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Abstract

This paper presents the results of the VarDial Evaluation Campaign 2020 organized as part of the
seventh workshop on Natural Language Processing (NLP) for Similar Languages, Varieties and
Dialects (VarDial), co-located with COLING 2020. The campaign included three shared tasks
each focusing on a different challenge of language and dialect identification: Romanian Dialect
Identification (RDI), Social Media Variety Geolocation (SMG), and Uralic Language Identifica-
tion (ULI). The campaign attracted 30 teams who enrolled to participate in one or multiple shared
tasks and 14 of them submitted runs across the three shared tasks. Finally, 11 papers describing
participating systems are published in the VarDial proceedings and referred to in this report.

1 Introduction

The VarDial Evaluation Campaign 2020 is the most recent iteration of a series of evaluation campaigns
featuring multiple shared tasks organized together with the Workshop on Natural Language Processing
(NLP) for Similar Languages, Varieties and Dialects (VarDial). It follows three editions organized in
2017 (Zampieri et al., 2017) featuring four shared tasks and in 2018 (Zampieri et al., 2018) and 2019
(Zampieri et al., 2019) featuring five shared tasks.

Co-located with international NLP conferences such as COLING, EACL, and NAACL, VarDial is a
forum for researchers interested in diatopic language variation from a computational perspective. Since
its first edition in 2014, VarDial hosted shared tasks on various topics such as morphosyntactic tagging,
cross-lingual dependency parsing, and language and dialect identification. Most shared tasks organized
at VarDial have addressed dialect and language identification on newspaper texts, social media posts,
speech transcriptions, and many other genres and domains (Malmasi et al., 2016; Goutte et al., 2016). A
large number of languages and dialects from different families have been included in the VarDial shared
tasks: national language varieties of Chinese, English, French, Spanish, and Portuguese, pairs or groups
of similar languages such as Bosnian, Croatian, and Serbian and Malay and Indonesian, and dialects
of languages such as Arabic and German. Some of the datasets made available in these tasks, such as
the ArchiMob for Swiss German dialects and the multilingual DSLCC, have been used outside these
competitions evidencing the interest of the NLP community in the topic (Tan et al., 2014; SamardZzi¢ et
al., 2016; Kumar et al., 2018).2

In this paper, we present the results and the main findings of the VarDial Evaluation Campaign 2020.
Three tasks addressing different aspects of language and dialect identification have been organized this
year. The Romanian Dialect Identification (RDI) shared task is described in Section 4, the Social Media
Variety Geolocation (SMG) task is presented in Section 5, and finally the Uralic Language Identification
(ULI) shared task is described in Section 6. We include references to the 11 system description papers
written by the participants of the campaign in Table 1.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/.

'"https://sites.google.com/view/vardial2020/evaluation-campaign
2For recent surveys on these topics see Zampieri et al. (2020) and Jauhiainen et al. (2019c).
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2 Shared Tasks at VarDial 2020

Romanian Dialect Identification (RDI): In the Romanian Dialect Identification (RDI) shared task,
we provided participants with the MOROCO data set (Butnaru and Ionescu, 2019) for training, which
contains Moldavian (MD) and Romanian (RO) samples of text collected from the news domain. The task
was a binary classification by dialect, in which a classification model is required to discriminate between
the Moldavian (MD) and the Romanian (RO) dialects. The task was closed, therefore, participants
are not allowed to use external data to train their models. The test set contained newly collected text
samples from a different domain, not previously included in MOROCO, resulting in a cross-domain
dialect identification task.

Social Media Variety Geolocation (SMG): In contrast to most past and present VarDial tasks, the
SMG task is framed as a geolocation task: given a text, the participants have to predict its geographic
location in terms of latitude/longitude coordinates. This setup addresses the common issue that defining
a set of discrete labels is not trivial for many language areas where there is a continuum between vari-
eties rather than clear-cut borders. The SMG task is split into three subtasks covering different language
areas: the BCMS subtask is focused on geolocated tweets published in the area of Croatia, Bosnia and
Herzegovina, Montenegro and Serbia in the HBS macro-language (Ljubesic¢ et al., 2016); the DE-AT
subtask focuses on conversations from the microblogging platform Jodel initiated in Germany and Aus-
tria, which are written in standard German but commonly contain regional and dialectal forms; the CH
subtask is based on Jodel conversations initiated in Switzerland, which were found to be held majoritarily
in Swiss German dialects (Hovy and Purschke, 2018). All three subtasks used the same data format and
evaluation methodology. Both constrained and unconstrained submissions were allowed, but only one
participating team made use of the latter.

