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Abstract

Cross-lingual entity linking (XEL) is the

task of finding referents in a target-language

knowledge base (KB) for mentions extracted

from source-language texts. The first step of

(X)EL is candidate generation, which retrieves

a list of plausible candidate entities from

the target-language KB for each mention. Ap-

proaches based on resources from Wikipedia

have proven successful in the realm of rela-

tively high-resource languages, but these do

not extend well to low-resource languages

with few, if any, Wikipedia pages. Recently,

transfer learning methods have been shown to

reduce the demand for resources in the low-

resource languages by utilizing resources in

closely related languages, but the performance

still lags far behind their high-resource coun-

terparts. In this paper, we first assess the prob-

lemsfacedbycurrententitycandidate generation

methods for low-resource XEL, then propose

three improvements that (1) reduce the dis-

connect between entity mentions and KB en-

tries, and (2) improve the robustness of the

model to low-resource scenarios. The methods

are simple, but effective: We experiment with

our approach on seven XEL datasets and find

that they yield an average gain of 16.9% in

TOP-30 gold candidate recall, compared with

state-of-the-art baselines. Our improved model

also yields an average gain of 7.9% in in-KB

accuracy of end-to-end XEL.1

1 Introduction

Entity linking (EL; Bunescu and Paşca, 2006;

Cucerzan, 2007; Dredze et al., 2010; Hoffart

1Code and data will be released.

et al., 2011) associates entity mentions in a

document with their entries in a knowledge base

(KB). In this work, we focus on cross-lingual

entity linking (XEL; McNamee et al., 2011;

Ji et al., 2015) where the documents are in a

source language that differs from the KB language

(target). XEL is an important component task for

information extraction in languages that do not

have extensive KB resources, and can potentially

benefit downstream applications such as cross-

lingual building question answering systems

(Veyseh, 2016), or supporting international hu-

manitarian assistance efforts in areas that do not

speak English (Strassel et al., 2017; Min et al.,

2019). Following Sil et al. (2018) and Upadhyay

et al. (2018a), we consider the target language KB

to be English Wikipedia.

Given a document and named entity mentions

identified by a Named Entity Recognition (NER)

model, there are two primary steps in an XEL

system: (1) candidate generation, in which a

model retrieves a short list of plausible KB entities

for each mention and (2) disambiguation, in which

a model selects the most likely KB entity from

the candidate list. The quality of candidate lists

will influence the performance of the end-to-end

XEL system, as correct entities not included in this

list will not be recovered by the disambiguation

model.

In monolingual EL, candidate generation hasoften

been considered trivial (Shen et al., 2015). Simple

approaches using string similarity or Wikipedia

anchor-text links produce mention-entity lookup

tables with high candidate recalls (e.g., in the 90%

range), and thus most work focuses on methods

for downstream entity disambiguation (Globerson

et al., 2016; Yamada et al., 2017; Ganea and

Hofmann, 2017; Sil et al., 2018, Radhakrishnan
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et al., 2018). String similarity (e.g., edit distance)

cannot easily extend to XEL because surface

forms of entities often differ significantly across

the source and target language, particularly when

the languages are in different scripts. Wikipedia

link methods can be extended to XEL by using

inter-language links between the two languages

to redirect entities to the English KB (Spitkovsky

and Chang, 2012; Sil and Florian, 2016; Sil et al.,

2018; Upadhyay et al., 2018a). This method works

to some extent, but often under-performs on low-

resource languages due to the lack of source

language Wikipedia resources.

Although scarce, there are some methods that

propose to improve entity candidate generation

by training translation models with low resource-

language (LRL)-English entity gazetteers (Pan

et al., 2017), or learning neural string matching

models based on an entity gazetteer in a related

high-resource language (HRL) which is then

applied to the LRL (Rijhwani et al., 2019)

(more in §2). However, even with these relatively

sophisticated methods, top-30 candidates still

fall far behind their high-resource counterparts,

lagging by as much as 70% absolute candidate

recall.

In this work, we perform a systematic study to

understand and address the limitations of previous

XEL candidate generation models. First, in §3 we

examine the sources of error in the state-of-the-art

candidate generation model of Rijhwani et al.

(2019), and identify a number of potential reasons

for failure. Specifically, we find that two common

sources of error are (1) mismatch between the

entity name in the KB and the entity mention in

the text, and (2) failure of the string matching

model itself. In Figure 1, we show an example of

linking Marathi, a low-resource language spoken

in Western India, to English, which we will use as

a running example throughout the paper (although

our method is broadly applicable, as noted in

experiments). In this case, errors of the first

type are due to the fact that the English entity

Cobie Smulders is mentioned as (green,

Smulders) or

(yellow, Jacoba Francisca Maria Smulders) in

the text. Errors of the second type are simple

recognition errors such as where the mention

(blue, Cobie Smulders) is recognized

as English entity Cobie Sikkens. We proceed to

Figure 1: The candidate generation process for various

mentions corresponding to the gold entity ‘‘Cobie

Smulders’’. Strings on the left are mentions in the

document, and the pronunciation in IPA of each string

is written below it. The candidate entities in the English

KB generated by the candidate generation model are

shown on the right.

propose methodological improvements that re-

solve these major issues.

The first set of improvements handles the

mismatch between the unique entity name that

appears in the English KB, and the many different

realizations of it in the source text. First, we note

that training data used in learning-based methods

for XEL candidate generation (Pan et al., 2017;

Rijhwani et al., 2019) is made of entity-entity

pairs, which fail to capture this variation. We

experiment with adding mention-entity pairs to

the training data to provide explicit supervision,

helping the model better capture the differences

between mentions and entities (§4.1). Second,

we note that many of the variations in the source

language are actually similar to how the entity

varies in English, and thus we can use English

language resources to capture this variation. To

this effect, we collect entity aliases from English

Wikidata2 and allow the model to also look

up these aliases during the candidate generation

process (§4.2).

