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Abstract

Learners that are exposed to the same training

data might generalize differently due to dif-

fering inductive biases. In neural network

models, inductive biases could in theory arise

from any aspect of the model architecture.

We investigate which architectural factors

affect the generalization behavior of neural

sequence-to-sequence models trained on two

syntactic tasks, English question formation

and English tense reinflection. For both tasks,

the training set is consistent with a gener-

alization based on hierarchical structure and

a generalization based on linear order. All ar-

chitectural factors that we investigated qual-

itatively affected how models generalized,

including factors with no clear connection to

hierarchical structure. For example, LSTMs

and GRUs displayed qualitatively different

inductive biases. However, the only factor

that consistently contributed a hierarchical

bias across tasks was the use of a tree-

structured model rather than a model with

sequential recurrence, suggesting that human-

like syntactic generalization requires architec-

tural syntactic structure.

1 Introduction

Any finite training set is consistent with multiple

generalizations. Therefore, the way that a learner

generalizes to unseen examples depends not

only on the training data but also on properties

of the learner. Suppose a learner is told that a

blue triangle is an example of a blick. A learner

preferring shape-based generalizations would

conclude that blick means ‘‘triangle,’’ while

a learner preferring color-based generalizations

would conclude that blick means ‘‘blue object’’

(Landau et al., 1988). Factors that guide a learner

to choose one generalization over another are

called inductive biases.

What properties of a learner cause it to have

a particular inductive bias? We investigate this

question with respect to sequence-to-sequence

neural networks (Botvinick and Plaut, 2006;

Sutskever et al., 2014). As a test case for studying

differences in how models generalize, we use the

syntactic task of English question formation,

such as transforming (1a) into (1b):

(1) a. The zebra does chuckle.

b. Does the zebra chuckle?

Following Chomsky’s (1980) empirical claims

about children’s linguistic input, we constrain our

training set to be consistent with two possible rules

illustrated in Figure 1: MOVE-MAIN (a rule based on

hierarchical syntactic structure) and MOVE-FIRST

(a rule based on linear order). We then evaluate

each trained model on examples where the rules

make different predictions, such as (2): given (2a),

MOVE-MAIN would generate (2b) while MOVE-FIRST

would generate (2c):

(2) a. Your zebras that don’t dance do

chuckle.

b. Do your zebras that don’t dance

chuckle?

c. Don’t your zebras that dance do

chuckle?

Since no such examples appear in the training set,

a model’s behavior on them reveals which rule the

model is biased toward.This task allows us to study

a particular bias, namely, a bias for hierarchical

generalization, which is important for models of

125

Transactions of the Association for Computational Linguistics, vol. 8, pp. 125–140, 2020. https://doi.org/10.1162/tacl a 00304
Action Editor: Alexander Clark. Submission batch: 5/2019; Revision batch: 10/2019; Published 2020.

c© 2020 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

https://doi.org/10.1162/tacl_a_00304


Figure 1: Two potential rules for English question

formation.

language because it has been argued to underlie

human language acquisition (Chomsky, 1965).

To test which models have a hierarchical bias,

we use the question formation task and a second

task: tense reinflection. For both tasks, our

training set is ambiguous between a hierarchical

generalization and a linear generalization. If a

model chooses the hierarchical generalization for

only one task, this preference is likely due to task-

specific factors rather than a general hierarchical

bias. On the other hand, a consistent preference

for hierarchical generalizations across tasks would

provide converging evidence that a model has a

hierarchical bias. We find that all the factors

we tested can qualitatively affect how a model

generalizes on the question formation task. These

factors are the type of recurrent unit, the type of

attention, and the choice of sequential vs. tree-

based model structure. Even though all these

factors affected the model’s decision between

MOVE-MAIN and MOVE-FIRST, only the use of a tree-

based model can be said to impart a hierarchical

bias, since this was the only model type that chose

a hierarchical generalization across both of our

tasks. Specific findings that support these general

conclusions include:

• Generalization behavior is profoundly af-

fected by the type of recurrent unit and the

type of attention, and also by the interactions

between these factors.

• LSTMs and GRUs have qualitatively dif-

ferent inductive biases. The difference appears

at least partly due to the fact that the values

in GRU hidden states are bounded within a

particular interval (Weiss et al., 2018).

• Only a model built around the correct tree

structure displayed a robust hierarchical bias

across tasks. Sequentially structured models

failed to generalize hierarchically even when

the input contained explicit marking of each

sentence’s hierarchical structure.

Overall, we conclude that many factors can quali-

tatively affect a model’s inductive biases, but

human-like syntactic generalization may require

specific types of high-level structure, at least

when learning from text alone.

2 The Question Formation Task

2.1 Background

The classic discussion of the acquisition of

English question formation begins with two

empirical claims: (i) disambiguating examples

such as Example (2) rarely occur in a child’s

linguistic input, but (ii) all learners of English

nevertheless acquire MOVE-MAIN rather than MOVE-

FIRST. Chomsky (1965, 1980) uses these points

to argue that humans must have an innate bias

toward learning syntactic rules that are based on

hierarchy rather than linear order (this argument

is known as the argument from the poverty of the

stimulus).

There has been a long debate about this line

of argument. Though some have discussed the

validity of Chomsky’s empirical claims (Crain and

Nakayama, 1987; Ambridge et al., 2008; Pullum

and Scholz, 2002; Legate and Yang, 2002), most

of the debate has been about which mechanisms

could explain the preference for MOVE-MAIN.

