RDFJSREALB-baseline id10 0.33 27 0.33 34 0.33 19 0.32 23
2020-worst 0.22 35 0.33 35 0.13 35 0,30 35

Table 6: METEOR scores and rank among the 35 submissions to WEBNLG CHALLENGE 2020 for three versions
of RDFJSREALB. We only report METEOR scores as other metrics seem quite correlated with them.

the object of a triple. These sentences are then
concatenated to create the text.

RDFJSREALB is quite competitive: while being
far from the best, it gives very good results, being
in the first third. It is roughly at par with the com-
petition baseline which is also a symbolic system.
We see that the sorting process improves scores by
a very small margin for automatic scoring. We are
curious to see how it will influence the human scor-
ing. As expected, our baseline performs badly, but
surprisingly it is not the worst of all submissions,
it is even in the middle of the pack for the unseen
categories. We further discuss the interest of this
submission in the next section.

4.2 Human Evaluation
As shown in Table 7, the output of RDFJSREALB
(RALI/id12 in the published results) was judged
excellent (always in the first group of participants)
for coverage, relevance and correctness. This is
understandable as a great care is given to realize all
information given the triples. This is true for almost
all combination of seen and unseen domains. The
text structure and fluency was judged less good (in
the second and third group) which shows that the
use of language model would probably be useful to
improve the fluency of the output.

Categories Cov Rel Cor Str Fl.
All 1 1 1 3 4
Seen domains 1 1 2 3 3
Unseen entities 1 1 1 2 2
Unseen domains 1 1 1 3 3

Table 7: Rank given to the output of RDFJSREALB by
the human evaluation on five different aspects: cover-
age, relevance, correctness, text structure and fluency.

5 Comments on the task data

We are very thankful of the task organizers who
spent an enormous amount of time and energy
building this corpus and collecting human lexical-
izations. We also recognize the fact that they explic-
itly say that their goal was to provide enough data
so that it becomes feasible for learning algorithms
to develop micro-planners.

We now take a step back to reflect on how this
task corresponds to the original motivation: provid-
ing verbalizers for real RDF set of triples, a goal
stated in almost all papers cited in Section 2. We
think that WEBNLG CHALLENGE 2020 has so
greatly simplified the task that many of the inter-
esting problems have been more or less bypassed.

As the data already identifies the triples to ver-
balize, the challenging step of searching an RDF
triple store to select the appropriate statements is
short-circuited. The problem is thus greatly sim-
plified, but there is still plenty of interesting work
to do, so this is not a fundamental criticism, as
this step could be performed by another system or
could be the subject of another shared task.

An important problem in NLG is lexicalization,
i.e., finding the appropriate words to use for an
utterance. In WEBNLG CHALLENGE 2020, this
problem is greatly simplified by the fact that the
URIs for the subject and object have been replaced
by their labels. So, in almost all cases, it is suf-
ficient just to copy the subject and the object in
the output like we do in RDFJSREALB. The only
lexicalization problem left is thus finding an appro-
priate wording for the predicate.

To illustrate how the reference sentences are sim-
ilar to content of the triples, we can look at the re-
sult of our baseline which merely copies the input
triples with a slight formatting. For 1-Triples, their
is a surprisingly high similarity (BLEU scores of
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more than 30) which of course decreases as the
number of triples increases. The BLEU score for
the whole WEBNLG CHALLENGE 2020 test set
is 0.19. This shows the input is probably too close
to the expected output to be a real NLG challenge.

A commonly used convention for naming a pred-
icate is to use a conjugated verb (Uschold, 2018,
p. 187) (e.g. works or speaks) or a verbal lo-
cution with words joined using camelCase (e.g.
isPartOf or hasChild). Unfortunately, very few
of the predicates in WEBNLG CHALLENGE 2020
data follow this convention which is widely used
in ontology works. For example, here are the most
frequent predicates in the train corpus: country,
leader, location, birthPlace, isPartOf, club,
ethnicGroup, language, genre, capital.