Uralic Language Identification (ULI): This shared task focused on discriminating between endan-
gered languages of the Uralic group. In addition to 29 Uralic minority languages, the shared task also
featured 149 non-relevant languages. For training, we provided texts from the Wanca 2016 corpora
(Jauhiainen et al., 2019a) for the relevant languages while the texts for the non-relevant languages came
from the Leipzig corpora collection (Goldhahn et al., 2012). The test set for the relevant languages
included sentences from the forthcoming Wanca 2017 corpora (Jauhiainen et al., 2020b) that were not
present in the Wanca 2016 corpora. The sentences for the non-relevant languages were from the Leipzig
corpora collection. The ULI shared task was divided into three separate tracks using the same training
and test data. The difference between the tracks was based on how the submissions were scored: track 1
focused on macro-averaged F-score for the 29 relevant languages, track 2 on micro-averaged F-score for
the relevant languages, and track 3 on macro-averaged F-score for all 178 languages. All the tracks were
closed, so no other data or models were to be used for training in addition to the pre-defined training sets.

3 Participating Teams

A total of 30 teams enrolled to participate in this year’s VarDial evaluation campaign and 14 of them
submitted results to one or more shared tasks. In Table 1, we list the teams that participated in the shared
tasks, including references to the 11 system description papers written by the participants. We include
detailed information about these submissions in each respective task section of this report.

The RDI task attracted 8 teams followed by the SMG task with 7 teams who submitted runs to one
or more of its three language tracks: BCMS, DE-AT, and CH. This is a similar number of teams that
have participated in the most popular shared tasks from the VarDial evaluation campaign 2019. Only
the NRC team submitted results to the ULI shared task, which is rather unusual, as tasks in past VarDial
evaluation campaign have all received a very good number of submissions. It should be noted that the
2020 campaign run from April 20 to July 30 during the early stages of the COVID-19 pandemic. Lock
downs and restrictive measures in many countries during this period have impacted universities and
research centers worldwide causing significant disruption. We believe that this situation is very likely to
have discouraged more teams to participate in this year’s evaluation campaign.
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Team RDI SMG ULI System Description Paper

Akanksha v

Anumifi v (Popa and Stefanescu, 2020)
CUBoulder-UBC v *

Phlyers v (Ceolin and Zhang, 2020)
HeLju v (Scherrer and Ljubesi¢, 2020)
NRC v" (Bernier-Colborne and Goutte, 2020)
Piyush Mishra v (Mishra, 2020)

SUKI v v (Jauhiainen et al., 2020a)

The Linguistadors v/ v

Tiibingen v (Coltekin, 2020)

UAIC v (Rebeja and Cristea, 2020)
UnibucKernel v (Gidman and Ionescu, 2020a)
UPB v (Zaharia et al., 2020)
ZHAW-InIT v (Benites et al., 2020)

Total 8 7 1 11

Table 1: The teams that participated in the VarDial Evaluation Campaign 2020 along with their system
description papers. *The system description paper by team CUBoulder-UBC does not appear in the
VarDial workshop proceedings. CUBoulder-UBC reused a system described in Hulden et al. (2015).

4 Romanian Dialect Identification RDI

4.1 Dataset

The training data is composed of news articles from the Moldavian and Romanian Dialectal Corpus (MO-
ROCO)? (Butnaru and Ionescu, 2019). MOROCO was collected from the top five news websites from
Romania and the Republic of Moldova, using each country’s web domain (.ro or .md) to automatically
separate the news articles by dialect.

The test data consists of short text samples from MOROCO-Tweets* (Gidman and Tonescu, 2020b).
The tweets are collected from Romania and the Republic of Moldova, the labels being assigned based on
the geographical location of tweets.

Dialect Training Set Development Set Size Test Set
Size News Articles Tweets Size
Romanian 18,161 3,205 102 2,523
Moldavian 15,403 2,718 113 2,499
Total 33,564 5,923 215 5,022

Table 2: Number of text samples in the training, the development and the test sets considered for the RDI
shared task.