These mechanisms include an assumption of

substitutability (Clark and Eyraud, 2007), a bias

for simplicity (Perfors et al., 2011), exploitation of

statistical patterns (Lewis and Elman, 2001; Reali

and Christiansen, 2005), and semantic knowledge

(Fitz and Chang, 2017); see Clark and Lappin

(2010) for in-depth discussion.

These past works focus on the content of the

bias that favors MOVE-MAIN (i.e., which types of

generalizations the bias supports), but we instead

focus on the source of this bias (i.e., which factors

of the learner give rise to the bias). In the book

Rethinking Innateness, Elman et al. (1998) argue

that innate biases in humans must arise from

architectural constraints on the neural connections

in the brain rather than from constraints stated

at the symbolic level, under the assumption that

symbolic constraints are unlikely to be specified in

the genome. Here we use artificial neural networks
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Figure 2: The difference between the training set and generalization set. To save space, this table uses some words

not present in the vocabulary used to generate the examples. RC stands for ‘‘relative clause.’’

to investigate whether syntactic inductive biases

can emerge from architectural constraints.

2.2 Framing of the Task

Following Frank and Mathis (2007) and McCoy

et al. (2018), we train models to take a declarative

sentence as input and to either output the same

sentence unchanged, or transform that sentence

into a question. The sentences were generated

from a context-free grammar containing only the

sentence types shown in Figure 2 and using a

68-word vocabulary; the full grammar is at the

project Web site.1 The different types of sentences

vary in the linear position of the main auxiliary,

such that a model cannot identify the main

auxiliary with a simple positional heuristic. The

task to be performed is indicated by the final input

token, as in Examples (3) and (4):

(3) a. Input: your zebra does read . DECL

b. Output: your zebra does read .

(4) a. Input: your zebra does read . QUEST

b. Output: does your zebra read ?

During training, all question formation exam-

ples are consistent with both MOVE-FIRST and MOVE-

MAIN, such that there is no direct evidence favoring

one rule over the other (see Figure 2).

To assess how models generalize, we evaluate

them on a generalization set consisting of ex-

amples where MOVE-MAIN and MOVE-FIRST make

different predictions due to the presence of a

relative clause on the subject (see sentence (2a)).

1Our code is at github.com/tommccoy1/rnn-

hierarchical-biases. Results for the over 3,500

models trained for this paper, with example outputs, are at

rtmccoy.com/rnn hierarchical biases.html;

only aggregate (median) results are reported here.

2.3 Evaluation Metrics

We focus on two metrics. The first is full-sentence

accuracy on the test set. That is, for examples

drawn from the same distribution as the training

set, does the model get the output exactly right?

For testing generalization to the withheld

example type, a natural metric would be full-

sentence accuracy on the generalization set.

However, in preliminary experiments we found

that most models rarely produced the exact output

predicted by either MOVE-MAIN or MOVE-FIRST, as

they tend to truncate the output, confuse similar

words, and make other extraneous errors. To

abstract away from such errors, we use first-word

accuracy on the generalization set. With both

MOVE-FIRST and MOVE-MAIN, the first word of the

question is the auxiliary that has been moved

from within the sentence. If the auxiliaries in the

relative and main clauses are distinct, this word

alone is sufficient to differentiate the two rules.

For example, in the bottom right cell of Figure 2,

MOVE-MAIN predicts having do at the start, whereas

MOVE-FIRST predicts don’t.2 Models almost always

produced either the main auxiliary or the first

auxiliary as the first word of the output (over 98%

of the time for most models3), so a low first-word

accuracy can be interpreted as high consistency

with MOVE-FIRST.

2.4 Architecture

We used the sequence-to-sequence architecture

in Figure 3 (Sutskever et al., 2014). This model

consists of two neural networks: the encoder and

2We exclude from the generalization set cases where the

two auxiliaries are the same. We also exclude cases where

one auxiliary is singular and the other plural so that a model

cannot succeed by using heuristics based on the grammatical

number of the subject.
3The one exception is noted in the caption to Figure 4.
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Figure 3: Sequential sequence-to-sequence model.

the decoder. The encoder is fed the input sentence

one word at a time; after each word, the encoder

updates its hidden state, a vector representation

of the information encountered so far. After the

encoder has been fed the entire input, its final

hidden state (E6 in Figure 3) is fed to the decoder,

which generates an output sequence one word at

a time based on its own hidden state, which is

updated after each output word. The weights that

the encoder and decoder use to update their hidden

states and generate outputs are learned via gradient

descent; for more details, see Appendix A.

2.5 Overview of Experiments

Holding the task constant, we first varied two

aspects of the architecture that have no clear

connection to question formation, namely, the

recurrent unit and the type of attention; both of

these aspects have been central to major advances

in natural language processing (Sundermeyer

et al., 2012; Bahdanau et al., 2015), so we inves-

tigate them here to see whether their contributions

might be partially explained by linguistically

relevant inductive biases that they impart. We also

tested a more clearly task-relevant modification of

the architecture, namely the use of tree-based

models rather than the sequential structure in

Figure 3.

