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Abstract

This paper presents our results for the Nuanced Arabic Dialect Identification (NADI) shared task
of the Fifth Workshop for Arabic Natural Language Processing (WANLP 2020). We participated
in the first sub-task for country-level Arabic dialect identification covering 21 Arab countries.
Our contribution is based on a stacking classifier using Multinomial Naive Bayes, Linear SVC,
and Logistic Regression classifiers as estimators; followed by a Logistic Regression as final
estimator. Despite the fact that the results on the test set were low, with a macro F1 of 17.71, we
were able to show that a simple approach can achieve comparable results to more sophisticated
solutions. Moreover, the insights of our error analysis, and of the corpus content in general, can
be used to develop and improve future systems.

1 Introduction

Most resources for Arabic have been developed for Modern Standard Arabic (MSA) since it is the official
language in most Arabic speaking countries. MSA is used in media coverage, politics, books, and
even online. However, in each individual Arabic country, the predominant language used for everyday
conversation (in real life and online) is a specific dialect for that region or country (Versteegh, 2014).

Arabic dialects are not standardized. There are no formal grammar rules nor formalism to guide the
speakers (Zaidan and Callison-Burch, 2014). There are some efforts on creating standards for automat-
ically processing such dialects (Habash et al., 2018), but the language use remains non-standardized.
Within one same city, people can pronounce and write the same word differently. This aspect accen-
tuates the difficulty of automatically processing such languages, and automatically distinguishing them
from each other is as challenging, since no clear structure exists. Nevertheless, many attempts have been
made for Arabic dialect identification. Despite the difficulty of the task, there are still syntactic and
morphological aspects of the languages that can be exploited to differentiate them from each other.

Most works rely on machine learning approaches, and span various levels of accuracy depending on
the dataset used and dialects being processed. The nearer (geographically) the countries are to each other,
the more similar the spoken language, and therefore the more difficult it is to automatically distinguish
the dialects (Bouamor et al., 2019).

The Multi Arabic Dialect Applications and Resources (MADAR) corpus (Bouamor et al., 2018) is an
important resource for Arabic dialect identification. The corpus covers parallel sentences written in 25
Arabic city dialects from the travel domain. This corpus has been used in a shared task (Bouamor et
al., 2019) for both fine-grained (26 dialects) and coarse-grained (6 dialects) Arabic dialect identification
where various machine learning approaches have been used. A simple Mulitnomial Naive Bayes (MNB)
has shown to be very powerful in the identification of the exact city of 26 dialects from the MADAR
corpus with an accuracy of 67.9%, using as features character and word 5-grams language models and
the output of the coarse-grained classifier (Salameh et al., 2018). Other approaches also focused on the
use of machine learning and ensemble methods, using as features word counts, language models, and
embeddings (Abu Kwaik and Saad, 2019; Meftouh et al., 2019; Ragab et al., 2019; Fares et al., 2019).

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/.
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# Tweets # Tokens

train 21,000 270,574
dev 4,957 60,700
test 5,000 64,458

Table 1: Number of tweets and total number of tokens excluding punctuation in the three splits.

In this paper, we present our participation in the Nuanced Arabic Dialect Identification (NADI) shared
task (Abdul-Mageed et al., 2020). We participated in the first sub-task aiming at country-level Arabic
dialect identification from tweets covering 21 Arab countries. Our contribution is based on a stacking
classifier using Multinomial Naive Bayes, Linear SVC, and Logistic Regression classifiers as estimators;
and Logistic Regression as final estimator.

We have experimented with various architectures, from traditional machine learning approaches as the
approach presented in this paper and clustering, but also with more recent approaches as Bi-LSTMS and
CNNs. We have also experimented using unlabeled tweets (provided by the shared task organizers) to
train embeddings and language models. However, none of these architectures gave satisfying results.

In Section 2 we describe the NADI tweet corpus. We present our proposed model in Section 3, and
describe our results and give an overall discussion of the results in Section 4. Finally, we conclude in
Section 5 and discuss possible future work.

2 Data
We used the NADI corpus provided by the shared task organizers (Abdul-Mageed et al., 2020). The
corpus comprises 21,000 tweets covering 21 Arab countries for the first sub-task, and 100 provinces
from the same Arab countries (as sub-task 1) in the second sub-task. In the following, we will only
focus on the data set for the country-level classification. Each tweet in the corpus is annotated with its
associated country (i.e. dialect) label. Table 1 gives an overview of the size of the corpus in the three
splits (train, dev, and test) in terms of number of tweets (size of data), and the total number of tokens
excluding punctuation.