The chosen training and test corpora allowed us to evaluate participants on a challenging cross-genre
binary dialect identification task: Romanian (RO) versus Moldavian (MD). However, participants were
provided with development data comprising both news articles and tweets. The number of samples in
the training, the development and the test sets are listed in Table 2. All text samples were automatically
pre-processed to replace each named entity with the token $NES$.

3https://github.com/butnaruandrei/MOROCO
*https://github.com/raduionescu/MOROCO-Tweets



4.2 Participants and Approaches

Akanksha. The Akanksha team fine-tuned a reformer model (Kitaev et al., 2019) on the provided
data, considering character-level and phrase-level tokens. Then, a binary classifier is trained on top of
the fine-tuned reformer model. The team submitted only one run.

Anumiti. The Anumiti team (Popa and Stefdnescu, 2020) submitted three runs using fine-tuned Ro-
manian BERT models (Dumitrescu et al., 2020). They started from BERT models that are pre-trained
on Romanian corpora. For the first two runs, the team submitted individual models, the first one being a
cased BERT model and the second one being an uncased BERT model, respectively. For the third run, the
team proposed an SVM ensemble of five different transformer-based models, some being multilingual
and others being specifically trained on Romanian corpora.

Phlyers. All the submissions made by the Phlyers (Ceolin and Zhang, 2020) are based on Naive
Bayes models applied on character n-grams. Before applying the models, the team preprocessed the
text samples by removing numbers, punctuation and common Twitter tags such as “LIVE”, “FOTO” and
“VIDEQ?”, as well as the $NE$ tag (which was used to replace named entities). For the first run, the
Phlyers tuned the model on the news development set, obtaining optimal results with « = 10~ and
n-grams in the range 5-8 that occur less than 1000 times. For the second and third runs, the Phlyers
tuned the model on the tweets development set. The best model uses v = 10~2 and n-grams in the range
6-8 that occur less than 250 times, while the second best model uses v = 10~3 and n-grams in the range
5-7 that occur less than 200 times.

The Linguistadors. The Linguistadors proposed a character-level CNN architecture, which was
trained using ground-truth and pseudo-labels. For the first run, the model is fine-tuned using pseudo-
labels for the validation set. For the second run, the model is fine-tuned using pseudo-labels for both
validation and test sets. For the third run, the CNN is fine-tuned using pseudo-labels for a subset of the
validation set that includes samples with 95% confidence of being correct.

Tiibingen. The runs submitted by the Tiibingen team (Coltekin, 2020) consist of multiple linear SVM
classifiers based on sparse character and word n-gram features, including a domain adaptation method
proposed in their earlier shared task participation (Wu et al., 2019). For the first run, a base SVM model
(trained only on the target development set) is first applied on the test set. Then, the model is retrained
by adding the test predictions for which the classifier is confident (distance from the decision boundary
is higher than 0.5) to the training set. As the final predictions, the authors take the majority vote of five
classifiers trained with (slightly) different hyperparameters. For the second run, the Tiibingen team used
an ensemble of 20 classifiers trained on disjoint parts of the training data, while also splitting the news
articles into sentences. The training data for the second submission is formed of the training and the
development sets, assigning 25x higher weights to tweets than to sentences taken from news articles.
The third run of the Tiibingen team is very similar to the second, the only difference being the filtering
of the source documents based on the confidence of another classifier trained on the target development
set.

UAIC. The UAIC team (Rebeja and Cristea, 2020) proposed a model based on TF-IDF encoders
trained on each dialect, independently. The TF-IDF encodings are concatenated into a single tensor
and provided as input to a deep learning architecture that learns to classify each data sample. The ar-
chitecture is trained using categorical cross-entropy. The UAIC team submitted two runs with slightly
different hyperparameters.

UPB. Similar to Anumiti, the UPB team (Zaharia et al., 2020) submitted three runs using the Romanian
BERT model (Dumitrescu et al., 2020). For the first submission, the model is trained for three epochs on
text chunks of 512 tokens taken with an overlap of 128 tokens. For the second run, the Romanian BERT
model is trained using an adversarial technique that alters certain examples in the data set. For the third
run, the model is trained for four epochs on text chunks of 480 tokens.
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SUKI. The SUKI team (Jauhiainen et al., 2020a) submitted a single run to the RDI shared task. The
authors employed a custom Naive Bayes model based on relative frequencies of character 4-grams and
5-grams as features. They removed $NE$ tags and non-alphabetic characters from all data samples.
Then, they changed the remaining characters to lowercase. The SUKI team trained the submitted model
on both training and development samples.

