
Nested Named Entity Recognition via

Second-best Sequence Learning and Decoding

Takashi Shibuya† ∗ Eduard Hovy†

†Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.
∗Sony Corporation, Tokyo 141-8610, Japan

shibuyat@jp.sony.com hovy@cmu.edu

Abstract

When an entity name contains other names

within it, the identification of all combinations

of names can become difficult and expensive.

We propose a new method to recognize not

only outermost named entities but also inner

nested ones. We design an objective function

for training a neural model that treats the tag

sequence for nested entities as the second best

path within the span of their parent entity. In

addition, we provide the decoding method for

inference that extracts entities iteratively from

outermost ones to inner ones in an outside-

to-inside way. Our method has no additional

hyperparameters to the conditional random

field based model widely used for flat named

entity recognition tasks. Experiments demon-

strate that our method performs better than or at

least as well as existing methods capable of

handling nested entities, achieving F1-scores

of 85.82%, 84.34%, and 77.36% on ACE-

2004, ACE-2005, and GENIA datasets, re-

spectively.

1 Introduction

Named entity recognition (NER) is the task of

identifying text spans associated with proper

names and classifying them according to their se-

mantic class such as person or organization.

NER, or in general the task of recognizing entity

mentions, is one of the first stages in deep language

understanding, and its importance has been well

recognized in the NLP community (Nadeau and

Sekine, 2007).

One popular approach to the NER task is to

regard it as a sequence labeling problem. In this

case, it is implicitly assumed that mentions are

not nested in texts. However, names often contain

entities nested within themselves, as illustrated

in Figure 1, which contains 3 mentions of the

same type (PROTEIN) in the span ‘‘... in Ca2+

-dependent PKC isoforms in ...’’, taken from the

GENIA dataset (Kim et al., 2003). Name nest-

ing is common, especially in technical domains

(Alex et al., 2007; Byrne, 2007; Wang, 2009).

The assumption of no nesting leads to loss of

potentially important information and may nega-

tively impact subsequent downstream tasks. For

instance, a downstream entity linking system that

relies on NER may fail to link the correct entity if

the entity mention is nested.

Various approaches to recognizing nested enti-

ties have been proposed. Many of them rely on pro-

ducing and rating all possible (sub)spans, which

can be computationally expensive. Wang and Lu

(2018) provided a hypergraph-based approach to

consider all possible spans. Sohrab and Miwa

(2018) proposed a neural exhaustive model that

enumerates and classifies all possible spans. These

methods, however, achieve high performance at

the cost of time complexity. To reduce the running

time, they set a threshold to discard longer entity

mentions. If the hyperparameter is set low, running

time is reduced but longer mentions are missed.

In contrast, Muis and Lu (2017) proposed a

sequence labeling approach that assigns tags to

gaps between words, which efficiently handles se-

quences using Viterbi decoding. However, this

approach suffers from structural ambiguity issues

during inference, as explained by Wang and Lu

(2018). Katiyar and Cardie (2018) proposed an-

other hypergraph-based approach that learns the

structure in a greedy manner. However, their method

uses an additional hyperparameter as the thresh-

old for selecting multiple mention candidates.

This hyperparameter affects the trade-off between

recall and precision.

In this paper, we propose new learning and de-

coding methods to extract nested entities without

605

Transactions of the Association for Computational Linguistics, vol. 8, pp. 605–620, 2020. https://doi.org/10.1162/tacl a 00334
Action Editor: Mihai Surdeanu. Submission batch: 2/2020; Revision batch: 5/2020; Published 9/2020.

c© 2020 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

https://doi.org/10.1162/tacl_a_00334

Figure 1: Example of nested entities.

any additional hyperparameters. We summarize

our contributions as follows:

• We describe a decoding method that iteratively

recognizes entities from outermost ones to

inner ones without structural ambiguity. It

recursively searches a span of each extracted

entity for inner nested entities using the

Viterbi algorithm. This algorithm does not

require hyperparameters for the maximal

length or number of mentions considered.

• We also provide a novel learning method that

ensures the aforementioned decoding. Models

are optimized based on an objective function

designedaccording to the decoding procedure.

• Empirically, we demonstrate that our method

performs better than or at least as well as the

current state-of-the-art methods with 85.82%,

84.34%, and 77.36% in F1-score on three

standard datasets: ACE-2004,1 ACE-2005,2

and GENIA.

