Leveraging Large Pretrained Models for WebNLG 2020

Xintong Li, Aleksandre Maskharashvili , Symon Jory Stevens-Guille and Michael White

Department of Linguistics
The Ohio State University

znculee@gmail.com maskharashvili.l@osu.edu

stevensguille.l@osu.edu mwhite@ling.osu.edu

Abstract

In this paper, we report experiments on fine-
tuning large pretrained models to realize re-
source description framework (RDF) triples
to natural language. We provide the details
of how to build one of the top-ranked En-
glish generation models in WebNLG Chal-
lenge 2020. We also show that there appears
to be considerable potential for reranking to
improve the current state of the art both in
terms of statistical metrics and model-based
metrics. Our human analyses of the generated
texts show that for Russian, pretrained models
showed some success, both in terms of lexical
and morpho-syntactic choices for generation,
as well as for content aggregation. Neverthe-
less, in a number of cases, the model can be un-
predictable, both in terms of failure or success.
Omissions of the content and hallucinations,
which in many cases occurred at the same time,
were major problems. By contrast, the models
for English showed near perfect performance
on the validation set.

1 Introduction

The WebNLG Challenge has attracted increasing
attention since 2017. It aims to promote research
on realizing resource description framework (RDF)
triples (Gardent et al., 2017) of various categories
in fluent and accurate natural language. The RDF
triple sets on which the WEBNLG dataset is best
are from DBPedia (Auer et al., 2007) and consist
of one or several triples, where each triple con-
tains one subject, one predicate, and one object.
The most challenging part of WebNLG 2017 is to
generate from data containing unseen categories,
where many predicates and subject/object entities
don’t appear in the training data.

Consequently, for WebNLG 2020, we are espe-
cially interested in improving realization quality
for data from unseen categories. Because the size
of the training data in the WebNLG challenge is

quite modest, we think it is important to introduce
extra knowledge into the pipeline. Considering that
large pretrained models have achieved tremendous
success in various NLP tasks, including recently
for data-to-text NLG (Kale, 2020; Kale and Ras-
togi, 2020), we investigate using pretrained models
to enhance generation from unseen categories, and
find they work remarkably well.

In addition, we try to further improve the fine-
tuned large pretrained models by using reverse
model reranking, which involves reranking the out-
puts of the beam of the original forward model for
a given source input using the perplexity of that
input (conditioned on the output) according to the
reverse model. As shown in Shen et al. (2019);
Yee et al. (2019), techniques similar to the reverse
model reranking method we use here, under the
guise of RSA or noisy channel models, have shown
significant benefits for generation tasks when there
is room for improvement. However, in our experi-
ments, reverse model reranking not only provides
no benefit but also slightly harms realization quality.
By looking at the BLEU oracle reranking scores,
we see a considerable potential for reranking, so
we surmise that the quality of the reverse model
must be too low to be useful. This could indicate
that it is more difficult for large-scale pretrained
models to learn to reconstruct meaning representa-
tions than to generate natural language text from
them.

2 System Description

Data The English dataset contains 13,211 and
1,666 triple sets for training and validation, respec-
tively. The Russian dataset contains 5,573 and 789
triple sets for training and validation, respectively.
Each triple set has two versions, original and mod-
ified. We use the modified version because it is a
cleaner version. Each triple set is also associated

3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+),
Dublin, Ireland (Virtual), 18 December 2020, pages 117-124, ©2020 Association for Computational Linguistics

Attribution 4.0 International.

http://creativecommons.org/licenses/by/4.0/

RDF: "Aarhus_Airport | cityServed | \"Aarhus, Denmark\""
MR: __subject_. Aarhus Airport _predicate_. cityServed __object_. Aarhus, Denmark
Lex: The Aarhus is the airport of Aarhus, Denmark.

Table 1: The format of original and preprocessed data. RDF is the original triple from DBPedia. MR is our
preprocessed meaning representation. Lex is the reference realisation of the RDF triple.

with one to several surface realizations. Therefore,
we have 35,426 and 4,461 parallel data items for
training and validation, respectively, on the English
task, and 14,630 and 2,062 ones for training and
validation, respectively, on the Russian task.

Preprocessing We linearize each triple set into
a sequence with three delimiters, which are
__subject_., _predicate_, __object_, as shown
in Table 1. Additionally, we remove the under-
scores inside the subject/object (_), quotes sur-
rounding subject/object (\”), and the beginning and
end quotes (), in order to reduce noise in MRs.