3 Recurrent Unit and Attention

3.1 Recurrent Unit

The recurrent unit is the component that updates

the hidden state after each word for the encoder

and decoder. We used three types of recurrent

units: simple recurrent networks (SRNs; Elman,

1990), gated recurrent units (GRUs; Cho et al.,

2014), and long short-term memory (LSTM) units

(Hochreiter and Schmidhuber, 1997). In SRNs

and GRUs, the hidden state is represented by a

single vector, whereas LSTMs use two vectors

(the hidden state and the cell state). In addition,

GRUs and LSTMs both use gates, which control

what information is retained across time steps,

whereas SRNs do not; GRUs and LSTMs differ

from each other in the number and types of gates

they use.

3.2 Attention

In the basic model in Figure 3, the final hidden

state of the encoder is the decoder’s only source of

information about the input. To avoid having such

a bottleneck, many contemporary sequence-to-

sequence models use attention (Bahdanau et al.,

2015), a feature that enables the decoder to con-

sider all encoder hidden states (E0 through E6

in Figure 3) when generating hidden state Di. A

model without attention has the only inputs to

Di being Di−1 and yi−1 (the previous output);

attention adds a third input, ci =
∑

j αi[j]Ej ,

which is a weighted sum of the encoder’s hidden

states (E0 through En) using a weight vector αi

whose jth element is denoted by αi[j].
Implementations of attention vary in how the

weights αi[j] are derived (Graves et al., 2014;

Chorowski et al., 2015; Luong et al., 2015).

Attention can be solely location-based, where

each αi is determined solely from Di−1 (and

potentially also yi−1), so that the model chooses

where to attend without first checking what it

is attending to. Alternately, attention could be

content-based, in which case each αi[j] is de-

termined from both Di−1 and Ej , such that the

model does consider what it might attend to before

attending to it. We test both location-based and

content-based attention, and we also test models

without attention.

3.3 Results

We trained models with all nine possible combi-

nations of recurrent unit and attention type, using

the hyperparameters and training procedure de-

scribed in Appendix A. The results are in Figure 4.

The SRN without attention failed on the test

set, mainly because it often confused words that

had the same part of speech, a known weakness
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Figure 4: Results for each combination of recurrent unit and attention type. All numbers are medians over 100

initializations. = no attention; = location-based attention; = content-based attention. A grayed-out cell

indicates that the architecture scored below 50% on the test set. In (b), the SRN produced the first auxiliary

45% of the time; for all other models, the proportion of first-auxiliary outputs is almost exactly one minus the

first-word accuracy (i.e., the proportion of main-auxiliary outputs).

Figure 5: Effects of squashing. All numbers are medians across 100 initializations. The standard versions of the

architectures are the squashed GRU and the unsquashed LSTM.

of SRNs (Frank and Mathis, 2007). Therefore,

its generalization set behavior is uninformative.

The other architectures performed strongly on the

test set (>50% full-sentence accuracy), so we now

consider their generalization set performance. The

GRU with location-based attention and the SRN

with content-based attention both preferred MOVE-

MAIN, while the remaining architectures preferred

MOVE-FIRST.4 These results suggest that both the

recurrent unit and the type of attention can

qualitatively affect a model’s inductive biases.

Moreover, the interactions of these factors can

have drastic effects: with SRNs, content-based

attention led to behavior consistent with MOVE-

MAIN while location-based attention led to be-

havior consistent with MOVE-FIRST; these types of

attention had opposite effects with GRUs.

3.4 Differences between LSTMs and GRUs

One striking result in Figure 4 is that LSTMs

and GRUs display qualitative differences, even

though the two architectures are often viewed as

interchangeable and achieve similar performance

in applied tasks (Chung et al., 2014). One

difference between LSTMs and GRUs is that a

squashing function is applied to the hidden state

of a GRU to keep its values within the range

(−1, 1), while the cell state of an LSTM is not

4We say that a model preferred generalization A over gen-

eralization B if it behaved more consistently with A than B.

bounded. Weiss et al. (2018) demonstrate that

such squashing leads to a qualitative difference

in how well these models generalize counting

behavior. Such squashing may also explain the

qualitative differences that we observe: Counting

the input elements is equivalent to keeping track

of their linear positions, so we might expect

that a tendency to count would make the linear

generalization more accessible.

To test whether squashing increases a model’s

preference for MOVE-MAIN, we created a modified

LSTM that included squashing in the calculation

of its cell state, and a modified GRU that

did not have the squashing usually present in

GRUs. See Appendix B for more details. Using

the same training setup as before, we trained

models with these modified recurrent units and

with location-based attention. LSTMs and GRUs

with squashing chose MOVE-MAIN more often

than the corresponding models without squashing

(Figure 5), suggesting that such squashing is one

factor that causes GRUs to behave differently

than LSTMs.

3.5 Hyperparameters and Random Seed

In addition to variation across architectures,

we also observed considerable variation across

multiple instances of the same architecture that

differed only in random seed; the random seeds

determined both the initial weights of each

model and the order in which training examples
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were sampled. For example, the generalization

set first-word accuracy for SRNs with content-

based attention ranged from 0.17 to 0.90.

Based on our exploration of hyperparameters, it

also appears that the learning rate and hidden

size can qualitatively affect generalization. The

effects of these details are difficult to interpret

systematically, and we leave the characterization

of their effects for future work. Results for all

individual re-runs are at the project Web site.