2 Method

We propose applying conditional random fields

(CRFs) (Lafferty et al., 2001), which is commonly

used for flat NER (Lample et al., 2016; Ma and

Hovy, 2016; Chiu and Nichols, 2016; Reimers

and Gurevych, 2017; Strubell et al., 2017; Akbik

et al., 2018), to nested NER in this study. We first

explain our usage of CRF, which is the base of

our decoding and training methods. Then, we

introduce our decoding and training methods. Our

decoding and training methods focus on the output

layer of neural architectures and therefore can be

combined with any neural model.

1https://catalog.ldc.upenn.edu/LDC2005T09.
2https://catalog.ldc.upenn.edu/LDC2006T06.

2.1 Usage of CRF

Our decoding and training methods are based on

two key points about our usage of CRF. The first

key point is that we prepare a separate CRF for

each named entity type. This enables our method

to handle the situation where the same mention

span is assigned multiple entity types. The GENIA

dataset indeed has such mention spans. In the

literature, Muis and Lu (2017) demonstrated that

this approach of multiple CRFs would perform

better on nested NER datasets and even a flat

NER dataset than the standard approach of a single

CRF for all entity types. The second key point is

that each element of the transition matrix of each

CRF has a fixed value according to whether it

corresponds to a legal transition (e.g., B-X to I-X

in IOBES tagging scheme, where X is the name of

entity type) or an illegal one (e.g., O to I-X). This

is helpful for keeping the scores for tag sequences

including outer entities higher than those of tag

sequences including inner entities.

Formally, we use Z = {z1, . . . , zn} to rep-

resent a sequence output from the last hidden

layer of a neural model, where zi is the vector

for the i-th word, and n is the number of tokens.

y(k) = {y
(k)
1 , . . . , y

(k)
n } represents a sequence of

IOBES tags of entity type k for Z. Here, we

define the score function to be

φk

(

y
(k)
i−1, y

(k)
i , zi

)

= P
(k)

y
(k)
i

,i
+A

(k)

y
(k)
i−1

,y
(k)
i

, (1)

where P
(k)

y
(k)
i

,i
= W

(k)

y
(k)
i

· zi + b
(k)

y
(k)
i

,

A
(k)

y
(k)
i−1,y

(k)
i

=







−∞, if y
(k)
i−1 → y

(k)
i is illegal,

0, otherwise.

W
(k)

y
(k)
i

and b
(k)

y
(k)
i

denote the weight matrix and the

bias vector corresponding to y
(k)
i , respectively.

A(k) stands for the transition matrix from the

previous token to the current token, and A
(k)

y
(k)
i−1

,y
(k)
i

is the transition scores from y
(k)
i−1 to y

(k)
i . Z is

shared between all of the multiple CRFs as their

input.

2.2 Decoding

We use three strategies for decoding. First, we

consider each entity type separately using multiple

CRFs in decoding, which makes it possible to

606

https://catalog.ldc.upenn.edu/LDC2005T09
https://catalog.ldc.upenn.edu/LDC2006T06

Algorithm 1: Nested NER via 2nd-best sequence decoding

K = the set of entity types;

Function main(zi)
M = {}; # the set of detected mentions. Each element of M is a tuple (s, e, k) regarding a mention.

s, e, and k are the start position, the end position, and the entity type of the mention, respectively.

foreach k ∈ K do

calculate CRF scores Φ for entity type k with the score function φk

(

y
(k)
i−1, y

(k)
i , zi

)

;

find the best path of the span from position 1 to position n based on the scores Φ;

M̃ = the set of the mentions detected in the best path;

M =M ∪ M̃ ;

foreach m ∈ M̃ do

detectNestedMentions(Φ, m.s, m.e, k, M);

return M ;

Function detectNestedMentions(Φ, s, e, k, M)

if e− s > 1 then

find the 2nd best path of the span from position s to position e based on the scores Φ;

M̃ = the set of the mentions detected in the 2nd best path;

M =M ∪ M̃ ;

foreach m ∈ M̃ do

detectNestedMentions(Φ, m.s, m.e, k, M);

return;

Figure 2: Overview of our second-best path decoding algorithm to iteratively find nested entities.

handle the situation that the same mention span

is assigned multiple entity types. Second, our de-

coder searches nested entities in an outside-to-

inside way,3 which realizes efficient processing

by eliminating the spans of non-entity at an early

stage. More specifically, our method recursively

narrows down the spans to Viterbi-decode. The

spans to Viterbi-decode are dynamically decided

according to the preceding Viterbi-decoding result.