The second contribution of this work is a

better modeling strategy for strings that represent

mentions and entities (§4.3). We posit that part

of the reason why the LSTM-based model of

Rijhwani et al. (2019) fails to properly model all

words in a string is because it is not the ideal

architecture to learn from limited training data,

and as a result, it erroneously learns that some

words in the mention can be ignored. To solve

this problem, we replace the LSTM with a more

direct model based on the sum of charactern-gram

2https://www.wikidata.org/wik.
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embeddings (Wieting et al., 2016), which we

posit is more likely to generalize to this difficult

learning setting.

We evaluate our proposed methods on four real-

worldXELdatasetsprovided byDARPA LORELEI

(Strassel and Tracey, 2016), as well as three

other datasets we create with Wikipedia anchor-

text and inter-language links (§5). Although our

methods are simple, they are highly effective—our

proposed model leads to gains ranging from

7.4-33.3% in top-30 gold candidate recall com-

pared with Rijhwani et al. (2019) in seven LRLs.

Because our model provides downstream disam-

biguation models with a much larger headroom for

improvement, we find that simply changing the

candidate generation process yields an average

gain of 7.9% in end-to-end XEL in-KB accuracy

in four LRLs, pushing low-resource XEL a step

towards high-resource XEL performance.

2 Background

2.1 Problem Formulation

Given a set of mentions M = {m1,m2, . . . , mN}
extracted from multiple documents in the source

language, and an English KB KEN that contains

millions of entities with unique names, the goal of

a candidate generation model is to retrieve a list of

possiblecandidateentities ei = {ei,1, ei,2, . . . , ei,n}
from KEN for each mi ∈ M. In consideration of

the computational cost of the more complicated

downstream disambiguation model, n is often 30

or smaller (Sil et al., 2018; Upadhyay et al.,

2018a). The performance of candidate generation

is measured by the gold candidate recall, which

is the proportion of retrieved candidate lists that

contains the correct entity. It is critical that this

number is high, as any time the correct entity is

excluded, the disambiguation model will be unable

to recover it. Formally, if we denote the correct

entity of each mention m as ê, the gold candidate

recall r is defined as:

r =

∑N
i=1 δ(êi ∈ ei)

N

where δ(·) is the indicator function, which is 1 if true

else 0, and N is the total number of mentions

among all documents. We follow Yamada et al.

(2017) and Ganea and Hofmann (2017) to ignore

mentions whose linked entity does not exist in the

KB in this work.3

We use ‘‘EN’’ to denote the target language

English, ‘‘HRL’’ to denote any high-resource

language and ‘‘LRL’’ to denote any low-resource

language. For example, KHRL is a KB in an HRL

(e.g., Spanish Wikipedia), eHRL is an entity in

KHRL. Because our focus is on low-resource XEL,

the source language is always an LRL. We also

refer to the HRL as the ‘‘pivoting’’ language

below.

2.2 Baseline Candidate Generation Models

In this section, we introduce two existing cate-

gories of techniques for candidate generation.

Direct Wikipedia-based Models WIKIMENTION

is a popular candidate generation model used

by most state-of-the-art work in XEL (Sil and

Florian, 2016; Sil et al., 2018; Upadhyay et al.,

2018a). Specifically, this model first extracts a

monolingual mLRL-eLRL map from anchor-text

links. For instance, if mention (Smulders)

is linked to entity (Cobie Smulders)

in some Marathi Wikipedia pages,

will be treated as a candidate entity of .

These Marathi entities are then redirected to their

English counterpart by Wikipedia LRL-English

inter-language links. For example,

(Cobie Smulders) will be redirected to Cobie

Smulders. However, the reliance on the coverage

of LRL Wikipedia strongly constrains this method

in low-resource settings.

TRANSLATION is another Wikipedia-based can-

didate generation model, proposed by Pan et al.

(2017). Instead of building a monolingual map

that requires accessing anchor-text links in an LRL

Wikipedia, this model translates any mLRL to mEN

word-by-word and retrieves candidate entities

from an existing mEN − eEN map. The word-

by-word translations are induced by LRL-English

inter-language links. Even though TRANSLATION

is less sensitive to the availability of resources

(to some extent), its dependency on LRL-English

inter-language links still limits its performance in

low-resource settings.

3The predictions of these mentions will always be wrong.

This could be fixed by either designing mechanisms to predict

‘‘not linkable’’ or expanding the KB, which are beyond the

scope of this work.
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Pivoting-based Entity Linking Instead of

relying on LRL resources, pivoting-based entity

linking (PBEL, Rijhwani et al., 2019) learns to

perform cross-lingual string matching based on

an entity gazetteer between a related HRL and

English. This model consists of two BI-LSTMs,

namely, the HL-BI-LSTM and the EN-BI-LSTM.

The training data is a collection of entity pairs

(eHRL − eEN). Each of the BI-LSTMs reads in

an entity name eHRL (eEN) and encodes it to an

embedding vHRL (vEN). The learning objective

is to maximize the similarity between the two

entities of each pair. The trained model HRL is

used as-is to encode the LRL mentions to vLRL,

relying on the similarity between the languages

to achieve a reasonably accurate encoding. A

vLRL is compared with every entity embedding in

KEN, and entities with the top-n highest similarity

scores are retrieved as the candidate entities. To

compensate for the accuracy degradation due to

transfer, this work also considers the similarity

between mLRL and eHRL, where eHRL is the

counterpart of eEN in KHRL. Thus, the score

between mLRL and entity eEN is defined as:

score(mLRL, eEN) = max(sim(mLRL, eEN),

sim(mLRL, eHRL))
(1)

where sim(x, y) = cosine(vx,vy). When eHRL

does not exist, sim(mLRL, eHRL) is set to −∞.