4.3 Results
Rank Team Run Method F1 (macro)
1 Tiibingen 1 SVM ensemble based on word and char n-grams ~ 0.787592
Tiibingen 2 SVM ensemble based on word and char n-grams  0.784317
2 Anumiti 3 SVM ensemble based on five BERT embeddings  0.775178
Anumiti 2 Fine-tuned uncased Romanian BERT 0.762677
Tiibingen 3 SVM ensemble based on word and char n-grams  0.756461
Anumiti 1 Fine-tuned cased Romanian BERT 0.746005
3 Phlyers 1 Naive Bayes based on word n-grams 0.666090
4 SUKI 1 Naive Bayes based on char n-grams 0.658437
Phlyers 2 Naive Bayes based on word n-grams 0.650884
5 UPB 1 Fine-tuned Romanian BERT 0.647577
Phlyers 3 Naive Bayes based on word n-grams 0.644527
UPB 2 Fine-tuned Romanian BERT 0.563287
UPB 3 Fine-tuned Romanian BERT 0.557496
6 UAIC 1 Deep network based on TF-IDF encodings 0.555044
UAIC 2 Deep network based on TF-IDF encodings 0.486896
7 Akanksha 1 Character-level and phrase-level reformer 0.481325
8 The Linguistadors 2 Character-level CNN with pseudo-labels 0.429412
The Linguistadors 3 Character-level CNN with pseudo-labels 0.411571
The Linguistadors 1 Character-level CNN with pseudo-labels 0.396090

Table 3: Macro Fi-scores attained by the participating teams on the RDI shared task. A summary of
methods and features used by participants are also included.

The runs submitted by each participant in the RDI shared task are presented in Table 3. The systems
are ranked according to the macro F}-scores. Interestingly, we observe that the top scoring system is a
shallow approach based on an SVM ensemble applied on word and character n-grams. The best model,
which is submitted by the Tiibingen team, is closely followed by an SVM ensemble applied on fine-tuned
multilingual and monolingual BERT embeddings. The results show that Tiibingen and Anumiti are the
only two teams surpassing the 70% threshold. Their very good results compared with the rest of the
participants are likely due to the idea of splitting the news articles in sentences. This hypothesis is also
supported by the following observation. Although both Anumiti and UPB fine-tuned the same Romanian
BERT model, their results are significantly different, probably because the Anumiti team fine-tuned the
model on sentences, while UPB fine-tuned it on text chunks. Considering the domain gap between news
articles and tweets, which is also caused by the high difference in the average number of tokens per
sample — see (Gdman and Ionescu, 2020b) — we believe that the idea of splitting the news articles into
sentences to reduce the domain gap is quite useful.

44 Summary

In the Romanian Dialect Identification challenge, we proposed a shared task on cross-domain binary
classification by dialect. A total of 8 teams participated in the competition, each submitting between
1 and 3 runs. This resulted in a total of 19 submissions, which represents an increase of almost 100%
compared with last year’s Moldavian vs. Romanian Cross-Dialect Topic Identification (MRC) shared
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task (Zampieri et al., 2019). An interesting difference compared with the results reported for the MRC
shared task is that, in the RDI shared task, the best performance is obtained by a shallow approach
based on word and character n-grams. This is consistent with the results observed in previous VarDial
evaluation campaigns (Zampieri et al., 2017; Zampieri et al., 2018), where some of the winners employed
shallow approaches based on character n-grams (Butnaru and Ionescu, 2018; Ionescu and Butnaru, 2017).
In summary, we conclude that the battle between deep and shallow approaches is still open, at least when
it comes to dialect identification.

5 Social Media Variety Geolocation SMG

5.1 Datasets
The SMG task is based on three datasets from two Social Media platforms, Jodel and Twitter.

e The BCMS subtask is focused on geolocated tweets published in the area of Croatia, Bosnia and
Herzegovina, Montenegro and Serbia in the so-called BCMS macro-language (ISO acronym HBS,
code 639-3). While the independent status of the specific languages is rather disputed, there is
significant variation between them.

e The DE-AT subtask focuses on Jodel conversations initiated in Germany and Austria, which are
written in standard German but commonly contain regional and dialectal forms. Jodel is a mobile
chat application that lets people anonymously talk to other users within a 10km-radius around them.

e The CH subtask focuses on Jodel conversations from Switzerland, which were found to be held
majoritarily in Swiss German dialects. This dataset is considerably smaller, but we expect it to
contain more dialect-specific cues than the DE-AT one.