Pretrained Models The training data of the
WebNLG challenge is too modest in size to suf-
ficiently train a large neural model to generalize
very well. In our preliminary experiments on
WebNLG 2017 (Gardent et al., 2017), we found
that models trained from scratch were very bad
at generating with unseen categories, even though
the outputs with seen categories were mostly ac-
ceptable. This is due to the unseen categories fre-
quently introducing unseen predicates and noun
phrases, on which models, having never seen these
expressions, struggle to consistently produce text
from. Considering that large pretrained models
have achieved tremendous success in many areas,
we think they should also be helpful for generating
unseen content with small training datasets. To test
the conjecture that pretrained models would im-
prove performance on unseen content, we use T5
(Kale, 2020) for the English task and mBART (Liu
et al., 2020) for the Russian task. These models
are chosen because TS is designed for the monolin-
gual task and mBART is designed for multi-lingual
tasks. To be more specific, we use the pretrained
T5-Large HuggingFace transformer model (Wolf
et al., 2019) and the mBART-Large fairseq model
(Ott et al., 2019).

Fine-tuning' Considering that both these mod-
els tokenize the sentences into subwords and the
triple delimiters (e.g. __predicate__) are supposed

'Code: https://github.com/znculee/webnlg2020

118

to be indivisible, we add the three special delim-
iters to the vocabulary of the pretrained models.”
The embeddings of these three special delimiters
are randomly initialized. After extending the vo-
cabularies, the total parameters to be fine-tuned for
T5 and mBART are 737,643,008 and 610,851,840,
respectively.

The TS5 model is fine-tuned using cross entropy
loss without label smoothing. The learning rate is
constantly 2 x 10~ and the batch size is 8 samples.
We found that an overly large learning rate and
batch size could hurt performance. The optimizer
is Adam (Kingma and Ba, 2014) where 3; = 0.9,
Ba = 0.999, ¢ = 1 x 1078, and the weight decay
is 0. In our preliminary experiments, we found that
L2 normalization did not help, whether we used
the weight decay of Adam or AdamW (Loshchilov
and Hutter, 2017). The best checkpoint is selected
by validation with patience of 10 training epochs.
With this setting, the best checkpoint is at the end
of the 7™ epoch.

The mBART model is fine-tuned with different
hyper-parameters than T5 because we followed
the recommended fine-tuning guidelines of the
mBART authors. It is optimized according to cross
entropy loss with label smoothing of 0.2. The batch
size is 2048 tokens. The learning rate is 3 x 107
and the scheduler is polynomial decay with 2500
warmup updates. The optimizer is Adam where
B1 = 0.9, By = 0.98, ¢ = 1 x 1075. The best
checkpoint is selected by validation with patience
of 20 training epochs. The best checkpoint is at the
end of the 32" epoch.

3 Experiments

3.1 Evaluation Metrics

BLEU We use BLEU-4 (Papineni et al., 2002)
implemented by the e2e-metrics (DusSek et al.,
2018). Although we can evaluate with multiple
references by combining the same MR, we still

2We only extend the vocabulary for the T5-Large of Hug-
gingFace transformer by the add_token () function, be-
cause fairseq does not support this feature currently to the
best of our knowledge.

https://github.com/znculee/webnlg2020

Models BLEU BLEURT Fluency Grammar Semantics
T5 46.51 0.464176 2.58516 2.70785 2.53218
T5-RMR 45.40 0.443449 256646 2.69307 2.51706
T5-RMRB 4531 0.435909 2.55813 2.68477 2.51426
T5-RMRF 45.16 0.439485 2.56026 2.68461 2.51901
T5-ORAC 55.13 0.538256 2.62836 2.74878 2.57138

Table 2: Evaluation scores on the English validation set. BLEURT is the pretrained BLEURT-base-128 model
without any fine-tuning on WebNLG data. Fluency, grammar, and semantics are the scores from BLEURT fine-
tuned on the WebNLG 2017 three-fold human evaluation scores. See text for model descriptions.

report the single reference BLEU here to be con-
sistent with other metrics which cannot consider
multi-reference, e.g. the following BLEURT met-
ric.