Only the spans that have just been recognized as

3Our usage of inside/outside is different from the inside-

outside algorithm in dynamic programming.

entity mentions are Viterbi-decoded again. Third,

we use the same scores φk

(

y
(k)
i−1, y

(k)
i , zi

)

of

Equation (1) to extract outermost entities and even

inner entities without re-encoding, which makes

inference more efficient and faster. These three

strategies are deployed and completed only in the

output layer of neural architectures.

We describe the pseudo-code of our decoding

method in Algorithm 1. Also, we depict the over-

view of our decoding method with an example in

Figure 2. We use the term level in the sense of the

depth of entity nesting. [S] and [E] in Figure 2

607

stand for the START and END tags, respectively.

We always attach these tags to both ends of every

sequence of IOBES tags in Viterbi-decoding.

We explain the decoding procedure and mecha-

nism in detail below. We consider each entity type

separately and iterate the same decoding process

regarding distinct entity types as described in

Algorithm 1. In the decoding process for each

entity type k, we first calculate the CRF scores

φk

(

y
(k)
i−1, y

(k)
i ,zi

)

over the entire sentence. Next,

we decode a sequence with the standard 1-best

Viterbi decoding as with the conventional linear-

chain CRF. ‘‘Ca2+ -dependent PKC isoforms’’

is extracted at the 1st level with regard to the

example of Figure 2.

Then, we start our recursive decoding to extract

nested entities within previously extracted entity

spans by finding the 2nd best path. In Figure 2,

the span ‘‘Ca2+ -dependent PKC isoforms’’ is

processed at the 2nd level. Here, if we search

for the best path within each span, the same

tag sequence will be obtained, even though the

processed span is different. This is because we

continue using the same scores φk

(

y
(k)
i−1, y

(k)
i , zi

)

and because all the values of A(k) corresponding

to legal transitions are equal to 0. Regarding the

example of Figure 2, the score of the transition

from [S] to B-P at the 2nd level is equal to the

score of the transition from O to B-P at the 1st

level. This is true for the transition from E-P to

[E] at the 2nd level and the one from E-P to O

at the 1st level. The best path between the [S]

and [E] tags is identical to the best path between

the two O tags under our restriction about the

transition matrix of CRF. Therefore, we search

for the 2nd best path within the span by utilizing

the N -best Viterbi A* algorithm (Seshadri and

Sundberg, 1994; Huang et al., 2012).4 Note that

our situation is different from normal situations

where N -best decoding is needed. We already

know the best path within the span and want to

find only the 2nd best path. Thus, we can extract

nested entities by finding the 2nd best path within

each extracted entity. Regarding the example of

4Without our restriction about the transition matrix of

CRF, we would have to watch both the best path and the 2nd

best path. Besides, if a single CRF was used for all entity

types, the decoder could not always narrow down spans with

the 2nd best path. The 2nd best path in a single CRF could

result in the same span tagged a different entity type. We

would have to watch lower-ranked paths.

Figure 2, ‘‘PKC isoforms’’ is extracted from the

span ‘‘Ca2+ -dependent PKC isoforms’’ at the

2nd level.

We continue this recursive decoding until no

multi-token entities are detected within a span. In

Figure 2, the span ‘‘PKC isoforms’’ is processed

at the 3rd level. At the 3rd or deeper levels, the

tag sequence of its grandparent level is no longer

either the best path or the 2nd best path because

the start or end position of the current span is

in the middle of the entity mention span at the

grandparent level. As for the example shown in

Figure 2, the word ‘‘PKC’’ is tagged I-P at the

1st level, and the transition from [S] to I-P

is illegal. The scores of the paths that includes

illegal transitions cannot be larger than those of

the paths that consist of only legal transitions

because the elements of the transition matrix A(k)

corresponding to illegal transitions are set to −∞.

That is why at all levels below the 1st level we

only need to find the 2nd best path.

This recursive processing is stopped when no

entities are predicted or when only single-token

entities are detected within a span.5 In Figure 2, the

span ‘‘PKC’’ is not processed any more because

it is a single-token entity.

Only one nested entity is extracted within

each decoded span in Figure 2, but there can

be cases where multiple multi-token entities are

detected within a decoded span. In such cases,

our algorithm Viterbi-decodes each of their spans

in the way of the depth-first search algorithm.

The aforementioned processing is executed on all

entity types, and all detected entities are returned

as an output result.

2.3 Training

To extract entities from outside to inside success-

fully, a model has to be trained in a way that the

scores for the paths including outer entities will

be higher than those for the paths including inner

entities. We propose a new objective function to

achieve this requirement.