The BCMS Twitter dataset is described in Ljubesié et al. (2016). The two Jodel datasets are subsets of the
corpus collected by Hovy and Purschke (2018). Some additional cleaning and filtering steps have been
applied to these corpora, and they have been split into training, development and test sets (see Table 4
for key figures). All three subtasks use the same data format: each instance consists of three fields, the
unprocessed text of the message (BCMS) or conversation (DE-AT and CH), the latitude coordinate and
the longitude coordinate. Figure 1 shows the geographic distribution of training instances.

Subtask Number of instances Average number of
Training Development Test tokens per instance

BCMS 320,042 39,750 39,723 13

DE-AT 336,983 46,582 48,239 71

CH 22,600 3,068 3,097 55

Table 4: SMG datasets.

5.2 Participants and Approaches

We received submissions from seven teams, with five teams participating in all three subtasks. The HeLju
team submitted both unconstrained and constrained systems, whereas all other participants focused on
constrained systems (i.e., not using any external training data).

The participating systems can be classified into two approaches to geolocation: a direct one which
frames the problem as a double regression, and an indirect one which converts the coordinates into a
finite set of dialect areas and uses a classification model to predict one of the areas.

CUBoulder-UBC. This approach is based on earlier work described in Hulden et al. (2015). It divides
each geographic area into a fixed grid and uses a Naive Bayes classifier with bag-of-words features for
prediction, together with kernel density estimation to avoid data sparsity. The submissions include a
single system, a mean-based ensemble of 10, and a median-based ensemble of 10.

6



Figure 1: Geographic distribution of training instances in the three SMG datasets: DE-AT (top), CH
(bottom left), BCMS (bottom right).

HeLju. The HeLju systems (Scherrer and Ljubesi¢, 2020) rely on the BERT architecture, where the
classification output is replaced by a double regression output. For the constrained submissions (C), the
BERT models are trained from scratch using the SMG training data, whereas pre-trained models are
used for the unconstrained submissions (UC). The unconstrained submissions named UC ext include
additional training data from the development set.

Piyush Mishra. This submission is based on a bidirectional LSTM that is fed with FastText embed-
dings (Mishra, 2020). Latitudes and longitudes are predicted by double regression with quantile loss.

SUKI. This approach divides each geographic area into a fixed grid with 81 areas and uses a n-gram
language model to predict the most likely area (Jauhiainen et al., 2020a).

The Linguistadors. These submissions are based on classic regression methods (linear regression,
lasso regression, and ridge regression) and rely on TF-IDF weighted input features.

UnibucKernel. The UnibucKernel team (Gédman and Ionescu, 2020a) submitted two single systems, a
character-level CNN (Zhang et al., 2015) with double regression output, and a Nu-SVR model trained on
top of n-gram string kernels (Ionescu et al., 2016). The third system is an ensemble approach based on
XGBoost, trained on the predictions provided by the two previously mentioned systems and an LSTM-
based one. The LSTM is trained on top of fine-tuned German BERT embeddings.

ZHAW-InIT. The ZHAW-InIT team (Benites et al., 2020) uses unsupervised k-means clustering to
infer a set of dialect classes which are then used in a classification architecture. Their systems are based
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either on SVMs with TF-IDF weighted word and character n-gram features, or on the HELI language
modeling architecture (ZHAW-InIT (HELI)). The SVM submission to the CH subtask (ZHAW-InIT
(META)) is in fact a meta-classifier combining several SVMs with different features, whereas single
SVMs are used for BCMS and DE-AT (ZHAW-InIT (SVM)).

5.3 Results

The test set predictions were evaluated on the basis of median and mean distance to the gold coordinate.
Submissions are ranked by decreasing median distance, which is the official metric. For comparison,
we also mention the distance values obtained from a simple centroid baseline, which predicts the center
point (measured on the training data) for each test instance. Results and rankings for the three tasks are
presented in Tables 5, 6, and 7 respectively. Ranks are attributed only to the best-ranked submission of
each team.