BLEURT As an n-gram metric, BLEU may
not fairly judge the correctness of the generated
texts, and since human evaluation is expensive,
we investigate using a recently developed model-
based metric, known as BLEURT (Sellam et al.,
2020), for automatic evaluation. BLEURT s evalua-
tion shows state-of-the-art consistency with human
judgements on the WMT Metrics Shared Task (Bo-
jar et al., 2017). And it is also shown to be well
adapted to other domains with its pretrained model,
such as WebNLG 2017.3 Considering we do not
have the human evaluation data for WebNLG 2020
now, the best we can do is to use WebNLG 20174 as
the data to fine-tune BLEURT to evaluate our mod-
els for WebNLG 2020. The human evaluation in
WebNLG is three fold, including fluency, grammar
correctness, and semantics adequacy. Each of them
has one of three possible values (1 or 2 or 3) for
the human annotator. Each sentence is assigned up
to three annotators. The range of average score is
from 1 to 3. Then, we fine-tuned the recommended
BLEURT-base-128 on these three different tasks.
Specifically, we used all 5,363 items and randomly
sample 1,000 of them as validation data and the
others are regarded as training data, because the
BLEURT paper concludes that using more train-
ing data leads to better consistency with human
judgements. Following Sellam et al. (2020), the
fine-tuning stops at 40,000 steps.

3The checkpoints of BLEURT fine-tuned on
WebNLG 2017 are not released publicly.
*https://gitlab.com/webnlg/webnlg-human-evaluation

Models BLEU
mBART 24.33
mBART-RMR 23.90

Table 3: BLEU scores on Russian validation set.
mBART-RMR indicates mBART with reverse model
reranking.

3.2 Validation Performances

The main results for the English task and Russian
task are shown in Table 2 and Table 3, respectively.
More model comparisons are conducted on the
English task only. These models share the same
forward model but use an extra reverse model to
rerank the generated text after beam search.

* T5-RMR is reverse model reranking with
forced decoding perplexity.

* T5-RMRB is reverse model reranking using
the BLEU scores of the reconstructed MRs
from the reverse model against the original
MRs.

* T5-RMREF is reverse model reranking with
the sum of the reverse model forced decoding
perplexity and the forward model perplexity.

¢ T5-ORAC is reranking using oracle BLEU
scores.

From Table 2, we can see that the vanilla fine-
tuned T3 is generally better than its reranking ver-
sions. It’s surprising that these reranking methods
don’t work. For the English task, it could be be-
cause the model was near ceiling for correctness,
however this is not the case with Russian. Although
these three reranking methods do not improve upon
the baseline, the BLEU oracle strongly suggests
that there is considerable potential for reranking

119

https://gitlab.com/webnlg/webnlg-human-evaluation

Task TestSubset BLEU i) METEOR CHRE++ TER ppbersion Recatl —ox' BLEURT

En All 5354 0532 0414 0688 0416 0958 0955 0956 061

En SeenCategories 6124 0607 0434 0727 0393 0964 0960 0962 061

En UnseenCategories 4740 0474 0397 0652 0437 0953 0951 0951 057

En UnseenEntities 5237 0520 0416 0694 0398 0.963 0960 0961 065
"Ru Al 4729 0477 0616 0622 0453 0897 0882 0888 N/A

Table 4: Official evaluations of TS5 on English (En) and mBART on Russian (Ru) test sets

to improve the outputs. It would be interesting to
investigate more effective methods to select more
correct generated text in the beam search.

3.3 Official Evaluation

Since the test set references are not available to
the challenge participants, the evaluation of test
performance is done by the organizers. Table 4
shows the automatic evaluation scores across vari-
ous measures (Moussalem et al., 2020) for T5 on
the English task and mBART on the Russian task,
respectively. For the English task, our TS model is
always ranked in the top two over all 35 submis-
sions across all test subsets, and only has a small
gap from the first ranked system. For the Russian
task, our mBART is ranked third over all 12 sub-
missions. The official report (Castro-Ferreira et al.,
2020) should have more comprehensive compar-
isons and human evaluations for all submissions.

4 Methodology for Analyses

Analyzing the performance of a model is an im-
portant aspect of research pursued with neural net-
works, because even though their architecture is
explicit and transparent, their behavior roughly can
be compared to a black box.

One of the strategies we relied on in the current
work is to analyze success and failure of a model
qualitatively by comparing given examples to re-
lated proportions of the training data.

We tested our Russian models against the test
set, even though it had no labels. Based on our
linguistic knowledge and using observations from
the training and validation data, we hypothesize a
possible text for a given source (meaning represen-
tation), which allows us to see whether a model
generated a plausible/acceptable text for a given
source. We also ran our models for Russian against
the validation set. We discuss our findings in Sec-
tion 5.1.