There are also many long-winded names for
predicates such as
addedToTheNationalRegisterOfHistoricPlaces
elevationAboveTheSeaLevelInMetres
wasGivenTheTechnicalCampusStatusBy

which should have been divided into two
or three triples to separate the operation
(added or isElevated) from the destination
or the comparison and the units. A sim-
ilar remark can be done for hasToItsNorth

, hasToItsWest, hasToItsSoutheast... or
isbnNumber, issnNumber, LCCN_Number (sic) or
oclcNumber although this is the kind of regularity
that a learning algorithm should be able to take
advantage of.

One of the goals of this data compilation was to
develop enough training data for the development
of learning algorithms, so it would have been con-
venient to merge some predicates in order to have
more data for each. Following some of our sugges-
tions, the organizers had produced a revised ver-
sion of the learning data, merging many similarly
named predicates. But there are still interesting
cases left: address and location or mission and
crewMembers (its inverse) are different predicates
that could have been normalized. The same remark
applies to order which is the inverse of class or
division.

Contrarily, some predicates should be split be-
cause they are used in different contexts: for ex-
ample, language can be used for the language spo-
ken by a person or the language in which a book
is written. This would not have appeared if the
usual naming convention for predicates had been
followed.

Of course, predicates being arbitrary URI, their

name is not in principle important, but a system de-
veloped without caring for basic conventions would
perhaps not be very appealing for Semantic Web
enthusiasts.

Another suggestion to better reflect NLG chal-
lenges would be to split complex objects such as in
the following mtriples:
Arros_negre | mainIngredients | "White

rice, cuttlefish or squid,
cephalopod ink, cubanelle peppers"

Bacon_sandwich | alternativeName | "
Bacon butty, bacon sarnie, rasher
sandwich, bacon sanger, piece 'n
bacon, bacon cob, bacon barm, bacon
muffin"

Each of these triples should be split into many
each with an object containing a single ingredi-
ent or name. Ideally, it would be an RDF collection
of single ingredients or names. Currently, simply
copying the object probably artificially inflates the
similarity scores since these enumerations have
many words in common with the references.

The task is still far from trivial but, given these
caveats, we think that developers should not extrap-
olate too much on how the performance of their sys-
tem on the WEBNLG CHALLENGE 2020 dataset
could be replicated in real-life RDF contexts. More-
over RDF triples are usually linked with an ontol-
ogy whose content should be integrated into the
realizer, a context that is not taken into account in
WEBNLG CHALLENGE 2020.

6 Conclusion

This paper has described a symbolic approach
to solve the shared task WEBNLG CHALLENGE

2020. The automatic scores are quite competi-
tive compared to the ones of the other participants
which, we conjecture, most often used machine
learning approaches. The system is very fast on a
standard laptop. It can also be quite easy to adapt
to a new domain: considering about one minute per
new predicate, it would have taken about 3 hours to
develop 200 new predicates. It would be interesting
if machine learning could be applied for develop-
ing new templates, even though we doubt it would
be as fast.
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A Appendices

A.1 External data
As the WEBNLG CHALLENGE 2020
competition allows external resources,
we developed two functions to query the
DBPEDIA SPARQL ENDPOINT5 for :

Checking if a subject corresponds to a given
category using :
ASK WHERE {
<http://dbpedia.org/resource/subject>
rdf:type
<http://dbpedia.org/ontology/category>}

Getting the gender of a subject:
SELECT ?gender WHERE {
<http://dbpedia.org/resource/subject>
<http://xmlns.com/foaf/0.1/gender>
?gender}

The above SPARQL queries were sent to the DB-
Pedia SPARQL endpoint using the Python interface
SPARQLWrapper.

A.2 Baseline
def camel_case_split(s):

return list(map(str.lower,
re.findall(r'([A-Z0-9]+|[A-Z0-9]?'+
'[a-z0-9]+)(?=[A-Z0-9]|\b)', s)))

def realizeTriple(triple):
return cleanNode(triple.s)+" "+\
" ".join(map(str.lower,

camel_case_split(triple.p)))\
+" "+cleanNode(triple.o)

def cleanNode(n):
return n.replace("_language","").\
replace("_"," ").replace('"','')

5http://dbpedia.org/sparql

153

https://doi.org/10.1145/3331184.3331232
https://doi.org/10.1145/3331184.3331232
https://doi.org/10.1145/3331184.3331232
http://dbpedia.org/sparql