Rank Team (Run) Median distance Mean distance
1 HeLju (UC) 41.54 80.89
HeLju (UC ext) 41.61 80.24
HeLju (C) 48.99 86.83

2 ZHAW-InIT (SVM) 57.24 100.42
3 SUKI 61.01 105.11
4 CUBoulder-UBC (single) 64.76 106.67
CUBoulder-UBC (med. ens.) 64.92 106.45
CUBoulder-UBC (mean ens.) 66.36 102.85

5 Piyush Mishra 85.70 112.65
6 The lingustadors (Linear) 97.16 141.88
The lingustadors (Ridge) 105.54 141.58

The lingustadors (Lasso) 107.04 145.68
Centroid baseline 107.10 145.72
ZHAW-InIT (HELI) 111.40 130.23

Table 5: SMG shared task - BCMS results. Unconstrained submissions above the horizontal line, con-
strained ones below.

Rank Team (Run) Median distance Mean distance Dialect area accuracy
1 HeLju (UC ext) 143.30 166.64 36.1%
HeLju (UC) 143.85 168.45 34.8%
HeLju (C) 159.59 183.97 29.5%

2 Piyush Mishra 183.99 204.93 21.8%
3 CUBoulder-UBC (mean ens.) 198.27 218.51 25.1%
Centroid baseline 201.34 221.55 17.7%

4  ZHAW-InIT (SVM) 205.81 230.78 27.7%
CUBoulder-UBC (median ens.) 214.72 235.62 25.4%
ZHAW-InIT (HELI) 217.80 241.33 19.5%
CUBoulder-UBC (single) 219.08 239.47 25.7%

5 SUKI 243.12 266.85 24.4%

Table 6: SMG shared task - DE-AT results. Unconstrained submissions above the horizontal line, con-
strained ones below.

For the DE-AT and CH subtasks, we also provide a dialect area accuracy measure. These are based on
partitions of the areas into different dialectal areas based on previous dialectological research (Lameli,
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Rank Team (Run) Median distance Mean distance Dialect area accuracy

1 HeLju (UC ext) 15.45 22.45 72.6%
HeLju (UC) 15.72 22.67 72.9%
2 ZHAW-InIT (META) 15.93 25.06 72.6%
ZHAW-InIT (HELI) 17.66 26.21 69.4%
HeLju (C) 17.97 26.04 68.7%
3 CUBoulder-UBC (mean ens.) 19.49 27.63 66.9%
CUBoulder-UBC (median ens.) 19.66 28.83 66.4%
CUBoulder-UBC (single) 19.99 29.09 66.2%
4 SUKI 23.96 34.59 57.0%
5 UnibucKernel (ens.) 25.57 30.52 53.9%
6  The Linguistadors (Ridge) 26.70 31.21 50.3%
UnibucKernel (SVR) 26.78 31.49 51.1%
7  Piyush Mishra 27.31 33.20 53.3%
The Linguistadors (Linear) 35.70 39.66 33.6%
UnibucKernel (CNN) 40.23 42.87 29.8%
Centroid baseline 41.38 48.16 15.8%
The Linguistadors (Lasso) 41.60 48.19 15.8%

Table 7: CH results. Unconstrained submissions above the horizontal line, constrained ones below.

2013; Scherrer and Stoeckle, 2016).> Dialect area accuracy represents the percentage of test instances
whose predicted coordinates lie inside the same area as the gold coordinates.

Rather unsurprisingly, the unconstrained approaches outperform the constrained ones, but only by a
small margin in the CH subtask. There is no clear winning approach among the constrained submissions.
BERT (HeLju) works well in large-data settings, but underperforms on the CH subtask where classical
approaches are more competitive. The ZHAW-InIT and CUBoulder-UBC systems show that a classi-
fication strategy with a fixed set of classes can outperform a regression strategy that learns to predict
longitudes and latitudes directly. This finding may be due to the fact that social media posts are not
randomly scattered across space, but tend to gather around a relatively small number of larger cities and
agglomerations.

More generally, the DE-AT subtask has turned out to be the hardest one: only half of the submitted
systems managed to beat the baseline, and unlike in the other subtasks, no system managed to halve the
baseline distance. This suggests that the regional features in the DE-AT Jodel corpus are too sparse to be
learned reliably.