In addition to Russian, we also analyzed the
model performance on English, though we used

only the validation set. Our models worked almost
flawlessly on the data given for the validation set,
both in terms of content realization and lexical and
morpho-syntactic selections. The models exhibit
high performance on aggregation of content across
sentences and also within the same sentence, using
coordinating conjunctions for both multiple noun
and multiple verb phrases.

5 Performance and Observations: Case
of Russian

5.1 mBART and mBART-RMR

We make use of two models for Russian. The first
one is the mBART model fine-tuned for our task.
The other one is the fine-tuned mBART model with
reverse model reranking. We refer to the fine-tuned
mBART by mBART and its reverse model reranked
version by mBART-RMR.

On the Russian test set, we find that out of
1,102 texts generated by mBART and mBART-
RMR, all but 174 were the same. We have ana-
lyzed those 174 generated texts for each model and
checked their correctness against the source. We
find that on those 174 cases, mBART performs bet-
ter then mBART-RMR. In particular, among those
174 cases, on 82 of them, both of the models were
successful, whereas on 33 cases both of them failed.
On the rest of the cases, 41 times mBART was the
better of the two, whereas mBART-RMR prevailed
in 18 cases.

Since mBART showed better performance than
mBART-RMR, we tested mBART against the val-
idation set of the WebNLG 2020 dataset. We ran-
domly selected 120 examples and annotated the
problematic ones. We found that on average, only
1 out of 3 qualified as a decent Russian text.

5.2 The Same Realizations

We performed our analyses on the cases where
both of the models, mBART and mBART-RMR,
generate the same text.

120

We randomly selected 70 short and 61 long cases,
where we call an item short if the source has 3 or
fewer tuples and long otherwise (the short cases
consists of: 15 1-tuples, 37 2-tuples, and 18 3-
tuples; while the long cases consists of 13 4-tuples,
21 5-tuples, 14 6-tuples and 13 7-tuples). We found
that among the short items, the ratio of correct
realizations is 46 to 70. For the long item, the ratio
is 9 to 61. (These success rates are close to the
numbers we got while analyzing the performance
of our models on the validation set of WebNLG).

In many cases, the success of a generated text
could be attributed to the fact that a very similar
source (MR) has been encountered in the training
data.

If MR; is part of MRy but the model has only
seen MRy, in certain cases we observe that it is still
able to correctly generate from MR, skipping the
parts associated with MRo/MR; (where MRo/MR;
denotes the part of MR2 that is not in MR1). This
is due to model seeing a number of cases in the
training data similar to MR1 and MR2, thereby
learning how to differentiate between the two.

Hallucinations together with omissions are one
of the major problems of the model. They usu-
ally occur with sparse or unevenly distributed data.
One of the issues we find is that the model may
incorrectly associate an entity from the source with
a name in a text, even though the correct realiza-
tion would also be present in the training data (the
model has the needed information to be able to se-
lect the correct realization of an entity, but it fails
to do that). For the sake of illustration we discuss
details of such errors. The correct realization of an
entity occurred 31 times in the training data. Let us
denote the correct realization by cr. However, in
certain cases, the model associated the entity with
a realization of another entity, which we call the
incorrect realization and denote by ¢r. We find that
1r occurred 42 times in the training data. These two
realizations, c¢r and ¢r occurred 10 times together
(i.e. within in the same text). In the context where
the model made the mistake, the frequencies of cr
and ¢r are more or less homogeneous (cr appeared
7 times and ¢ 10 times). However, they differ with
respect to how they appear in the training data in
general: ir exclusively appears within realizations
of 5-tuples, whereas cr appears as a part of texts
that are realizations of tuples of various lengths.
The source on which the model makes the error of
associating the entity with ¢r also happens to be a

121

5-tuple; and moreover, this source is very similar
to the sources whose realizations contain 7r. (Even
though cr also appears within texts serving as re-
alizations of 5-tuples, there are only 3 such cases
and in all of these cases, these texts also contain ir
together with cr.)

In certain cases we also saw that several triples
were omitted when the source consisted of 7 tuples.
Howeyver, this was also true in certain cases where
we had only 3-triples. Let us consider the following
example:

Example 5.1 Appos merpe pojoM u3 permoHa
Karamonus 8 Ucianuu.