We maximize the log-likelihood of the correct

tag sequence as with the conventional CRF-based

model. Considering that our model has a separate

5We do not need to recursively decode the span of each

extracted single-token entity because a single-token entity

cannot contain another entity of the same entity type.

608

CRF for each entity type, the log-likelihood for

one training data, L (θ), is as follows:

L (θ) =
∑

k

log p
(

Y (k)|Z; θ
)

, (2)

where θ is the set of parameters of a neural

model, and Y (k) denotes the collection of the

gold IOBES tags for all levels regarding the entity

type k. As we mentioned in Section 2.1, Z is a

sequence output from the last hidden layer of a

neural model and is shared between all of the

multiple CRFs. Therefore, θ is updated through a

backpropagation process so that Z can represent

information about all entity types.

In the following, we decompose the log-likelihood

for all levels into the ones for each level. Let

s
(k)
l,j

and e
(k)
l,j

denote the start and end positions

of the j-th span at the l-th level. With regard

to the 1st level, s
(k)
1,1 = 1 and e

(k)
1,1 = n because

we consider the whole span of a sentence. The

spans considered at each deeper level, l > 1, are

determined according to the spans of multi-token

entities at its immediate parent level. As for the

example of Figure 2, only the span of ‘‘Ca2+

-dependent PKC isoforms’’ is considered at the

2nd level. Here, the log-likelihood for each entity

type can be expressed as follows:

log p
(

Y (k)|Z; θ
)

= L1st

(

y
(k)
1,1 , . . . , y

(k)
1,n|Z; θ

)

+
∑

l>1

∑

j

L2nd

(

y
(k)

l,s
(k)

l,j

, . . . , y
(k)

l,e
(k)

l,j

|Z; θ

)

, (3)

where L1st (. . .) and L2nd (. . .) are the log-

likelihoods of the (1st) best and 2nd best paths for

each span, respectively. y
(k)
l,i denotes the correct

IOBES tag of the position i of the l-th level of the

entity type k.

Best path. L1st (. . .) can be calculated in the

same manner as the conventional linear-chain

CRF:

L1st

(

y
(k)
1,1 , . . . , y

(k)
1,n|Z; θ

)

=

ψ
(k)
1:n

(

y
(k)
1,1 ,Z

)

− log
∑

y′∈Y
(k)
1:n

expψ
(k)
1:n (y

′,Z) ,

(4)

where ψ(k)
s:e (y,Z) =

e
∑

i=s

φk (yi−1, yi,zi) +A(k)
ye,ye+1

,

ys−1 = [S], ye+1 = [E].

Algorithm 2: LogSumExp of the scores of all

possible paths

C = {B-X,I-X,E-X,S-X,O};

s = 1; # the start position

e = n; # the end position

foreach c ∈ C do

α(c) = P
(k)
c,s +A

(k)
[S],c;

for i = s+ 1; i ≤ e; i ++ do

foreach c ∈ C do

foreach c′ ∈ C do

αc (c
′) = α (c′) + P

(k)
c,i +A

(k)
c′,c;

foreach c ∈ C do

α(c) = LogSumExp (αc);

foreach c ∈ C do

α(c)+ = A
(k)
c,[E];

return LogSumExp (α);

Y
(k)
s:e denotes the set of all possible tag sequences

from position s to position e of the entity type

k. The first term of Equation (4) is the score of

the gold tag sequence, and the second term is the

logarithm of the summation of the exponential

scores of all possible tag sequences. It is well

known that the second term of Equation (4) can

be efficiently calculated by the algorithm shown

in Algorithm 2.

2nd best path. L2nd (. . .) given the best path

can be calculated by excluding the best path from

all possible paths. This concept is also adopted

by ListNet (Cao et al., 2007), which is used for

ranking tasks such as document retrieval or

recommendation. L2nd (. . .) can be expressed by

the following equation:

L2nd

(

y
(k)

l,s
(k)

l,j

, . . . , y
(k)

l,e
(k)

l,j

|Z; θ

)

=

ψ
(k)

s
(k)

l,j
:e

(k)

l,j

(

y
(k)
l,j ,Z

)

− log
∑

y′∈Ỹ
(k)

s
(k)
l,j

:e
(k)
l,j

expψ
(k)

s
(k)

l,j
:e

(k)

l,j

(y′,Z) , (5)

where Ỹ
(k)
s:e denotes the set of all possible tag

sequences except the best path within the span

from position s to position e of the entity type k.

However, to the best of our knowledge, the

way of efficiently computing the second term

of Equation (5) has not been proposed yet in

the literature. Simply subtracting the exponential

score of the best path from the summation of the

609

Figure 3: Lattice and best path.

exponential scores of all possible paths causes

underflow, overflow, or loss of significant digits.