In terms of evaluation measures, the median and mean distances are highly correlated. Dialect area
accuracy also yields a similar picture overall, but some differences are noteworthy. For DE-AT, all
systems clearly outperform the baseline on this measure, and the ZHAW-InIT (SVM) submission turns
out to be much more competitive than the distance measures suggest. This submission confirms its
advantage on the CH task, where it is indistinguishable from the unconstrained submissions in terms of
dialect area accuracy.

5.4 Summary

For the first time at VarDial, we have proposed a dialect geolocation task, in which the prediction outputs
are coordinate pairs rather than variety labels. The SMG task attracted a total of seven participants
across three subtasks, a number that is comparable with other VarDial tasks in recent years. We received
a wide range of technical solutions: solutions based on deep learning as well as traditional machine
learning, constrained as well as unconstrained solutions, and regression-based as well as classification-

>The DE-AT areas are based on those used in (Hovy and Purschke, 2018), augmented with a single area covering the
territory of Austria. The CH areas correspond to the 10-cluster solution presented in (Scherrer and Stoeckle, 2016).
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based approaches. The best scores were obtained by unconstrained solutions based on pre-trained BERT
models, on all three subtasks. Thanks to its reliance on easily available geolocated messages from social
media services, another edition of the SMG task could be envisaged, possibly focusing on different
language areas.

6 Uralic Language Identification ULI

The first edition of the ULI shared task was a language identification task focusing on differentiating
between minority Uralic languages and distinguishing them from a large number of other languages.

We define minority Uralic languages as those languages that are not official state languages in the
countries where they are spoken. This definition excludes Estonian, Finnish and Hungarian. The remain-
ing Uralic languages are all endangered. They can also be characterized as extremely diverse, at least
when it comes to their use and current situation. Some of the languages in the shared task are extinct,
while others have very young and varying orthographies that are still becoming established. Neverthe-
less, the task also includes languages that are widely used in the modern society and have a large online
presence. Most of the Uralic languages spoken in Russia are written using the Cyrillic alphabet, often
with additional individual characters that differ from the character set used for Russian. Since the Uralic
languages form a large and old language family, the varieties in the task are generally far apart from
one another. At the same time, the task also contains closely related Uralic languages from individual
branches, which share a large percentage of their vocabulary and features.

The shared task included a total of 178 languages, of which 29 were Uralic minority languages. The
29 endangered Uralic languages were considered relevant and the 148 languages non-relevant. The ULI
task consisted of three tracks using the same training and testing data. The tracks differed from each
other in how they were scored.

The motivation behind including the non-relevant languages in the shared task was to simulate the
situation we faced when we were automatically searching for minority Uralic languages on the Internet
during the Finno-Ugric Languages and the Internet project (Jauhiainen et al., 2015). The different ways
of scoring the tracks was also designed to highlight the inherent difficulties of such a search. The third
track did not especially focus on the relevant languages, the second track focused on the relevant lan-
guages as a group, and the first track forced the participants to consider even the most rare of the relevant
languages.

The first track, ULI-RLE (Relevant languages as equals), considered all the relevant languages equal
in value and the aim was to maximize their average F-score. This is important when one is interested in
finding rare languages on, for example, the Internet. The F-score was calculated as a macro-averaged F1
score over the relevant languages in the training set.

The second track, ULI-RSS (Relevant sentences as equals), considered each sentence in the test set
that was written in or was predicted to be in a relevant language as equals. When compared with the first
track, this track gave less importance to the very rare languages as their precision was not as important
when the resulting F-score was calculated. The resulting F-score was calculated as a micro-F1 over the
sentences in the test set for both the sentences in the relevant languages and the ones that were predicted
to be in relevant languages.

In the first two tracks, there was no difference between the non-relevant languages. All the non-
relevant languages could have been labeled as English in the submissions and it would not have changed
the resulting F1-scores. The third track, ULI-178 (All 178 languages as equals), however, did not focus
on the 29 relevant languages, but instead the target was to maximize the average F-score over all the 178
languages present in the training set. The ULI shared task, and especially this track, was the language
identification shared task with the largest number of languages used so far. The F-score was calculated
as a macro-F1 score over all the languages in the training set.