EN: Arros negre comes from Catalonia in Spain.
Source: __subject__ Arros negre __predicate_.
country _object_. Spain __subject_. Arros
negre _predicate_. region __object_.
Catalonia __subject__ Arrds negre

__predicate_. ingredient __object_- Squid

As we see in Example 5.1, the source states squid
is an ingredient in ArrOs negre, but this is not gener-
ated by the model. We look into the training set to
find out how many times squid appears as an object
to the predicate ingredient. It turns out that squid
appears as an ingredient 4 times in the training set,
and in all of these MRs, it is as an ingredient of
Arros negre. Given that the model failed to gener-
ate this fact, one may conclude that its occurrence
in the corpus is too infrequent to be learned. How-
ever, the model generates the following:

Example 5.2 Appos Herpe pojiom n3 Mcnannu,
OJITHUM U3 UHI'DEJIUCHTOB - KaJIbMapbI.

EN: Arros negre comes from Spain, one of its
ingredients is squid.

Source: __subject__ Arrds negre __predicate__
country _object_. Spain __subject__. Arros
negre _predicate_. ingredient __object__
Squid

To make sure that Example 5.2 is not simply
copied from the training set, we check that it does
not appear in the training set. Moreover, the second
clause “omHHM U3 MHIPEIUEHTOB - KaJIbMaphl’
(EN: one of its ingredients - squids) as a sequence
has no occurrence in the training set.

The pair of Example 5.1 and Example 5.2 il-
lustrate an unstable behavior of our models. One
might attribute this to the low number of training
examples with certain words engaged in those ex-
amples. While this might be true, we do not know
how to augment the data to overcome those prob-
lems.

For further exposition we show examples with
similar issues in cases where the number of training
examples is relatively high. We discuss a case
where the model failed to produce realization of a
source consisting of three triples, even though it
was successful separately on each of them in other
contexts.

Example 5.3 HOK SVE 6bL1 apxuTeKTOpoM
3Arena, KOTOpBI OBLI IOCTPOEH B JieKabpe
2008 roma.

EN: HOK SVE was the architect of 3Arena, which
was built in December 2008.

Source: __subject__ 3Arena _predicate__
location __object__ Dublin __subject_
3Arena _predicate_. architect __object_.
HOK SVE __subject_. 3Arena _predicate_.
completionDate __object_. December 2008
Fails on: __subject_. 3Arena __predicate__
location __object__ Dublin

(3Arena, December 2008 = 37 times in training
set); (3Arena, Populous = 30 times in the
training set);
2008 = 20 times in the training set).

(3Arena, Populous, December

We write (w1, . .., wy, = m times in the training
set) to denote that the words wy, . .., w,, co-occur
in m sources (i.e. meaning representations) in the
training set. We report these numbers in order to
facilitate analysis in each of the cases.

Let us mention that in the training set, we have a
very similar text to the one we would like to have
generated in Example 5.3, which is the following:
HOK SVE 6buia apxurekTopoMm 3Arena, 3aBep-
meHHbIM B Jiekabpe 2008 rojia U pacroioKeH-
upiM Ha Hopr-Yomr B lyonune. (EN: HOK SVE
was the architect of 3Arena, completed December
2008 and located at North Wall, Dublin.)

To analyze why the model fails on a particular
test example, we look for other test items with the
same predicates and/or entities. For Example 5.3,
we find some good realizations of locations in the
following cases:

Example 5.4 3Arena pacnosioxkena B [lybsmne,
Pecnybuka Upnanmus.

EN: 3Arena is located in Dublin, Republic of
Ireland.
Source: __subject__ Dublin _predicate__
isPartOf __object__ Republic of Ireland
__subject_. 3Arena _predicate.. location
__object__ Dublin

Success!

(3arena, Dublin = 69 times in the training set)

122

(BArena, Dublin, Republic of Ireland = 27
times in the training set)

Example 5.5 HOK SVE 6wt apxurekTopoMm
3Arena, paco/oyKeHHO# Ha HabeperKHOM
Hopr-Yomn u 3apepiiennoit B gekabpe 2008
rojua.

EN: HOK SVE was the architect of 3Arena, located
on North Wall Quay waterfront and completed in
December 2008.

Source: __subject_. 3Arena _predicate_
location __object_. North Wall Quay
__subject_. 3Arena _-predicate_. architect
__object_. HOK SVE __subject._. 3Arena
__predicate_. completionDate __object__
December 2008

Success!