PBEL removes the reliance on LRL resources,

and currently represents the state-of-the-art for

candidate generation in low-resource XEL.However,

as we analyze in detail in the following §3, it still

faces a number of challenges.

3 Failures of Existing Models

In this section, we perform a systematic analysis

of failure cases existing in PBEL (§3.1), and spe-

cifically focus on two error types: entity-mention

mismatch (§3.2) andstring matching failures (§3.3).

3.1 Mention Types and Analysis

We apply a PBEL model trained with eHRL − eEN

pairs to generate candidate entities for mentions

extracted from LRL documents. For LRLs we use

Tigrinya, Oromo, Marathi, and Lao, and for HRLs

we use Amharic, Hindi, Hindi, and Thai, respec-

tively. The details of the datasets are in §5. We

randomly sample 100 system outputs from each

LRL and manually annotate their mention type

according to an typology created simultaneously

while performing analysis. The mention type is

as follows, where the comparison is between the

mention in a LRL and the entity string in English:

DIRECT: The mention is a direct transliteration

of the entity. For example, one a mention

of Cobie Smulders is (Cobie

Smulders)

ALIAS: The mention is another full proper name

that is different from the entity name in

English KB. For instance, a mention of Cobie

Smulders as

(Jacoba Francisca Maria Smulders).

TRANS: The mention and the entity have word-

by-word alignment, however, the mention

contains regular words (e.g., university,

union) that cannot be transliterated directly.

EXTRA SRC: There is at least one extra word in

the mention that is not a proper noun (e.g.,

(Sir)); or there is at least one extra syllable

in the mention, which is often due to the

morphology of the source language.

EXTRA ENG: There is at least one extra word

in the English entity that is not a proper noun.

BAD SPAN: The mention span is not an entity

due to mis-annotation, or non-standard an-

chor text in Wikipedia; the annotated linked

entity is wrong; the mention is in another

language other than our testing language.

We consider three situations for each sample:

(1) in top-1: the model ranks the correct entity the

highest, the ideal case; (2) in top-2 to 30: the model

ranks the correct entity in the top-2 to top-30,

which is less ideal, but will still potentially allow

a downstream disambiguation model to predict the

correct entity and (3) not in top-30: the model does

not rank the entity to top-30, which will certainly

lead to an error.

Figure 2 shows the mention types of the 400

samples and PBEL performance within each of the

mention types. In the following sections, we

examine, in depth, two major causes of error:

mention-entity mismatch (largely affecting errors

in ALIAS, EXTRA SRC, and EXTRA ENG cate-

gories), and model failure (largely affecting errors

in DIRECT).
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Figure 2: The distribution of mention types in 400

samples and the baseline model’s performance with

respect to each of the mention types.

Lang am so hi th

|eHRL|=|eEN| 82.9 80.7 83.4 56.8

|mHRL|=|eEN| 71.1 58.0 56.8 55.8

Table 1: Proportion of entries where HRL

strings have the same number of words as

their English counterparts.

3.2 Failures due to Mention-Entity Mismatch

As demonstrated in Figure 1, a single English

entity can have different realizations in the

source language document. As a result, many

of these realizations will not match lexically or

phonetically with the entity in the KB. This poses a

serious problem for matching methods that rely on

graphemic or phonemic similarity such as PBEL.

One typical pattern in mention-entity variation

is additional words, as noted in the EXTRA SRC

and EXTRA ENG classes. We examine more sys-

tematically across the whole corpus by comparing

the number of words on each side, which is a rough

lower bound on the amount of this mismatch. The

first row in Table 1 is the comparison between

eHRL and eEN, which presumably have better word-

by-word alignment (and were used in training

of previous XEL methods). The second row

displays the comparison between mHRL and eEN.

It is obvious that entity-entity pairs have more

consistent length in words, while this consistency

is not preserved in mention-entity pair data. Thus,

even if the previous PBEL model could easily

learn exact string matches from the entity-entity

training data, to successfully associate mention-

entity pairs, the model would need to capture more

complex patterns (e.g., ignoring some words).4

The diverse realizations of a single entity bring

another, more serious, challenge to models that

mainly learn string matches: In reality, a reali-

zation does not necessarilyhave significant overlap

with the entity name in Wikipedia. Sometimes, the

mention does not have any overlap with the entity

name at all, as noted in the ALIAS class. This

common pattern reflects the limitation of using eEN

as the unique representation on the English side.

3.3 Failures in Direct Transliteration

Even in seemingly easy cases where the entity is a

perfectly transliteration of the mention (DIRECT),

we found the LSTM to fail frequently in our low-

data scenario. Among all DIRECT errors, we

found an interesting observation that the BILSTM

often only properly captures the first word (or the

first a few characters) and ignores the existence

of the second and further-on words. For example,

the model ranks Cobie Sikken higher than Cobie

Smulders for (Cobie Smulders).

To better understand this behavior, we manually

annotated 100 training pairs in Hindi and measured

how often the second or later words in eHRL do not

match their counterpart in eEN phonologically.5

We find that whereas 93 examples share a

phonologically similar first word, about 40 of

them have second and further-on words that

are not phonological matches: While most pairs

have word-by-word mappings, their second or

later words often match with each other only

semantically—that is, there are regular words

(e.g., district, university) that have very different

pronunciations across the HRL and English, and

are therefore difficult to predict unless they are

explicitly seen in the training data. The BILSTM,

which is a flexible model, seems to overfit

and erroneously learn that latter words in the

sentence do not need to be mapped directly with

little inductive bias. This is a straightforward

explanation for why the model learns to ignore

the second and further-on words.