We introduce a way of accurately computing it

with the same time complexity as Algorithm 2 for

Equation (4). For explanation, we use the simpli-

fied example of the lattice depicted in Figure 3,

in which the span length is 4 and the number of

states is 3. The special nodes for start and end states

are attached to the both ends of the span. There are

81(= 34) paths in this lattice. We assume that the

path that consists of top nodes of all time steps are

the best path as shown in Figure 3. No generality

is lost by making this assumption. To calculate the

second term of Equation (5), we have to consider

the exponential scores for all the possible paths

except the best path, 80(= 81− 1) paths.

We first give a way of thinking, which is not

our algorithm itself but helpful to understand it. In

the example, we can further group these 80 paths

according to the steps where the best path is not

taken. In this way, we have 4 spaces in total as

illustrated in Figure 4. In Space 1, the top node

of time step 4 is excluded from consideration.

54(= 33 × 2) paths are taken into account here.

Since this space covers all paths that do not go

through the top node of time step 4, we only have

to consider the paths that go through this node in

other spaces. In Space 2, this node is always passed

through, and instead the top node of time step 3

is excluded. 18(= 32 × 2) paths are considered

in this space. Similarly, 6(= 31 × 2) paths and

2(= 30 × 2) paths are taken into consideration

in Space 3 and Space 4, respectively. Thus, we

can consider all the possible paths except the best

path, 80(= 54+18+ 6+2) paths. However, this

is not our algorithm itself as we mentioned.

We introduce two tricks for making the

calculation more efficient. We explain them with

Figure 5, in which Spaces 2 and 3 are picked up.

The first trick is that the separated two spaces can

be merged at time step 4 because the paths later

than time step 3 are identical. When we reach time

step 4 in the forward iteration in each of the two

spaces, we can merge them using the calculation

results at time step 3, as shown with the red edges

in Figure 5. The second trick is that the blue nodes

in Figure 5 can be copied from Space 2 to Space 3

at time step 2 since the considered paths until that

time step are also the same. These two tricks can

be applied to other pairs of two adjacent spaces,

which relieves the need to separately calculate

the summation of the exponential scores for each

space. Therefore, the second term of Equation (5)

can be calculated as shown in Algorithm 3.

Thus, we can train a model using the objective

function of Equations 2, 3, 4, and 5.

2.4 Characteristics

Time complexity. Regarding the time complexity

of decoder, the worst case for our method is when

our decoder narrows down the spans one by one,

from n tokens (a whole sentence) to 2 tokens. The

time complexity for the worst case is therefore

O (n+ · · ·+ 2) = O
(

n2
)

for each entity type,

O
(

mn2
)

in total, where m denotes the number

of entity types. However, this rarely happens.

The ideal average processing time in the case

where our decoding method narrows down spans

successfully according to gold labels is O(dmn),
where d is the average number of gold IOBES

tags of each entity type assigned to a word. The

average numbers calculated from the gold labels

of ACE-2004, ACE-2005, and GENIA are 1.06,

1.06, and 1.05, respectively.

Usability. Some existing methods have hyper-

parameters, such as the maximal length of con-

sidered entities or the threshold that affects the

number of detected entities, beyond those of the

conventional CRF-based model used for flat NER

tasks. These hyperparameters must be tuned de-

pending on datasets. On the other hand, our

method does not have such hyperparameters and

is easy to use from this viewpoint. In addition, our

method focuses on the output layer of neural archi-

tectures; therefore our method can be combined

with any neural model.

We verify the empirical performances of our

methods in the successive sections.

3 Experimental Settings

3.1 Datasets

We perform nested entity extraction experiments

intensively on ACE-2005 (Doddington et al., 2004)

and GENIA (Kim et al., 2003). For ACE-2005, we

610

Figure 4: Divided search spaces.

Figure 5: Merge of search spaces.

use the same splits of documents as Lu and Roth

(2015), published on their website.6 For GENIA,

we use GENIAcorpus3.02p,7 in which sentences

are already tokenized (Tateisi and Tsujii, 2004).

Following previous work (Finkel and Manning,

2009; Lu and Roth, 2015), we first split the last

10% of sentences as the test set. Next, we use the

first 81% and the subsequent 9% for training and

development sets, respectively. We make the same

modifications as described by Finkel and Manning

(2009) by collapsing all DNA, RNA, and protein

subtypes into DNA, RNA, and protein, keeping

cell line and cell type, and removing other entity

types, resulting in 5 entity types. The statistics of

each dataset are shown in Table 1.