(3arena, December 2008 = 37 times in training
set) (3Arena, HOK SVE = 36 times in the training
set) (3Arena, HOK SVE, 2008 = 26 times the
training set) (3Arena, HOK SVE, 2008, North
Wall Quay = 6 times the training set)

Hence, the model successfully realized
location and its arguments in Example 5.4 and
Example 5.5, even though it failed to produce
this text in the very similar Example 5.3. The
model indeed seems to learn how to realize triples
built using 1ocation as their predicate, and the
following example can be used to support this
conclusion:

Example 5.6 HOK SVE 6bu1 apxureKTopoMm
3Arena, koropblii HaxoauTca Ha Mocry Mcr-
JINHK.

EN: HOK SVE was the architect of 3Arena, which
is on the East Link Bridge.

Source: __subject_. 3Arena _predicate_
location __object_. East Link Bridge
__subject__ 3Arena _predicate__ architect
__object_. HOK SVE

Success!

(3Arena, HOK SVE, East Link Bridge = 2
times the training set)

The training corpus contains no exact match
to this example, either content-wise (source) or
realization-wise (text). In particular, every time
terms 3Arena, HOK SVE,and.East Link Bridge
appear in the same source (and are realized in
the corresponding text), they are accompanied by
the completionbate. The model apparently is
capable of learning how to generate text without
completionDate When the latter is not present in
a source MR.

Our model is also successful in the following
example, where it realizes the location by Dublin
(which it failed to produce in Example 5.3). Fur-
thermore it correctly realizes Populous (entity
name) and the predicate architect.

Example 5.7 Kommnanus Populous 6s11a apxu-
TekTOpoM 3Arena, pacrosioxennoii B y6une.
EN: Populous is the architect of 3Arena located at
Dublin.
Source: __subject_. 3Arena __predicate__
location __object_. Dublin __subject__
3Arena __predicate_. architect __object__
Populous
Sucsess !
(3arena, Dublin = 69 times in the training set)
(3arena, Populous = 30 times in the training set)
(3Arena, Populous, Dublin = 10 times in the
training set)

(company)

As we see in the case of Example 5.7, the model
realized correctly the triple __subject__ 3Arena
__predicate__ architect __object__ Populous
(company) . But in Example 5.8, the model fails on
the very same triple. In fact, it does not generate
any textual realization corresponding to that triple.
We cannot explain why this happens, even by
looking in the training set (the numbers are close
across both the examples on which the model
failed and on which it succeeded).

Example 5.8 3Arena, nocrpoennast B jiekabpe
2008 roma, pacrnosoxkena B lybmme.

EN: The 3Arena, completed in December 2008, is
located in Dublin.

Source: __subject_. 3Arena _predicate__
location __object_. Dublin __subject_.
3Arena __predicate_. architect __object_
Populous (company) -_-subject_. 3Arena
__predicate_. completionDate __object_
December 2008 predicate completionDate
object December 2008

Fails on: __subject_. 3Arena __predicate__
architect __object_. Populous (company)
(3arena, Populous = 30 times in the training
set) (3Arena, Populous, December 2008 =
20 times the training set) (3Arena, Populous,
December 2008, Dublin = 7 times the training

set)

6 Conclusions

For Russian, we have seen that in certain cases
the models successfully realize meaning represen-
tations in text, both with respect to fluency and

123

content, but they fail to do the same in very simi-
lar cases. To analyze such cases, we looked into
distributions of the relevant data in the training set.
While considering distributions provides some in-
sight into the models output, further investigation
is needed to explain a number of issues.

It is common knowledge that more data means
better performance, and our observations are con-
sistent with this view. Nonetheless, we observed
that the same frequency of two entities or predicates
in the training data doesn’t determine whether the
model consistently produces the text corresponding
to such content. It is not impossible augmenting
the data would induce more errors; this could make
the model more biased towards producing text we
would like to avoid. Thus it is not straightforward
to say whether simple data augmentation would
help.

Pretrained models excel due to their accumulat-
ing valuable knowledge about the world (seman-
tic and pragmatic) and the language (lexical and
morpho-syntactic). To analyze the performance of
a pretrained model that is fine-tuned on some spe-
cific data, for a specific task, is not straightforward.
The possible sources of success or failure are nu-
merous — it might be the pretrained model is the
source of success, but contradictory results could
be due to inherent biases in the pretrained model.

To conclude, we believe that both the architec-
ture of the model and the data needs to be scruti-
nized to understand why the model and the data do
or do not produce good results.