To sum up, the failures of the PBEL model

can be mainly attributed to (1) lack of explicit

supervision; (2) lack of external resources to assist

4Low numbers for th are due to lack of explicit word

boundaries marked by spaces.
5The phonological similarity of names across languages is

vital to the success of cross-lingual mention-entity matching.
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cases where the mention and entity name diverge

significantly; and (3) the BILSTM’s inability to

properly match the whole string.

4 Improved Candidate Generation

Based on the results of this empirical study,

we propose three methods to resolve the main

problems inherent in the baseline PBEL model.

4.1 Eliminating Train-Test Discrepancy

The mention-entity discrepancy naturally leads

to our first simple but effective improvement

to the baseline model: We extend the original

eHRL − eEN pairs with mHRL − eEN pairs. We

first collect mHRL − eHRL pairs from anchor-text

links in an HRL Wikipedia and then redirect these

entities to their parallel in English Wikipedia. As

a result, we get the desired mHRL − eEN pairs.

For instance, if (Smulders) is linked to

(Cobie Smulders) in some Marathi

Wikipedia pages, which could be redirected to

Cobie Smulders in English, and Cobie

Smulders form one mention-entity pair. Although

this is perhaps obvious in hindsight, to our

knowledge, all previous works that explicitly

train XEL candidate retrieval models do so on

eHRL − eEN pairs (Pan et al., 2017; Rijhwani et al.,

2019), which are mostly word-by-word mappings.

4.2 Utilizing English Entity Aliases

The training method introduced in the previous

section will render the model more capable of

dealing with minor differences between mentions

and entities. However, it still would struggle to

match strings with significant differences, such as

the examples of ‘‘Cobie Smulders’’ and ‘‘Pope

Paul V’’ shown in Section 3.2. To mitigate

this, we propose using Wikidata, a crowd-edited

knowledge base similar to Wikipedia, which

provides an ‘‘also known as’’ section that lists

common aliases of each entity.6 Our second

method is based on the observation that Wikidata

resources can serve as an off-the-shelf alias lookup

table with better coverage than simply using the

entity’s canonical Wikipedia title. An example of

how this lookup table can increase coverage is

indicated in Figure 2. In our analysis, we found

that more than 50% of the ALIAS mentions could

be covered by this table. There is a map between

6For example, https://www.wikidata.org/

wiki/Q200566.

Wikipedia entities and Wikidata entities, so we

can direct Wikipedia to the Wikidata to retrieve

these aliases.7

At test time, we treat the alias of an entity

equally as its main Wikipedia entity name,

allowing the model to match the target mention to

this alias as well. As a result, sim(mLRL, eEN) in

Equation (1) is modified as:

sim(mLRL, eEN) = max
ai∈A

(

sim(mLRL, ai)
)

where A is a combination of entity Wikipedia title

and entity aliases.8 Note that although one may

consider using aliases in languages other than

English, we found that they are very scarce, so

we did not attempt to expand entity names on the

HRL side.

4.3 More Explicit String Encoding

As mentioned previously, while BI-LSTMS have

proven powerful in modeling sequential data in

the literature, we argue that they are not an ideal

string encoder for this setting. This is because

our training data contain a nontrival number of

pairs that contains less predictable word mappings

(e.g., translations). With such large freedom in

the face of insufficient and noisy training data,

this encoder seemingly overfits, resulting in poor

generalization. Previous researchers (Dai and Le,

2015; Wieting et al., 2016a) have noticed similar

problems when using LSTMs for representation

learning.

As an alternative, we propose the use of the

CHARAGRAM model (Wieting et al., 2016) as the

string encoder. This model scans the string with

various window sizes and produces a bag of

character n-grams. It then maps these n-grams to

their corresponding embeddings through a lookup

table. The final embedding of the string is the

sum of all the n-gram embeddings followed by a

nonlinear activation function. Figure 3 shows an

illustration of the model.

Formally, we denote a string as a sequence

of characters x = [x1, x2, . . . , xm] that includes

7Other resources such as bold terms, link anchors,

disambiguation pages, and surnames of mentions could

potentially increase the coverage of Wikidata.
8Note that incorporating aliases results in a small amount

of extra computation by multiplying the effective size of

the KB by a, the average number of aliases per mention.

However, in Wikidata, a = 1.2, so we believe this is a

reasonable cost-benefit trade-off, given the gains afforded by

incorporating these aliases for many languages.
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Figure 3: The architecture of CHARAGRAM.

space characters as well as special start and end

symbols. We usex
j
i to denote a sub-sequence from

position i to position j inclusive. For example,

x
j
i = [xi, xi+1, . . . , xj]. The embedding v of a

string x is:

v = tanh(b+
m
∑

i=1

∑

n∈N

1(xii+1−n ∈ V )W
x
j
i

)

where N is a set of predefined window sizes.

b ∈ R
d, V is all n-grams seen in the training data,

W ∈ R
|V |×d is the embedding lookup table and

W
x
j

i

∈ R
d is the embedding of x

j
i . Note that 1(x)

is the indicator function, if a n-gram is not in V ,

we simply discard it.