4 Tree Models

So far we have tested whether properties that are

not interpretably related to hierarchical structure

nevertheless affect how a model generalizes on

a syntactic task. We now turn to a related but

opposite question: when a model’s design is meant

to give it a hierarchical inductive bias, does this

design succeed at giving the model this bias?

4.1 Tree Model that Learns

Implicit Structure

The first hierarchical model that we test is the

Ordered Neurons LSTM (ON-LSTM; Shen et al.,

2019). This model is not given the tree structure

of each sentence as part of its input. Instead, its

processing is structured in a way that leads to

the implicit construction of a soft parse tree. This

implicit tree structure is created by imposing a

stack-like constraint on the updates to the values

in the cell state of an LSTM: The degree to which

the ith value is updated must always be less than

or equal to the degree to which the jth value is

updated for all j ≤ i. This hierarchy of cell-state

values adds an implicit tree structure to the model,

where each level in the tree is defined by a soft

depth in the cell state to which that level extends.

We re-implemented the ON-LSTM and trained

100 instances of it using the hyperparameters

specified in Appendix A. This model achieved

a test set full-sentence accuracy of 0.93 but a

generalization set first-word accuracy of 0.05,

showing a strong preference for MOVE-FIRST over

MOVE-MAIN, contrary to what one would expect

from a model with a hierarchical inductive bias.

This lack of hierarchical behavior might be

explained by the findings of Dyer et al. (2019)

that ON-LSTMs do not perform much better

than standard LSTMs at implicitly recovering

hierarchical structure, even though ON-LSTMs

(but not standard LSTMs) were designed in a way

Figure 6: Sequence-to-sequence network with a tree-

based encoder and tree-based decoder.

intended to impart a hierarchical bias. According

to Dyer et al. (2019), the ON-LSTM’s apparent

success reported in Shen et al. (2019) was largely

due to the method used to analyze the model rather

than the model itself.

4.2 Tree Models Given Explicit Structure

The ON-LSTM results show that hierarchically

structured processing alone is not sufficient to

induce a bias for MOVE-MAIN, suggesting that

constraints on which trees are used may also be

necessary. We therefore tested a second type of

hierarchical model, namely, Tree-RNNs, that were

explicitly fed the correct parse tree. Parse trees

can be used to guide the encoder, the decoder,

or both; Figure 6 shows a model where both

the encoder and decoder are tree-based. For the

tree-based encoder, we use the Tree-GRU from

Chen et al. (2017). This model composes the

vector representations for a pair of sister nodes

to generate a vector representing their parent.

It performs this composition bottom-up, starting

with the word embeddings at the leaves and ending

with a single vector representing the root (E4 in

Figure 6); this vector acts as the encoding of

the input. For the tree-based decoder, we use a

model based on the Tree-LSTM decoder from

Chen et al. (2018), but using a GRU instead of

an LSTM, for consistency with the tree encoder.
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Figure 7: Results with tree-based models (medians over

100 initializations). Model names indicate encoder/

decoder; e.g., Sequential/Tree has a sequential GRU

encoder and a tree-GRU decoder.

This tree decoder is the mirror image of the tree

encoder: starting with the vector representation

of the root node (D0 in Figure 6), it takes

the vector representation of a parent node and

outputs two vectors, one for the left child and

one for the right child, until it reaches a leaf

node, where it outputs a word. We test models

with a tree-based encoder and sequential decoder,

a sequential encoder and tree-based decoder, or

a tree-based encoder and tree-based decoder, all

without attention; we investigate these variations

to determine whether hierarchical generalization

is determined by the encoder, the decoder, or both.

The results for these models are in Figure 7,

along with the previous results of the fully

sequential GRU (sequential encoder + sequential

decoder) without attention for comparison. The

model with a tree-based encoder and sequential

decoder preferred MOVE-FIRST, like the fully

sequential model. Only the models with a tree-

based decoder preferred MOVE-MAIN, consistent

with the finding of McCoy et al. (2019) that

it is the decoder that determines an encoder-

decoder model’s representations. However, the

model with a sequential encoder and a tree

decoder failed on the test set, so the only model

that both succeeded on the test set and showed

a bias toward a MOVE-MAIN generalization was

the fully tree-based model (Tree/Tree).5 The

behavior of this Tree/Tree model was striking

in another way as well: Its generalization set

full-sentence accuracy was 69%, while all other

models—even those that achieved high first-word

accuracy on the generalization set—had close to

0% generalization set full-sentence accuracy. The

5We do not have an explanation for the failure of the

Sequential/Tree model on the test set; most of its errors

involved confusion among words that had the same part of

speech (e.g., generating my instead of your).

ON-LSTM and Tree-GRU results show that an

architecture designed to have a certain inductive

bias might, but will not necessarily, display the

intended bias.

5 Tense Reinflection

We have shown that several models reliably

preferred MOVE-MAIN over MOVE-FIRST. However,

this behavior alone does not necessarily mean that

these models have a hierarchical bias, because a

preference for MOVE-MAIN might arise not from

a hierarchical bias but rather from some task-

specific factors such as the prevalence of certain

n-grams (Kam et al., 2008; Berwick et al., 2011). A

true hierarchical bias would lead a model to adopt

hierarchical generalizations across training tasks;

by contrast, we hypothesize that other factors

(such as a bias for focusing on n-gram statistics)

will be more sensitive to details of the task

and will thus be unlikely to consistently produce

hierarchical preferences. To test the robustness of

the hierarchical preferences of our models, then,

we introduce a second task, tense reinflection.