Nevertheless, on the whole we find that large-
scale pretrained models work remarkably well on
the WebNLG tasks, especially TS5 for English. To
our surprise though, we find that reverse model
reranking does not appear to work well with pre-
trained models. This could indicate that it is easier
for a pretrained model to learn to generate nat-
ural language text from meaning representations
than the reverse task of reconstructing meaning rep-
resentations from text. In the future, we aim to
investigate better reranking scorers to realize the
potential of reranking shown by the BLEU oracle.
Additionally, it would also be interesting to lever-
age the shape information among the triples and
employ constrained decoding (Balakrishnan et al.,
2019) to guarantee the correctness of realizations.

References

Soren Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives.
2007. Dbpedia: A nucleus for a web of open data.
In The semantic web, pages 722—735. Springer.

Anusha Balakrishnan, Jinfeng Rao, Kartikeya Upasani,
Michael White, and Rajen Subba. 2019. Con-
strained decoding for neural NLG from composi-
tional representations in task-oriented dialogue. In
Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 831—
844, Florence, Italy. Association for Computational
Linguistics.

Ondrej Bojar, Yvette Graham, and Amir Kamran. 2017.
Results of the WMT17 metrics shared task. In
Proceedings of the Second Conference on Machine
Translation, pages 489—513, Copenhagen, Denmark.
Association for Computational Linguistics.

Thiago Castro-Ferreira, Claire Gardent, Nikolai
llinykh, Chris van der Lee, Simon Mille, Diego
Moussalem, and Anastasia Shimorina. 2020. The
2020 bilingual, bi-directional webnlg+ shared task:
Overview and evaluation results (webnlg+ 2020). In
Proceedings of the 3rd WebNLG Workshop on Nat-
ural Language Generation from the Semantic Web
(WebNLG+ 2020), Dublin, Ireland (Virtual). Associ-
ation for Computational Linguistics.

Ondrej Dusek, Jekaterina Novikova, and Verena Rieser.
2018. Findings of the E2E NLG Challenge. In
Proc. of the 11th International Conference on Nat-
ural Language Generation, pages 322-328, Tilburg,
The Netherlands. Association for Computational
Linguistics.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. Creating train-
ing corpora for NLG micro-planners. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 179—188, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Mihir Kale. 2020. Text-to-text pre-training for data-to-
text tasks. arXiv preprint arXiv:2005.10433.

Mihir Kale and Abhinav Rastogi. 2020. Text-to-text
pre-training for data-to-text tasks. In Proceedings of
the 13th International Conference on Natural Lan-
guage Generation. To appear.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation. arXiv
preprint arXiv:2001.08210.

124

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Diego Moussalem, Paramjot Kaur, Thiago Castro-
Ferreira, Chris van der Lee, Anastasia Shimorina,
Felix Conrads, Michael Roder, René Speck, Claire
Gardent, Simon Mille, Nikolai Ilinykh, and Axel-
Cyrille Ngonga Ngomo. 2020. A general bench-
marking framework for text generation. In Pro-
ceedings of the 3rd WebNLG Workshop on Natu-
ral Language Generation from the Semantic Web
(WebNLG+ 2020), Dublin, Ireland (Virtual). Asso-
ciation for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311-318. Association for
Computational Linguistics.

Thibault Sellam, Dipanjan Das, and Ankur Parikh.
2020. BLEURT: Learning robust metrics for text
generation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7881-7892, Online. Association for Computa-
tional Linguistics.

Sheng Shen, Daniel Fried, Jacob Andreas, and Dan
Klein. 2019. Pragmatically informative text gen-
eration. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4060-4067, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

Kyra Yee, Yann Dauphin, and Michael Auli. 2019.
Simple and effective noisy channel modeling for
neural machine translation. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 5696-5701, Hong Kong,
China. Association for Computational Linguistics.

https://doi.org/10.18653/v1/P19-1080
https://doi.org/10.18653/v1/P19-1080
https://doi.org/10.18653/v1/P19-1080
https://doi.org/10.18653/v1/W17-4755
https://doi.org/10.18653/v1/W18-6539
https://doi.org/10.18653/v1/P17-1017
https://doi.org/10.18653/v1/P17-1017
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/N19-1410
https://doi.org/10.18653/v1/N19-1410
https://doi.org/10.18653/v1/D19-1571
https://doi.org/10.18653/v1/D19-1571