Compared with the BI-LSTM, the advantages

of CHARAGRAM are four-fold. First, the complexity

of memorizing short character strings in the

model is reduced. CHARAGRAM learns multi-

character subsequences by simply adding them

to an embedding table, whereas the LSTM learns

them in a multi-step recurrent process. Second,

because of their relatively higher expressiveness,

LSTMs overfit to the noisy and relatively small

training data provided by Wikipedia bilingual

entity maps, the likely reason for LSTMs only

considering the start word in errors from the

DIRECT category. In contrast, CHARAGRAM does

not consider order information, giving it an

explicit inductive bias that forces it to rely on

character n-gram matching for all n-grams in the

sequence. Third, CHARAGRAM’s simple architecture

eases the learning process. For instance, the

LSTMs needs O(m) steps to propagate gradients

from start to finish (Vaswani et al., 2017),

while the CHARAGRAM requires only O(1) step

to do so. Finally, although not a performance-

based advantage, the CHARAGRAM model is more

interpretable, which make our further analysis

easier to perform (see Section 5).

We follow Wieting et al. (2016) and Rijhwani

et al. (2019) and use negative sampling with a

max-margin loss to train the model:

L =
B
∑

i=1

max(0, 1− sim(m, eEN+)

+ sim(m, eiEN−))

where eEN+ is the linked entity of m and eEN− is a

randomly sampled English entity. B is the number

of negative samples for each positive pair.

5 Experiments

5.1 Datasets

We evaluate our model on the following datasets,

spanning seven low-resource languages.

DARPA-LRL: The data for the first four

languages are news articles, blogs, and social

media annotated with entity spans and links

by LDC as part of the DARPA LORELEI3

program. The documents are in four low-

resource languages: Tigrinya (ti; a Semitic

language spoken in Eritrea and Ethiopia, written

in Ethiopian script), Oromo (om; an Afroasiatic

langage spoken in the Horn of Africa, written

in Roman script), Kinyarwanda (rw; a language

of the Niger-Congo family spoken in Rwanda,

written in Roman script), and Sinhala (si,

and Indo-Aryan language spoken in Sri Lanka,

written in its own script). These are naturally

occurring real-world data annotated and linked to

a KB, containing information about disasters and

humanitarian crises. We use these as the ‘‘gold

standard’’ datasets for our evaluation.

WIKI: One disadvantage of the DARPA-LRL

dataset, however, is that it is not publicly

distributed at the time of this writing. In order

to allow for direct comparison with our method by

researchers without access to the DARPA-LRL

data, we additionally create three datasets from

Wikipedia, as described in §4.1. Specifically, these

include Marathi (mr, an Indo-Aryan language

spoken in Western India, written in Devanagari

script), Lao (lo, a Kra-Dai language written in

Lao script), and Telugu (te, a Dravidian language

spoken in southeastern India written in Telugu

script). As Wikipedia is created through crowd-

sourcing, the anchor-text links are similar to those

appearing in realistic XEL datasets. It is notable

that entity mentions in WIKI often closely match

the Wikipedia entity titles, and thus this dataset is

nominally easier than the DARPA-LRL dataset.
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5.2 Training Details

In the CHARAGRAM model, we use character

n-grams withn ∈ {2, 3, 4, 5}, and embedding size

of 300. We train the model with stochastic gradient

descent with batch size 64, and a learning rate of

0.1. For the BI-LSTM model, we follow Rijhwani

et al. (2019) for hyperparameter selection.

We also compare our model with a character-

based CNN with sum-pooling (CHARCNN; Zhang

et al., 2015; Wieting et al., 2016), where pa-

rameters are set to be roughly comparable in size

to our CHARAGRAM model. The embedding size of

each character is set to 1024; the kernel size is

set to 2, 3, 4, 5 each with 4800 feature maps. The

output of sum-pooling layer with a dimension of

19,200 (4800×4) is fed a fully connected layer

and results in a vector of size 300. The dropout is

set to 0.5.9

For each training language, we set aside a

small subset of training data (mHRL − eEN) as

our development set. For all models, we stop

training if top-30 gold candidate recall on the

development set does not increase for 50 epochs,

and the maximum number of training epochs is

set to 200.

We select the HRL that has the highest character

n-gram overlap with the source LRL, a decision

we discuss more in §5.4. Rijhwani et al. (2019)

used phoneme-based representations to help deal

with the fact that different languages use different

scripts, and we do so as well using Epitran

(Mortensen et al., 2018) to convert strings to inter-

national phonetic alphabet (IPA) symbols. The se-

lection of the HRL and the representation of each

LRL is shown in Table 2. Epitran has relatively

wide and growing coverage (55 languages at the

time of this writing). Our method could also poten-

tially be used with other tools such as the Romanizer

uroman,10 which is a less accurate phonetic repre-

sentation than Epitran but covers most languages

in the world. However, testing different romanizers

is somewhat orthogonal to the main claims of this

paper, and thus we have not explicitly performed

experiments on this.

Our HRL pool contains 38 languages, spe-

cifically those that have more than 10k Wiki-

pedia pages and are supported by Epitran. We do

9We also try smaller architectures with embedding size

set to 64 and number of feature maps set to 300. This

configuration yields worse performance than the larger

model.
10https://www.isi.edu/∼ulf/uroman.html.

LRL HRL Representation

ti Amharic (am) Phoneme

om Indonesian (id) Grapheme

rw Tagalog (tl) Phoneme

si Hindi (hi) Phoneme

mr Hindi (hi) Grapheme

lo Thai (th) Phoneme

te Hindi (hi) Phoneme

Table 2: The HRL for each LRL. For

phoneme representations, all input strings

in LRL, HRL, and English are convert to

IPA. For grapheme representations, strings

preserve their original representation.

not consider Swedish and Cebuano because most

Wikipedia pages of these two languages are bot-

generated.11 We also remove all languages that

do not achieve a candidate recall of 75% on the

development set for the HRL, indicating that the

model may not be trained well.

5.3 Main Results

Starting from the PBEL model, we gradually rep-

lace the baseline components with our proposed

improvements to reach our complete model. The

results are shown in the second section of Table 3.