The dialects of the following countries are included in the NADI corpus: Algeria, Bahrain, Djibouti,
Egypt, Iraq, Jordan, Kuwait, Lebanon, Libya, Mauritania, Morocco, Oman, Palestine, Qatar, Saudi Ara-
bia, Somalia, Sudan, Syria, Tunisia, United Arab Emirates, and Yemen. Despite the relatively large
amount of tweets used for training, the corpus is extremely unbalanced, which we believe has made this
task even more difficult. As can be seen in Figure 1, the Egyptian dialect on it’s own represents more
than 21% of the training data, while the dialects from Djibouti, Bahrain, Sudan, Mauritania, and Somalia
only represent 1% of the training data.

A further analysis of the corpus also showed that for all dialects except Egypt and Iraq, most of the
word types were not representative of the language. Most vocabulary items are shared between dialects,
which might confuse any classification system. In Figure 2 we show that the lightest (at the bottom) color
represents the normalized number of unique words for each dialect. The color in the middle represents
the normalized number of words shared between each dialect and up to four other dialects. The darkest
color (at the top) represents the normalized number of words shared between each dialect with more than
four other dialects.

From Figure 2 it is evident that 58% of the word types in the Egyptian and Iraqi tweets are unique
to these dialects. However, for the remaining 19 dialects, over 50% of the word types were shared with
other dialects. Our preliminary investigations have shown that many of these shared vocabulary items
were actually MSA words. It is important to note that many dialectal words are shared with MSA.

For example the words É
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joy, your age, the club, more beautiful, Madrid, I believe, feelings in English, were shared by more than
10 dialects. Another example is the word ¼A

	
J
�
ë (there) which in the corpus is uniquely present in tweets

labeled as Libyan, actually exists also in other forms in the corpus. When written
�
¼A

	
Jë, it is only present
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Figure 1: Number of tweets per dialect in both
train and dev splits. This shows a very skewed
distribution and the predominance of the Egyptian
dialect in the data set.

Figure 2: Normalized number of word types in
each dialect. The lightest color represents unique
words to each vocabulary. The color in the mid-
dle represents words shared with one to four other
dialects, and the darkest color represents words
shared with more than four other dialects.

in tweets from Iraq and Morocco, while when written in its most basic form without vowels, ¼A
	
Jë, it

is present in tweets labeled with the 17 dialects from Algeria, Djibouti, Egypt, Iraq, Jordan, Lebanon,
Libya, Morocco, Oman, Qatar, Saudi Arabia, Somalia, Sudan, Syria, Tunisia, United Arab Emirates, and
Yemen. This also plays a role in the difficulty of the task. As most dialects share their vocabulary, the
words distinguishing them from each others might actually not be that different from common shared
words. Therefore distinguishing the dialects from each other gets more challenging.

3 System

Our model, as shown in Figure 3, is based on a stacking classifier. We first train three different models
on the NADI train split, and use their respective predictions to train a final estimator to get our final
predictions. Stacking allows us to use the strengths of each individual classifier by using their output as
input of a final estimator. All of the experiments are implemented using Python and the scikitlearn
library (Pedregosa et al., 2011).

Our model classifies tweets into the NADI 21 dialects. It uses a combination of word and character n-
grams and skipgrams concatenated using Feature Union estimator in sklearn. We give different weights
to each feature vector, which were selected after a thorough analysis by experimenting with various
possible weights (and combination of weights) using grid search. We used the following features:

• TF-IDF vectors of word bi-grams, with a vector weight of 0.5.

• TF-IDF vectors of character n-grams in the range (2,5) when using word boundaries, with a vector
weight of 0.5.

• TF-IDF vectors of character n-grams in the range (3,5), with a vector weight of 0.5.

• TF-IDF vectors of skip grams with both one word or one character skipping. The weight for the
vector transformation for both these features was set to 0.3.
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Figure 3: Model architecture. Our model is a stacking classifier. First, three different classifiers are
trained on the NADI train split. Their respective predictions are thereafter used with a final estimator
to get final predictions.

dev test

Macro average F1 17.87 17.71
Overall accuracy 37.26 36.22

Table 2: Accuracy and macro average F1 for both dev and test split.

Thereafter, we use these feature vectors to train three different classifiers:

• a Multinomial Naive Bayes (MNB) with alpha set to 0.004.

• a Support Vector Classification (SVC) using hinge loss with a tolerance for stopping criterion of
0.9.

• a Logistic Regressor (LR) with a liblinear solver.

The predictions of these classifiers are thereafter stacked and fed to a final classifier, in our case, a
Logistic Regression using a tolerance for stopping criterion equal to 0.01 and hinge loss. As shown in
Figure 3, the classifiers MNB, SVC, and LR are fitted on the full feature vector sets, while our final LR
estimator is trained using cross-validated predictions of the three base estimators MNB, SVC, and LR.

4 Results and Discussion

We report in Table 2 our model’s scores on both dev and test splits using the macro F1-score and accuracy
metrics. Both metrics give very low scores, which reflect the difficulty of the task.