5.1 Reinflection Task

The reinflection task uses English subject–verb

agreement to illuminate a model’s syntactic gen-

eralizations (Linzen et al., 2016). The model is

fed a past-tense English sentence as input. It must

thenoutput that sentence either unchanged or trans-

formed to the present tense, with the final word of

the input indicating the task to be performed:

(5) my yak swam . PAST → my yak swam .

(6) my yak swam . PRESENT → my yak swims .

Because the past tense in English does not inflect

for number (e.g., the past tense of swim is swam

whether the subject is singular or plural), the

model must determine from context whether each

verb being turned to present tense should be

singular or plural. Example (6) is consistent with

two salient rules for determining which aspects of

the context are relevant:

(7) AGREE-SUBJECT: Each verb should agree with

its hierarchically determined subject.

(8) AGREE-RECENT: Each verb should agree with

the linearly most recent noun.

Though these rules make the same prediction

for (6), they make different predictions for other
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examples, such as (9a), for which AGREE-SUBJECT

predicts (9b) whereas AGREE-RECENT predicts (9c):

(9) a. my zebra by the yaks swam . PRESENT

b. my zebra by the yaks swims .

c. my zebra by the yaks swim .

Similar to the setup for the question formation

experiments, we trained models on examples for

which AGREE-SUBJECT and AGREE-RECENT made the

same predictions and evaluated the trained models

on examples where the rules make different

predictions. We ran this experiment with all 9

sequential models ([SRN, GRU, LSTM] x [no

attention, location-based attention, content-based

attention]), the ON-LSTM, and the model with

a tree-based encoder and tree-based decoder that

were provided the correct parse trees, using the

hyperparameters in Appendix A. The example

sentences were generated using the same context-

free grammar used for the question formation task,

except with inflected verbs instead of auxiliary/

verb bigrams (e.g., reads instead of does read).

We evaluated these models on the full-sentence

accuracy on the test set and also main-verb accu-

racy for the generalization set—that is, the propor-

tion of generalization set examples for which the

main verb was correctly predicted, such as when

swims rather than swim was chosen in the output

for (9a). Models usually chose the correct lemma

for the main verb (at least 87% of the time for all

tense reinflection models), with most main verb

errors involving the correct verb but with incorrect

inflection (i.e., being singular instead of plural, or

vice versa). Thus, a low main-verb accuracy can

be interpreted as consistency with AGREE-RECENT.

All sequential models, even the ones that

generalized hierarchically with question forma-

tion, overwhelmingly chose AGREE-RECENT for this

reinflection task (Figure 8), consistent with the

results of a similar experiment done by Ravfogel

et al. (2019). The ON-LSTM also preferred AGREE-

RECENT. By contrast, the fully tree-based model

preferred the hierarchical generalization AGREE-

SUBJECT. Thus, although the question formation

experiments showed qualitative differences in

sequential models’ inductive biases, this exper-

iment shows that those differences cannot be

explained by positing that there is a general hier-

archical bias in some of our sequential models.

What the relevant bias for these models is remains

unclear; we only claim to show that it is not a

Figure 8: Reinflection results (medians over 100

initializations). = no attention; = location-based

attention; = content-based attention.

hierarchical bias. Overall, the model with both a

tree-based encoder and a tree-based decoder is the

only model we tested that plausibly has a generic

hierarchical bias, as it is the only one that behaved

consistently with such a bias across both tasks.

6 Are Tree Models Constrained to

Generalize Hierarchically?

It may seem that the tree-based models are con-

strained by their structure to make only hierar-

chical generalizations, rendering their hierarchical

generalization trivial. In this section, we test

whether they are in fact constrained in this way,

and similarly whether sequential models are con

strained to make only linear generalizations.

Earlier, the training sets for our two tasks were

ambiguous between two generalizations, but we

now used training sets that unambiguously sup-

ported either a linear transformation or a hierar-

chical transformation.6 For example, we used a

MOVE-MAIN training set that included some exam-

ples like (10a), whereas the MOVE-FIRST training set

included some examples like (10b):

(10) a. my yaks that do read don’t giggle . QUEST

→ don’t my yaks that do read giggle ?

b. my yaks that do read don’t giggle . QUEST

→ do my yaks that read don’t giggle ?

Similarly, for the tense reinflection task, we

created an AGREE-SUBJECT training set and an AGREE-

RECENT training set. For each of these four training

6The lack of ambiguity in each training set means that the

generalization set becomes essentially another test set.
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sets, we trained 100 sequential GRUs and 100

Tree/Tree GRUs, all without attention.

Each model learned to perform linear and hier-

archical transformations with similar accuracy: On

the MOVE-MAIN and MOVE-FIRST datasets, both the

sequential and tree-based models achieved 100%

first-word accuracy. On both the AGREE-SUBJECT

and AGREE-RECENT datasets, the sequential model

achieved 91% main-verb accuracy and the tree-

based model achieved 99% main-verb accuracy.

Thus, the fact that the tree-based model preferred

hierarchical generalizations when the training set

was ambiguous arose not from any constraint

imposed by the tree structure but rather from

the model’s inductive biases—biases that can be

overridden given appropriate training data.