3.2 Model and Training

In this study, we adopt as baseline a BiLSTM-

CRF model, which is widely used for NER tasks

(Lample et al., 2016; Ma and Hovy, 2016;

Chiu and Nichols, 2016; Reimers and Gurevych,

2017). We apply our usage of CRF to this base-

line. We prepare three types of models for fair com-

parisons with existing methods. The first one is the

model to which is fed conventional word embed-

dings and CNN-based character-level representa-

tion (Ma and Hovy, 2016; Chiu and Nichols, 2016;

6http://www.statnlp.org/research/ie.
7http://www.geniaproject.org/genia-corpus/

pos-annotation.

Algorithm 3: LogSumExp of the scores of all

possible paths except the best path

C = {B-X,I-X,E-X,S-X,O};

s = s
(k)
l,j ; # the start position

e = e
(k)
l,j ; # the end position

c1(s) = B-X; # the best path

for i = s+ 1; i ≤ e− 1; i++ do

c1(i) = I-X;

c1(e) = E-X;

foreach c ∈ C do

α(c) = P
(k)
c,s +A

(k)
[S],c;

β = −∞;

for i = s+ 1; i ≤ e; i ++ do

foreach c ∈ C do

foreach c′ ∈ C do

αc (c
′) = α (c′) + P

(k)
c,i +A

(k)
c′,c;

if c == c1(i) then

foreach c′ ∈ C\{c1(i− 1)} do

βc (c
′) = αc (c

′);

βc (c1(i− 1)) =

β + P
(k)
c,i +A

(k)
c1(i−1),c;

foreach c ∈ C do

α(c) = LogSumExp (αc);

β = LogSumExp (βc);

foreach c ∈ C\{c1(e)} do

α(c)+ = A
(k)
c,[E];

α (c1(e)) = β +A
(k)
E-X,[E];

return LogSumExp (α);

Reimers and Gurevych, 2017).8 We initialize

word embeddings with the pretrained embeddings

GloVe (Pennington et al., 2014) of dimension 100

in ACE-2005. For GENIA, we adopt the pretrained

embeddings trained on MEDLINE abstracts (Chiu

et al., 2016) instead. The initialized word embed-

dings are fixed during training. The vectors of the

word embeddings and the character-level repre-

sentation are concatenated and then input into

8https://github.com/yahshibu/nested-ner-

tacl2020.

611

http://www.statnlp.org/research/ie
http://www.geniaproject.org/genia-corpus/pos-annotation
http://www.geniaproject.org/genia-corpus/pos-annotation
https://github.com/yahshibu/nested-ner-tacl2020
https://github.com/yahshibu/nested-ner-tacl2020

ACE-2005 GENIA

Train (%) Dev (%) Test (%) Train (%) Dev (%) Test (%)

documents 370 43 51 – – –

sentences (7,285) (968) (1,058) 15,022 1,669 1,855

mentions 24,827 3,234 3,041 47,027 4,469 5,600

- 1st level 21,966 (88) 2,900 (90) 2,686 (88) 44,611 (95) 4,239 (95) 5,273 (94)

- 2nd level 2,635 (11) 316 (10) 323 (11) 2393 (5) 230 (5) 327 (6)

- 3rd level 215 (1) 18 (1) 30 (1) 23 (0) 0 (0) 0 (0)

- 4th level 9 (0) 0 (0) 2 (0) 0 (0) 0 (0) 0 (0)

labels per token (d) 1.06 1.05 1.05 1.05 1.05 1.05

Table 1: Statistics of the datasets used in the experiments. Note that in ACE-2005, sentences are not

originally split. We report the numbers of sentences based on the preprocessing with the Stanford

CoreNLP (Manning et al., 2014).

Hyperparameter Value

word dropout rate 0.05

character embedding dimension 128

CNN window size 3

CNN filter number 256

batch size 32

LSTM hidden size 256

LSTM dropout rate 0.2 (w/o BERT)

0.5 (w/ BERT)

gradient clipping 5.0

Table 2: Hyperparameters in our experiments.

the BiLSTM layer. The second model is the

model combined with the pretrained BERT model

(Devlin et al., 2019).9 We use the uncased version

of BERT large model as a contextual word embed-

dings generator without fine-tuning and stack the

BiLSTM layers on top of the BERT model. The

third model is the BiLSTM-CRF model to which is

fed word embeddings, character-level representa-

tion, BERT embeddings, and FLAIR embeddings

(Akbik et al., 2018) using FLAIR framework

(Akbik et al., 2019).10 All our models have 2

BiLSTM hidden layers, and the dimensionality of

each hidden unit is 256 in all our experiments.