We believe that the main issue is the unbalanced nature of the dataset. We have experimented with
various approaches to boost the performance. We used oversampling and under-sampling, as well as
balanced sampling, but none of these gave satisfying results.

As can be seen in Figure 4 our model achieves high scores when predicting the Egyptian, Saudi
Arabian, Algerian, and Iraqi dialects. From the confusion matrix it is also apparent that most dialects
were miss-classified as these four dialects. We believe that these are partly due to the amount of tweets
of each dialect present in the training set, as these represent the top four most frequent dialects in the
train set (see Figure 1). To support this hypothesis, we trained our model only on tweets from these four
dialects and achieved an F1-score of over 60%.
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Figure 4: Confusion matrix of our model on the dev data set.

Further analysis of the output have shown that our model performs very poorly on the less frequent
dialects. Our model is not able to correctly predict the dialects Qatar, Bahrain, Djibouti, and Kuwait.
Once again, we believe that this is due to the skewed nature of the data. But also, the difficulty to
differentiate between the dialects in general. The individual precision and recall scores (see Table 3) for
each dialect also show that while our model performs poorly on these infrequent dialects, we achieve
relatively high precision scores on them. This means that our model predicts very few examples of these
dialects, but most of the predicted labels are correct.

A better performing system would have performed on the entire data set as our system performs on
the Egyptian dialect: with high precision and high recall. A model that returns multiple predictions, with
most predictions correctly labeled. We think that such a system might require a more diversified data set,
with less overlap in the vocabulary.

Moreover, a close analysis of the tweets themselves revealed that many tweets labeled as dialects were
actually written in (mostly) MSA, which we believe could have further skewed the classifications. As an
example, consider the sentences (1) and (2). These are labelled as Algerian in the training data, despite
being both written in MSA. We did not carry an exhaustive analysis on the amount of tweets that actually
were written in MSA despite being labeled as Algerian, but from our preliminary analysis, it seems that
many were either completely written in MSA, or mostly used MSA words. This might be partly due to
which region the person tweeting is from, as people from different regions and backgrounds might prefer
to write in MSA, or prefer to reach a broader international audience.

Admittedly, these sentences are generic and could in theory be present in all dialects. But it is exactly
these type of sentences that can complicate the classification task. Social media platforms can be a
gold mine for Arabic dialect identification, and having these type of sentences in a corpus is inevitable.
We nevertheless believe that filtering these out, or even classifying them as MSA, might increase the
performance of dialect identification systems.
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Label Precision Recall F1

Lebanon 28.30% 13.64% 18.40%
Iraq 41.57% 51.57% 46.04%
Sudan 55.56% 9.80% 16.67%
Yemen 37.36% 16.50% 22.90%
Qatar 0.00% 0.00% 0.00%
Saudi Arabia 26.48% 38.51% 31.39%
Morocco 20.12% 13.25% 15.98%
Kuwait 0.00% 0.00% 0.00%
Mauritania 50.00% 12.50% 20.00%
Tunisia 27.35% 19.51% 22.78%
Libya 32.18% 24.53% 27.84%
Palestine 20.00% 0.98% 1.87%
Syria 18.39% 6.04% 9.09%
Djibouti 0.00% 0.00% 0.00%
Somalia 33.33% 3.92% 7.02%
United Arab Emirates 25.83% 14.72% 18.75%
Bahrain 0.00% 0.00% 0.00%
Algeria 36.36% 45.68% 40.49%
Egypt 46.64% 79.91% 58.90%
Oman 21.97% 11.65% 15.22%
Jordan 20.00% 0.96% 1.83%

Table 3: Individual dialect precision, recall, and F1 scores. Values presented in bold are top three values
for each measure.
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b. Happy birthday, I hope that you will have a great and healthy year.

5 Conclusion

We proposed a model for automatically classifying 21 Arabic dialects using a corpus of tweets. Our
system uses a stacking classifier relying on TF-IDF word and character features, and the three classifiers
Multinomial Naive Bayes, Linear SVC, and Logistic Regression.

Our model did not achieve high scores on all dialects, but we believe that it shows that simple ap-
proaches can achieve satisfying results even when using heavily unbalanced data. We have experimented
with more advanced deep learning approaches, but were not able to achieve satisfying results. We also
believe that the poor results achieved reflect the data we have used. The heavy unbalance in the data has
added an extra layer of difficulties to the task of dialect identification and we think that more balanced
data can help us develop better models that can achieve higher accuracy.

However, the insights we have gained during the analysis of the train and dev data sets and our re-
sults, have enabled us to understand more what are the typical issues encountered during Arabic dialect
identification, and we believe that these insights can be used to develop and improve future systems. We
think that a more systematic approach based on contextualized word embeddings as BERT (Devlin et
al., 2018) combined with sequence labeling approaches can give better results and achieve higher scores,
and aim to go in this direction in future work.
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