To put the results in the context, we also list the

Wikipedia size and the hyperlink count of every

language. The Wikipedia size corresponds to the

number of entities recorded in the Wikipedia, and

the hyperlink count roughly reflects the richness

of the content of each page.

Overall, the model with the three proposed im-

provements yields significantly better perfor-

mance than the baseline. It brings 7.4–33.3%

improvement on top-30 gold candidate recall on six

LRLs, with the exception of te. We will discuss

the failure of te in §5.4.12 Next, we can see that

the CHARAGRAM brings the first major improve-

ment, improving over both baselines BILSTM

and CHARCNN. Even trained with eHRL−eEN pairs,

CHARAGRAM generalizes better to the test data

(mLRL − eEN) where the patterns to be matched

are different from the training data. This result

11https://en.wikipedia.org/wiki/Lsjbot.
12Although not a direct target of our paper, we note

that the three methodological improvements, especially the

introduction of CHARAGRAM, also improve the baseline model

in HRL settings. We often observe more than a 20% gain in

top-30 gold candidate recall in the development set, which is

derived from the same HRL as the training set.
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DARPA-LRL WIKI

Model ti om rw si mr lo te avg

WIKIMENTION 21.9 45.3 59.6 66.6 − − − −
TRANSLATION 13.4 20.9 25.3 21.0 − − − −

ee + BILSTM = PBEL 54.1 18.1 57.5 34.5 53.5 21.0 40.7 40.7

ee + CHARCNN 53.8 13.0 55.9 30.8 47.7 18.0 24.6 34.8

ee + CHARAGRAM 70.6 20.4 60.2 17.5 63.4 40.1 23.8 43.2

ee + me + CHARAGRAM 74.4 41.3 64.6 50.7 72.8 54.4 34.3 56.6

+ aka = Ours 75.1 46.0 64.9 51.1 77.5 54.3 34.4 57.6

Wikipedia Size 168 775 2K 15K 50K 3K 70K 20K

Hyperlink Count 188 4K 7K 63K 300K 11K 610K 165K

Table 3: Top-30 gold candidate recall (%) of different models. First block: performance

of direct Wikipedia-based models that use LRL resource; second block: performance of

pivoting-based models that does not require any LRL resource. ee means using entity-

entity pairs as training data and me means using mention-entity pairs as training data.

Bold numbers are the best performance of the corresponding languages.

suggests that, as we hypothesize, the model struc-

ture of CHARAGRAM makes it better able to learn

string mappings in the face of relatively small and

noisy data. We note that we also try many varia-

tions of the two baseline models. For example, we

use the average hidden states instead of the last

hidden state of BILSTM to represent a string, and

we replace the sum-pooling layerwith the max-

pooling layer in CHARCNN. These variations yield

comparable or worse recall compared with the

current baselines.

In addition, introducingmHRL−eENpairs brings

further improvementover all seven languages. This

is perhaps not surprising; these data provide

explicit supervision that matches the actual task

of entity-mention matching that we are faced with

at test time.

The influence of entity aliases varies from

language to language. Although they offer some

significant gains in om and mr, they do not largely

change other languages. We suspect this is because

of the diverse properties of the languages used in

our datasets. For example, for the case of Marathi

speakers, they may also speak English frequently

and be familiar with English entity names due to

English being a national language of India. This

may lead them to follow conventions similar to

the English aliases that are available in Wikidata.

Speakers of other languages might either not use

as many aliases or their aliases may not match

well with those included in Wikidata.

Moreover, we quantify how our proposed methods

reduce the failures existing in the baseline system.

Figure 4: The distribution of mention types and the

performance of our proposed model (right bars),

compared with the baseline (left bars).

We use the 400 samples of §3 and compare the

error distribution with the original one in Figure 4.

From the results, we can see that our model

eliminates a large number of the errors by ranking

the correct entities the highest. It significantly

reduces DIRECT and ALIAS errors, which

demonstrates the effectiveness of our proposed

method. As a side benefit, a number of the TRANS

errors are also resolved. In addition, when the

proposed model fails to rank the correct entity the

highest, it is able to increase the number of correct

entities in the top-30 candidate list, providing

a downstream disambiguation model with larger

improvement headroom. A few concrete examples

are shown in Table 4.
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Error Type Mention IPA Ours PBEL

ALIAS
Beaver Creek Resort Beaver Creek State Forest (New York)

Gajanan Digambar Madgulkar Ghada Amer

DIRECT
Hermann Staudinger Herman Heuser

Muscoline Benito Mussolini

TRANS
Khmer Empire Khmer Issarak

European Union Yuri Petunin

Table 4: Successful cases, where the top-1 candidate entity retrieved by our model improves over that

of the baseline model.

Up until this point, we have been comparing

models that are purely zero-shot—they need no

training data in the source LRL. However, even

for low-resourced languages there is often some

Wikipedia data that can be used to create models.

Using this data, we additionally compare our

model with the two Wikipedia-based models that

are not zero-shot (§2.2) on four DARPA-LRL

datasets on the first section of Table 3.13 Our

model consistently beats TRANSLATION on all four

datasets without relying on any LRL resources.

Moreover, it outperforms WIKIMENTION by a large

margin on three datasets with relatively small sized

Wikipedias, evidencing the advantage of zero-shot

learning in resource scarce settings. For si

with over 15K Wikipedia pages, our model lags

behind the resource-heavy WIKIMENTION model

by about 15% in the gold candidate recall. This is

perhaps expected as our model does not rely on

any of LRL resources, and it is possible that

explicitly training our model with these resources

could further improve its accuracy. Additionally,

we observe that our model could serve as a com-

plement to WIKIMENTION and bring further gain in

gold candidate recall. We discuss this in detail in

Section 5.6.