Table 2 lists the hyperparameters used for our

experimental evaluations. We adopt AdaBound

(Luo et al., 2019) as an optimizer. Early stopping

is used based on the performance of development

set. We repeat the experiment 5 times with differ-

ent random seeds and report average and standard

deviation of F1-scores on a test set as the final

performance.

9https://github.com/yahshibu/nested-ner-

tacl2020-transformers.
10https://github.com/yahshibu/nested-ner-

tacl2020-flair.

4 Experimental Results

4.1 Comparison with Existing Methods

Table 3 presents comparisons of our model with

existing methods. Note that some existing methods

use embeddings of POS tags as an additional input

feature whereas our method does not. Our method

outperforms the existing methods with 76.83%
and 77.19% in terms of F1-score when using only

word embeddings and character-level representa-

tion. Especially, our method brings much higher

recall values than the other methods. The recall

scores are improved by 3.1% and 2.4% on ACE-

2005 and GENIA datasets, respectively. These

results demonstrate that our training and decod-

ing algorithms are quite effective for extracting

nested entities. Moreover, when we use BERT

and FLAIR as contextual word embeddings, we

achieve an F1-score of 83.99% with BERT and

84.34% with BERT and FLAIR on ACE-2005.

On the other hand, BERT does not perform well

on GENIA. We assume that this is because the

domain of GENIA is quite different from that of

the corpus used for training the BERT model.

Regardless, it is demonstrated that our method

performs better than or at least as well as existing

methods.

4.2 Ablation Study

We conduct an ablation study to verify the effec-

tiveness of our learning and decoding methods.

We first replace our objective function for training

with the standard objective function of the linear-

chain CRF. The methods for decoding N -best

paths have been well studied because such algo-

rithms have been required in many domains

(Soong and Huang, 1990; Kaji et al., 2010; Huang

et al., 2012). However, we hypothesize that our

612

https://github.com/yahshibu/nested-ner-tacl2020-transformers
https://github.com/yahshibu/nested-ner-tacl2020-transformers
https://github.com/yahshibu/nested-ner-tacl2020-flair
https://github.com/yahshibu/nested-ner-tacl2020-flair

ACE-2005 GENIA

Method Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%)

Katiyar and Cardie (2018) 70.6 70.4 70.5 79.8 68.2 73.6

Ju et al. (2018)11 74.2 70.3 72.2 78.5 71.3 74.7

Wang et al. (2018)†12 74.5 71.5 73.0 78.0 70.2 73.9

Wang and Lu (2018)† 76.8 72.3 74.5 77.0 73.3 75.1

Sohrab and Miwa (2018) – – – 93.2 64.0 77.1

Zheng et al. (2019) – – – 75.9 73.6 74.7

Fisher and Vlachos (2019) 75.1 74.1 74.6 – – –

Lin et al. (2019)† 76.2 73.6 74.9 75.8 73.9 74.8

Straková et al. (2019)†13 76.35 74.39 75.36 79.60 73.53 76.44

This work 78.27± 0.81 75.44± 0.37 76.83± 0.36 78.70± 0.69 75.74± 0.64 77.19± 0.10
Fisher and Vlachos (2019) [BERT] 82.7 82.1 82.4 − − −
Straková et al. (2019) [BERT]† 82.58 84.29 83.42 79.92 76.55 78.20

This work [BERT] 83.30± 0.22 84.69± 0.37 83.99± 0.27 77.46± 0.65 76.65± 0.58 77.05± 0.12

Straková et al. (2019) [BERT+FLAIR]† 83.48 85.21 84.33 80.11 76.60 78.31

This work [BERT+FLAIR] 83.83± 0.39 84.87± 0.09 84.34± 0.20 77.81± 0.69 76.94± 1.12 77.36± 0.26

Table 3: Main results. We group methods into three types. The first group consists of the methods that

do not use any contextual word embeddings. The second group consists of the methods that use BERT

but do not use any other contextual word embeddings. The third group consists of the methods that use

both BERT and FLAIR. ‘‘†’’ indicates the methods using POS tags.