7 Tree Structure vs. Tree Information

Our sequential and tree-based models differ not

only in structure but also in the information they

have been provided: The tree-based models have

been given correct parse trees for their input and

output sentences, while the sequential models have

not been given parse information. Therefore, it is

unclear whether the hierarchical generalization

displayed by the tree-based models arose from

the tree-based model structure, from the parse

information provided to the models, or both.

To disentangle these factors, we ran two further

experiments. First, we retrained the Tree/Tree

GRU but using uniformly right-branching trees

(as in (11b)) instead of correct parses (as in (11a)).

Thus, these models make use of tree structure

but not the kind of parse structure that captures

linguistic information. Second, we retrained the

sequential GRU without attention7 but modified

the input and output by adding brackets that

indicate each sentence’s parse; for example, (12a)

would be changed to (12b). Thus, these models are

provided with parse information in the input but

such structure does not guide the neural network

computation as it does with tree RNNs.

(11) a.

my yak does giggle

.

b.
my

yak
does

giggle .

7We chose this sequential model because the Tree/Tree

model is also based on GRUs without attention.

Figure 9: Disentangling tree structure and parse

information. The GRU that is not provided the

correct parse is the same as GRU in Figures 4 and

8. The Tree/Tree model that is provided the correct

parse is the same as the Tree/Tree model in Figures 7

and 8. The other two conditions are new: The GRU

that was provided the correct parses was given these

parses via bracketing, while the Tree/Tree model that

was not provided the correct parses was instead given

right-branching trees.

(12) a. my yak does giggle . QUEST

→ does my yak giggle ?

b. [ [ [ my yak ] [ does giggle ] ] . ] QUEST

→ [ [ does [ [ my yak ] giggle ] ] ? ]

We ran 100 instances of each experiment using

different random seeds. For the experiment with

bracketed input, the brackets significantly in-

creased the lengths of the sentences, making the

learning task harder; we therefore found it neces-

sary to use a patience of 6 instead of the patience of

3 we used elsewhere, but all other hyperparameters

remained as described in Appendix A.

For both tasks, neither the sequential GRU

that was given brackets in its input nor the

Tree/Tree model that was given right-branching

trees displayed a hierarchical bias (Figure 9).8

The lack of hierarchical bias in the sequential

GRU with bracketed input indicates that simply

providing parse information in the input and

target output is insufficient to induce a model

to favor hierarchical generalization; it appears

that such parse information must be integrated

into the model’s structure to be effective. On

8Providing the parse with brackets did significantly

improve the first-word accuracy of the sequential GRU,

but this accuracy remained below 50%.
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the other hand, the lack of a hierarchical bias in

the Tree/Tree model using right-branching trees

shows that simply having tree structure is also

insufficient; it is necessary to have the correct

tree structure.

8 Will Models Generalize Across

Transformations?

Each experiment discussed so far involved a single

linguistic transformation. By contrast, humans

acquiring language are not exposed to phenomena

in isolation but rather to a complete language en-

compassing many phenomena. This fact has been

pointed to as a possible way to explain hierarchical

generalization in humans without needing to

postulate any innate preference for hierarchical

structure. While one phenomenon, such as ques-

tion formation, might be ambiguous in the input,

there might be enough direct evidence among other

phenomena to conclude that the language as a

whole is hierarchical, a fact which learners can then

extend to the ambiguous phenomenon (Pullum and

Scholz, 2002; Perfors et al., 2011), under the non-

trivial assumption that the learner will choose to

treat the disparate phenomena in a unified fashion.

While our training sets are ambiguous with

respect to whether the phenomenon underlying

the mapping is structurally driven, they do contain

other cues that the language is more generally

governed by hierarchical regularities. First, certain

structural units are reused across positions in a

sentence; for example, prepositional phrases can

appear next to subjects or objects. Such reuse of

structure can be represented more efficiently with

a hierarchical grammar than a linear one. Second,

in the question formation task, subject–verb

agreement can also act as a cue to hierarchical

structure: For example, in the sentence my walrus

by the yaks does read, the inflection of does

depends on the verb’s hierarchically determined

subject (walrus) rather than the linearly closest

noun (yaks).9

For the sequential RNNs we have investigated,

it appears that these indirect cues to hierarchical

structure were not sufficient to guide the models

towards hierarchical generalizations. However,

perhaps the inclusion of some more direct evi-

dence for hierarchy would be more successful.

9Subject–verb agreement does not act as a cue to hierarchy

in the tense reinflection task because all relevant sentences

have been withheld to maintain the training set’s ambiguity.

Figure 10: Multi-task learning results for a GRU

without attention. Single-task reports baselines from

training on a single ambiguous task. Multi-task reports

results from adding an unambiguous second task.

Multi-task + auxiliaries reports results from adding

an unambiguous second task and also adding overt

auxiliaries to the tense reinflection sentences. The

numbers give the generalization set performance on

the ambiguous task.

To take a first step toward investigating this

possibility, we use a multi-task learning setup,

where we train a single model to perform both

question formationand tense reinflection. We set up

the training set such that one task was unambi-

guously hierarchical while the other was ambigu-

ous between the hierarchical generalization and

the linear generalization. This gave two settings:

One where question formation was ambiguous,

and one where tense reinflection was ambiguous.