5.4 Pivoting Language Selection

Choosing a closely related HRL and directly

applying the model trained on that HRL to the

LRL has been a popular transfer learning paradigm

in low-resource settings (Täckström et al., 2012;

Zhang et al., 2016; Cotterell and Heigold, 2017;

Rijhwani et al., 2019; Lin et al., 2019; Rahimi

et al., 2019). Related languages are often chosen

13For the 3 WIKI datasets, the way we create these datasets

is exactly the same as the way we generate mHRL−eEN lookup

tables, and thus WIKIMENTION will achieve 100% recall. We

skip the unfair comparison on these datasets.

LRL Linguistics n-gram Overlap δ

ti âm, 63.9 (60.8) am, 74.2 (70.9) 10.3

om ŝo, 28.0 (63.7) îd, 40.9 (75.8) 12.9

rw r̂n, 46.4 (62.9) tl, 64.6 (79.0) 18.2

si hi, 50.4 (63.1) hi, 50.4 (63.1) 0

lo th, 51.4 (78.8) th, 51.4 (78.8) 0

mr ĥi, 72.8 (83.3) ĥi, 72.8 (83.3) 0

te ta, 12.6 (32.3) hi, 32.6 (45.1) 20.0

Table 5: The pivoting language, performance (and

their n-gram overlap % with the LRL) selected

by different criteria. δ column shows the top-30

candidate recall improvement (%) using n-gram

overlap. Language with a hat use grapheme repre-

sentations while the remaining ones use phoneme

representations.

heuristically based on linguistic intuition, although

there are some works that have recently examined

training models to select languages automatically

(Lin et al., 2019; Rahimi et al., 2019). In our

case, we would like to choose both a pivoting

language, and a string representation: phonemes

or graphemes. This doubles the search space and

increases the search difficulty.

We devise a simple yet strong heuristic for pick-

ing HRLs for transfer: picking the language that

shares the largest number of character n-grams

with the LRL. This is an automatic process that

does not need any domain or linguistic knowl-

edge. Table 5 shows the performance gap between

this criterion and manual selection with linguis-

tics features, which has been used in previous

work on XEL (Rijhwani et al., 2019). Notably,

to eliminate the variance caused by the different

number of inter-language links possessed by dif-

ferent HRLs, we compare the similarity between

mLRL with eEN directly, without the comparison
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HRL EN 5 Nearest Neighbor

am
ma

bi

hi

th

so
bi bi, mbi, arbee, inho</s>, biya

Uni maca, amac, Jaam, macad, <s>Jaam

Table 6: Randomly sampled English n-grams and their

five nearest neighbors in n-gram embedding space.

between mLRL and eHRL. More specifically, we

replace Equation (1) with score(mLRL, eEN) =
sim(mLRL, eEN).

It is clear that selecting proper pivoting lan-

guages and string representations is important;

failing to do so can cause performance degradation

of as much as 20%. However, while our heuristic

selection method is empirically better than manual

selection with linguistic features, it is notable

that pivoting languages and the representations

selected in this way do not necessarily yield

the best performance. We observe that choosing

a pivoting language with slightly less n-gram

overlap yields better performance for some LRLs.

For example, while om has about 43% character

n-gram overlap with am, using the model trained

with am yields a gold candidate recall of 45.0%

(compared to 40.9% with îd). This indicates that

accuracy could be further improved with more

sophisticated pivoting language selection criteria.

Regarding the importance of n-gram sharing,

we suspect the relatively low recall of te

compared to the baseline model results from a

lack of shared character n-grams with its pivot

language hi. Whereas most other language pairs

have over 60% character n-gram overlap, te and

hi only have 45.1%, meaning vm only encodes

less than half n-grams it has. On the contrary,

character-level embeddings used by BI-LSTM are

less sparse than higher-order n-grams, and thus

BI-LSTM suffers less information loss.

5.5 Properties of Learned n-grams

As discussed in the previous sections, the objective

of CHARAGRAM is to learn n-gram mappings

between the HRL and English. To more concretely

understand our model’s behavior, we randomly

sample a few English n-gram embeddings and

retrieve their five nearest neighbors from the HRL

side. Table 6 lists these most similar n-grams.

CHARAGRAM is able tocorrectly associaten-grams

that have close pronunciation in different lan-

guages together. Because the pronunciation of

the same syllable could vary in the context of

different words, n-grams with small variances in

vowels can still be reasonable approximations.

For example, ‘‘li’’ can be pronounced as both

‘‘li’’ and ‘‘le’’ in different words. One thing that

is worth mentioning is that CHARAGRAM is able

to correctly recognize some mappings of non-

transliterated words. For instance, ‘‘Jaamacadda’’

in so is the parallel of ‘‘University’’ in English,

and the model was able to correctly align n-grams

corresponding to these words. This result demon-

strates one way how CHARAGRAM alleviates the

TRANS error that BI-LSTM suffers from.

5.6 Improving End-to-end XEL Systems

To investigate how our candidate generation

model influences the end-to-end XEL system,

we use its candidate lists in the disambiguation

model BURN proposed by Zhou et al. (2019). BURN

creates a fully connected graph for each document

and performs joint inference on all mentions in

the document. To the best of our knowledge,

it is currently the disambiguation model that

has demonstrated the strongest empirical results

for XEL without any targeted LRL resources.

Therefore, we believe it is the most reasonable

choice in our low-resource scenario. For details,
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we encourage readers to refer to the original

paper.14

To make the best use of scarce but existing

resources, we follow Zhou et al. (2019) and con-

catenate candidate lists generated by WIKIMENTION

to candidate lists of both the baseline and our

method. The score of each candidate entity is

calculated in the following way:

scoremerge(eEN) = α× scorewm(eEN)

+ (1− α) × score′ca(eEN)

score′ca(eEN) = softmax(β × scoreca(eEN))

where scorewm is the score from WIKIMENTION

and scorecn is the original score from CHARAGRAM.

score′cn is the scaled score over the top-30

candidate list. We omit mLRL in all score functions

for simpilicty. In our experiments, α is set to 0.6

and β is set to 100.