6.1 Dataset

For training, we provided texts from the Wanca 2016 corpora (Jauhiainen et al., 2019a) for the relevant
languages and from the Leipzig corpora collection (Goldhahn et al., 2012) for the non-relevant languages.
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The number of lines for the non-relevant languages in the training data varied from 10,000 lines of
Cebuano and Corsican to 3 million lines of Indonesian. As relevant language sentences in the test set
from the forthcoming Wanca 2017 corpora (Jauhiainen et al., 2020b), we chose those sentences that were
not present in the Wanca 2016 corpora which have been published in the Language Bank of Finland. The
sentences for the non-relevant languages were from the Leipzig corpora collection. We did not create a
separate set for development so the participants had to decide themselves how to use the given training
material for that as well. The dataset used in the ULI shared task, as well as its creation, is described in
detail by Jauhiainen et al. (2020b).

6.2 Participants and Approaches

Unfortunately, the ULI shared task had only one team submitting results to the tracks. The NRC team
submitted three runs for each of the shared task tracks. All the runs used BERT-related deep neural
networks taking sequences of characters as input similar to what the NRC team used when they won
the CLI shared task (Jauhiainen et al., 2019b) in the previous VarDial Evaluation Campaign (Bernier-
Colborne et al., 2019). The encoders of the networks were pre-trained on masked language modeling
(MLM) and sentence pair classification (SPC) tasks (Devlin et al., 2019). The third run on each track
was using only the information on the training set as opposed to the second run, in which the MLM was
also done on the unlabeled test set in order to adapt the model. The first run on each track was a plurality
voting ensemble of the six models used in the second and third runs of all the tracks.

6.3 Results

For the baseline, we used an implementation of the HeLLI method equal to the one we used when evalu-
ating language identification methods for 285 languages (Jauhiainen et al., 2017). The baseline and the
NRC teams results are listed in Tables 8, 9, and 10.

Rank Team Run Method Relevant macro F;
baseline HeLI 0.8004
1 NRC 2 deep neural network with adaptation to the test set 0.2996
NRC 1 ensemble of 6 deep neural networks 0.2872
NRC 3 deep neural network 0.2514

Table 8: ULI shaed task - RLE results.

Rank Team Run Method Relevant micro F;
baseline HeLI 0.9632
1 NRC 1 ensemble of 6 deep neural networks 0.2596
NRC 2 deep neural network with adaptation to the test set 0.1547
NRC 3 deep neural network 0.1359

Table 9: ULI shared task - RSS results.

Rank Team Run Method Macro F;
baseline HeLlI 0.9252
1 NRC 2 deep neural network with adaptation to the test set 0.6751
NRC 3 deep neural network 0.6628
NRC 1 ensemble of 6 deep neural networks 0.6356

Table 10: ULIshared task - 178 results.

All the results submitted by the NRC team are well below the baselines. After the shared task results
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were announced, the NRC team investigated reasons for the low performance of their classifiers and
found that the low scores were mostly due to a flaw in the function they used to sample the data for
training and evaluation (Bernier-Colborne and Goutte, 2020).

6.4 Summary

Needless to say, we were not happy that the ULI task attracted the submissions of only one team. The
shared tasks at VarDial have historically attracted a good number of submissions but, as previously men-
tioned, the VarDial Evaluation Campaign 2020 run during the early stages of the COVID-19 pandemic, a
period in which significant disruption has been observed in universities and research centers worldwide.
This is likely to have precluded more teams from participating. Furthermore, we acknowledge that we
did not make the task easy to participate with the larger than normal training sets. The results of the
participating team also suggest that the task might have been more difficult than we anticipated. Due to
the low number of participants in the shared task and the challenges caused by the COVID-19 pandemic,
we have decided to continue accepting submissions until the next edition of the ULI shared task. Thus,
we are not yet publishing the gold-labeled test set. Instead, we will set up a web-page® with information
on how to request the training and the test sets. The web-page will also feature a table with all the results
submitted so far.

7 Conclusion

In this paper we present the results and findings of the shared tasks organized as part of the VarDial
Evaluation Campaign 2020. Three shared tasks were organized this year: Romanian Dialect Identifica-
tion (RDI), Social Media Variety Geolocation (SMG), and Uralic Language Identification (ULI). Each of
these tasks tackled an important challenge in language and dialect identification on different languages
and dialects. Furthermore, in these tasks we provided participants with new datasets that will be made
freely available to the research community after the competitions.

A total of 14 teams submitted runs across the three shared tasks. We included short descriptions
for each team’s systems in this report and references to all 11 system description papers in Table 1.
A complete description of these systems is available in the system description papers published in the
VarDial workshop proceedings.
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