We trained 100 instances of a GRU without atten-

tion on each setting and assessed how each model

generalized for the task that was ambiguous.

For both cases, generalization behavior in the

multi-task setting differed only minimally from

the single-task setting (Figure 10). One potential

explanation for the lack of transfer across tasks is

that the two tasks operated over different sentence

structures: the question formation sentences always

contained overt auxiliaries on their verbs (e.g., my

walrus does giggle), while the tense reinflection

sentences did not (e.g., my walrus giggles). To

test this possibility, we reran the multi-task ex-

periments but with overt auxiliaries added to the

tense reinflection sentences (Figure 10, ‘‘Multi-

task + auxiliaries’’ row). In this setting, the model

still generalized linearly when it was question

formation that was ambiguous. However, when

it was tense reinflection that was ambiguous, the

model generalized hierarchically.

We hypothesize that the directionality of this

transfer is due to the fact that the question

formation training set includes unambiguous long-

distance subject–verb agreement as in (13), which
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might help the model on generalization-set exam-

ples for tense reinflection such as Example (14):

(13) my zebras by the yak do read . DECL

→ my zebras by the yak do read .

(14) my zebras by the yak did read . PRESENT

→ my zebras by the yak do read .

By contrast, the tense reinflection training set

does not contain any outputs of the type withheld

from the question formation training set. If this

explanation is correct, it would mean that the

improvement on the tense reinflection task derived

not from the question formation transformation

but rather from the subject–verb agreement

incidentally present in the question formation

dataset. Therefore, even the single potential case

of generalization across transformations is likely

spurious.

Recent NLP work has also found that neural

networks do not readily transfer knowledge across

tasks; e.g., pretrained models often perform worse

than non-pretrained models (Wang et al., 2019).

This lack of generalization across tasks might

be due to the tendency of multi-task neural

networks to create largely independent repre-

sentations for different tasks even when a shared

representation could be used (Kirov and Frank,

2012). Therefore, to make cross-phenomenon gen-

eralizations, neural networks may need to be given

an explicit bias for sharing processing across

phenomena.

9 Discussion

We have found that all factors we tested can

qualitatively affect a model’s inductive biases but

that a hierarchical bias—which has been argued

to underlie children’s acquisition of syntax—only

arose in a model whose inputs and computations

were governed by syntactic structure.

9.1 Relation to Rethinking Innateness

Our experiments were motivated in part by the

book Rethinking Innateness (Elman et al., 1998),

which argued that humans’ inductive biases must

arise from constraints on the wiring patterns of

the brain. Our results support two conclusions

from this book. First, those authors argued that

‘‘Dramatic effects can be produced by small

changes’’ (p. 359). This claim is supported by

our observation that low-level factors, such as

the size of the hidden state, qualitatively affect

how models generalize (Section 3.5). Second, they

argued that ‘‘[w]hat appear to be single events or

behaviors may have a multiplicity of underlying

causes’’ (p. 359); in our case, we found that

a model’s generalization behavior results from

some combination of factors that interact in hard-

to-interpret ways; for example, changing the type

of attention had different effects in SRNs than in

GRUs.

The dramatic effects of these low-level factors

offer some support for the claim that humans’

inductive biases can arise from fine-grained

architectural constraints in the brain. However,

this support is only partial. Our only model that

robustly displayed the kind of preference for

hierarchical generalization that is necessary for

language learning did not derive such a preference

from low-level architectural properties but rather

from the explicit encoding of linguistic structure.

9.2 Relation to Human Language

Acquisition

Our experiments showed that some tree-based

models displayed a hierarchical bias, although

non-tree-based models never displayed such a

bias, even when provided with strong cues to

hierarchical structure in their input (through

bracketing or multi-task learning). These findings

suggest that the hierarchical preference displayed

by humans when acquiring English requires

making explicit reference to hierachical structure,

and cannot be argued to emerge from more

general biases applied to input containing cues

to hierarchical structure. Moreover, because the

only successful hierarchical model was one that

took the correct parse trees as input, our results

suggest that a child’s set of biases includes biases

governing which specific trees will be learned.

Such biases could involve innate knowledge of

likely tree structures, but they do not need to;

they might instead involve innate tendencies to

bootstrap parse trees from other sources, such as

prosody (Morgan and Demuth, 1996) or semantics

(Pinker, 1996). With such information, children

might learn their language’s basic syntax before

beginning to acquire question formation, and this

knowledge might then guide their acquisition of

question formation.

There are three important caveats for extending

our conclusions to humans. First, humans may

have a stronger bias to share processing across
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phenomena than neural networks do, in which

case multi-task learning would be a viable expla-

nation for the biases displayed by humans even

though it had little effect on our models. Indeed,

this sort of cross-phenomenon consistency is sim-

ilar in spirit to the principle of systematicity,

and it has long been argued that humans have

a strong bias for systematicity whereas neu-

ral networks do not (e.g., Fodor and Pylyshyn,

1988; Lake and Baroni, 2018). Second, some

have argued that children’s input actually does

contain utterances unambiguously supporting a

hierarchical transformation (Pullum and Scholz,

2002), whereas we have assumed a complete

lack of such examples. Finally, our training data

omit many cues to hierarchical structure that are

available to children, including prosody and real-

world grounding. It is possible that, with data

closer to a child’s input, more general inductive

biases might succeed.