Table 7 lists the end-to-end XEL results.

Compared with the baseline model, our model

recovers more candidate entities missed by

WIKIMENTION and significantly benefits the down-

stream disambiguation model, as well as the

end-to-end system. Even though incorporating

WIKIMENTION narrows the gap of gold candidate

recall (compared to Table 3), our model still beats

the baseline model by a large margin. While the

baseline candidate generation model only reaches

a recall in the range of 60% on average, ours

yields a recall in the range of 70%, closer to the

high-resource counterparts which are often in the

range of 80%. As a result, the end-to-end XEL

in-KB accuracy increases over all four languages,

with gains from 1.3% to 16.7%. This is significant

for extremely low-resource languages like ti,

indicating the potential of our model in truly

resource-scarce settings.

6 Related Work

Candidate generation for entity linking: In

most work, candidate generation for monolingual

entity linking relies on string matching and

Wikipedia anchor text lookup (Shen et al., 2015).

For cross-lingual entity linking, inter-language

14It is notable that we assume that the XEL system could

access the oracle NER outputs. In reality, the F1 scores of

low-resource NER are often in the range of 70%. We leave

the evaluation and possible improvement with non-perfect

NER systems as our future work.

ee + BILSTM Ours δ

ti 50.8 (55.4) 67.5 (75.8) 16.7 (20.4)

om 53.2 (61.3) 59.2 (67.9) 6.0 (6.6)

rw 61.5 (67.5) 68.9 (73.9) 7.4 (6.4)

si 70.9 (76.1) 72.2 (78.0) 1.3 (1.9)

avg 59.1 (65.1) 67.0 (73.9) 7.9 (8.8)

Table 7: In-KB accuracy (with top-30 gold can-

didate recall of the merged candidate lists in

brackets, both represent percentage %) of the

end-to-end XEL system with different candidate

generation models. δ shows the in-KB accuracy

degrade (%) using baseline candidate generation

model.15

links from Wikipedia and bilingual lexicons

are used to translate the given entity mentions

into the language of the KB (often English)

in order to generate candidates (Tsai and Roth,

2016; Pan et al., 2017; Upadhyay et al., 2018a).

More recently, Rijhwani et al. (2019) use ortho-

graphic and phonological similarity to high-

resource languages to generate candidates for

low-resource test languages. For the related task

of clustering entities, Blissett and Ji (2019) use

RNNs for measuring orthographic similarity of

entity mentions.

Transliteration: There has also been work in

transliterating named entities from one language

to another (Knight and Graehl, 1998; Li et al.,

2004). Although similar to our current task

of selecting candidates from an English KB,

transliteration poses different challenges as it

involves generating the English entity name

itself. Upadhyay et al. (2018b) use a sequence-

to-sequence model and a bootstrapping method

to transliterate low-resource entity mentions using

extremely limited training data. Tsai and Roth

(2018) combine the standard translation method

for XEL candidate generation with a transliteration

score to improve XEL candidate recall on several

languages.

Bilingual lexicon induction: Another related

task is bilingual lexicon induction, where a

mapping between words in two languages is

predicted by a learned model (Haghighi et al.,

2008). Although such a mapping can be used to

15These results are not comparable to Rijhwani et al. (2019)

as we only consider a subset of mentions whose linked entity

exists in the Wikipedia.
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translate entities from the source test language

to English for XEL candidate generation, most

existing lexicon induction methods assume the

availability of a large amount of monolingual data

in both the source and target language (Conneau

et al., 2017; Chen and Cardie, 2018; Artetxe

et al. 2018). Although this data is readily available

in English, it is unrealistic for many low-resource

languages, diminishing the utility of such methods

for the low-resource XEL task.

7 Conclusion

In this work, we perform a systematic analysis to

study and address the limitation of a previous can-

didate generation model in low-resource settings.

We propose three methodological improvements

to resolve two main problems of the baseline

model, namely, mismatch between mention and

entity and sub-optimal string modeling. For the

first problem, we introduce mention-entity pairs

into the training process to provide supervision.

We additionally collect entity aliases from English

Wikidata to further bridge this gap. To solve the

second problem, we replace the LSTM with a

more direct model CHARAGRAM. These methods

form our proposed candidate generation model.

We experiment with seven realistic datasets in

LRLs. Our model yields an average gain of 16.9%

in top-30 gold candidate recall. We also evaluate

the influence of our candidate generation model

in the context of end-to-end low-resource XEL. It

brings an average gain of 7.9% in four LRLs.

An immediate future focus is finding a way to

properly combine multiple models trained on dif-

ferent HRLs together to have better character

n-gram coverage and thus improve model perfor-

mance in different LRLs. Another interesting

avenue is to investigate how to efficiently com-

pare mentions and a large number of entities

(e.g., 2M in Wikipedia) in high dimensional

space. Currently, our model calculates the cosine

similarity between a mention and every entity

in the KB, which takes a few minutes for each

test set. However, there is much existing work

(Rajaraman and Ullman, 2011; Johnson et al.,

2019) for efficient similarity search in high di-

mensional space for billion-scale datasets. It is

likely that combination of these algorithms with

our retrieval method will allow them to scale well

and reduce the computation time to a few seconds.

In addition, other interesting future directions are

examining how to balance the trade-off between

the gold candidate recall and the disambiguation

difficulty, and how to apply our model to settings

where the target language is not English.
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