However, there is still significant value in

studying what can be learned from strings alone,

because we are unlikely to understand how the

multiple components of a child’s input interact

without a better understanding of each component.

Furthermore, during the acquisition of abstract

aspects of language, real-world grounding is not

always useful in the absence of linguistic biases

(Gleitman and Gleitman, 1992). More generally,

it is easily possible for learning to be harder

when there is more information available than

when there is less information available (Dupoux,

2018). Thus, our restricted experimental setup

may actually make learning easier than in the more

informationally-rich scenario faced by children.

9.3 Practical Takeaways

Our results leave room for three possible ap-

proaches to imparting a model with a hierarchical

bias. First, one could search the space of hyper-

parameters and random seeds to find a setting

that leads to the desired generalization. However,

this may be ineffective: At least in our limited

exploration of these factors, we did not find a

hyperparameter setting that led to hierarchical

generalization across tasks for any non-tree-based

model.

A second option is to add a pre-training task or

use multi-task learning (Caruana, 1997; Collobert

and Weston, 2008; Enguehard et al., 2017),

where the additional task is designed to highlight

hierarchical structure. Most of our multi-task

experiments only achieved modest improvements

over the single-task setting, suggesting that this

approach is also not very viable. However, it is

possible that further secondary tasks would bring

further gains, making this approach more effective.

A final option is to use more interpretable

architectures with explicit hierachical structure.

Our results suggest that this approach is the most

viable, as it yielded models that reliably gen-

eralized hierarchically. However, this approach

only worked when the architectural bias was aug-

mented with rich assumptions about the input to

the learner, namely that it provided correct hier-

archical parses for all sentences. We leave for

future work an investigation of how to effectively

use tree-based models without providing correct

parses.
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A Architecture and Training Details

We used a word embedding size of 256 (with

word embeddings learned from scratch), a hidden

size of 256, a learning rate of 0.001, and a batch

size of 5. Models were evaluated on a validation

set after every 1,000 training batches, and we

halted training if the model had been trained

for at least 30,000 batches and had shown no
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improvement over 3 consecutive evaluations on

the validation set (the number 3 in this context

is called the patience). The training set contained

100,000 examples, while the validation, test, and

generalization sets contained 10,000 examples

each. The datasets were held constant across

experiments, but models sampled from the train-

ing set in different orders across experiments.

During training, we used teacher forcing on 50%

of examples.

B Equations for Squashing Experiments

The equations governing a standard LSTM are:

it = σ(Wi[ht−1, wt] + bi) (B.1)

ft = σ(Wf [ht−1, wt] + bf ) (B.2)

gt = tanh(Wg[ht−1, wt] + bg) (B.3)

ot = σ(Wo[ht−1, wt] + bo) (B.4)

ct = ft ∗ ct−1 + it ∗ gt (B.5)

ht = ot ∗ tanh(ct) (B.6)

To create a new LSTM whose cell state exhibits

squashing, like the hidden state of the GRU, we

modified the LSTM cell state update in (B.5) to

(B.7), where the new coefficients now add to 1:10

ct =
ft

ft + it
∗ ct−1 +

it

ft + it
∗ gt (B.7)

The equations governing a standard GRU are:

rt = σ(Wr[ht−1, wt] + br) (B.8)

zt = σ(Wz[ht−1, wt] + bz) (B.9)

h̃ = tanh(Wx[rt ∗ ht−1, wt] + bx) (B.10)

ht = zt ∗ ht−1 + (1− zt) ∗ h̃ (B.11)

The GRU’s hidden state is squashed because its

update gate z merges the functions of the input

and forget gates (i and f ) of the LSTM (cf.

Equations (B.5) and (B.11)). As a result, the input

and forget weights are tied in the GRU but not

the LSTM. To create a non-squashed GRU, we

added an input gate i and changed the hidden state

update (Equation (B.11)) to Equation (B.13) to

make z act solely as a forget gate:

it = σ(Wi[ht−1, wt] + bi) (B.12)

ht = zt ∗ ht−1 + it ∗ h̃ (B.13)

10We modified the structure of the gates rather than adding

a squashing nonlinearity to avoid vanishing gradients.
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Gulcehre, Dzmitry Bahdanau, Fethi Bougares,

Holger Schwenk, and Yoshua Bengio. 2014.

Learning phrase representations using RNN

encoder-decoder for statistical machine trans-

lation. In Proceedings of the 2014 Conference

on Empirical Methods in Natural Language

Processing.

Noam Chomsky. 1965. Aspects of the Theory of

Syntax, MIT Press, Cambridge, MA.

Noam Chomsky. 1980. Rules and representations.

Behavioral and Brain Sciences, 3(1):1–15.

137



Jan Chorowski, Dzmitry Bahdanau, Dmitriy

Serdyuk, Kyunghyun Cho, and Yoshua Bengio.

2015. Attention-based models for speech recog-

nition. In Proceedings of the 28th International

Conference on Neural Information Processing

Systems-Volume 1, pages 577–585. MIT Press.

Junyoung Chung, Caglar Gulcehre, Kyunghyun

Cho, and Yoshua Bengio. 2014. Empirical

evaluation of gated recurrent neural networks on

sequence modeling. In NeurIPS Deep Learning

and Representation Learning Workshop.

Alexander Clark and Rémi Eyraud. 2007. Poly-
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