ACE-2005 GENIA

Precision (%) Recall (%) F1 (%) Precision (%) Recall (%) F1 (%)

This work 78.27± 0.81 75.44± 0.37 76.83± 0.36 78.70± 0.69 75.74± 0.64 77.19± 0.10
– L 60.89± 1.30 75.38± 1.27 67.34± 0.37 70.72± 0.39 79.20± 1.27 74.71± 0.18
– L&D 77.77± 0.31 67.42± 0.29 72.22± 0.13 79.70± 0.56 73.41± 0.35 76.43± 0.28

Table 4: Results when ablating away the learning (L) and decoding (D) components of our proposed

method.

learning method, as well as our decoding method,

helps to improve performance. That is why we first

remove only our learning method. Then, we also

replace our decoding algorithm with the standard

decoding algorithm of the linear-chain CRF. It is

equivalent to preparing the conventional CRF for

each entity type separately.

The results are shown in Table 4. They demon-

strate that introducing only our decoding algorithm

results in high recall scores but hurts precision.

This suggests that our learning method should

be necessary for achieving high precision. Be-

sides, removing the decoding algorithm results in

lower recall. This is natural because it does not

intend to find any nested entity after extracting

outermost entities. Thus, it is demonstrated that

11Note that in ACE-2005, Ju et al. (2018) did their experi-

ments with a different split from Lu and Roth (2015) that we

follow.
12Wang et al. (2018) did not report precision and recall

scores. Instead of Wang et al. (2018), Wang and Lu (2018)

reported the scores for the model of Wang et al. (2018).
13Straková et al. (2019) did not report precision and recall

scores in their paper. We requested this information from the

authors, and they provided their score data.

both our learning and decoding algorithms con-

tribute much to good performance.

4.3 Analysis of Behavior

To further understand how our method handles

nested entities, we investigate the performance for

entities of each level. Table 5 shows the recall

scores for gold entities of each level when using

conventional word embeddings. Among all levels,

our model results in the best performance at the 1st

level that consists of only gold outermost entities.

The deeper a level, the lower recall scores. On the

other hand, Table 6 shows the precision scores

for predicted entities in each level of one trial

on each dataset. Because the number of levels in

the predictions vary between trials, taking macro

average of precision scores over multiple trials is

not representative. Therefore, we show only the

precision scores from one trial in Table 6. The

precision score for the 5th level on ACE-2005 is

as high as or higher than those of other levels.

Precision scores are less dependent on level. This

tendency is also shown in other trials.

In addition, we compare the tendency of our

method with that of an existing method. We select

613

ACE-2005 GENIA

Level Recall (%) Num. Rcall (%) Num.

1st 76.10± 0.50 2,686 77.92± 0.72 5,273

2nd 71.70± 0.70 323 40.61± 1.74 327

3rd 58.00± 5.42 30 – 0

4th 50.00± 0.00 2 – 0

Table 5: Recall scores for gold annotations of each

level.

Wang and Lu (2018) method for comparison.14

We train their model with the ACE-2005 dataset

using their original implementation and repeat

that 5 times. The recall scores from the 1st level

to the 4th level are 66.52%, 65.34%, 42.14%,

and 50.00%, respectively. The tendency about

the difference across levels is common to Wang

and Lu (2018) method and our method, and the

scores from our method (Table 5) are entirely

higher than those from their method. It is demon-

strated that our method can extract both outer and

inner entities better. On the other hand, their

method can extract crossing entities (two entities

overlap but neither is contained in the other),

although our method cannot. Actually, their model

outputs some crossing spans in our experiments. In

this case, we cannot analyze the results regarding

precision scores in the same manner as Table 6.

There are cases where one cannot uniquely decide

the level of an span nested within multiple crossing

spans.Regardless, our method cannot handle cross-

ing entities. However, crossing entities are very

rare (Lu and Roth, 2015; Wang et al., 2018).

The test sets of ACE-2005 and GENIA have no

crossing entities. This property of our method

does not have a negative impact on performance,

at least on the ACE-2005 and GENIA datasets.

4.4 Error Analysis

We manually scan the test set predictions on

ACE-2005. We find that many of the errors can

be classified into two types.

The first type is partial prediction error. Given

the following sentence: ‘‘Let me set aside the

hypocrisy of a man who became president

because of a lawsuit trying to eliminate everybody

else’s lawsuits, but instead focus on his own

experience’’. The annotation marks ‘‘a man who

became president because of a lawsuit’’, but our

14We do not use POS tags as one of input features for a

fair comparison with our method.

ACE-2005 GENIA

Level Precision (%) Num. Precision (%) Num.

1st 80.36 2,500 80.29 5,038

2nd 72.35 311 57.06 326

3rd 79.07 43 66.67 3

4th 66.67 9 – 0

5th 83.33 6 – 0

Table 6: Precision scores for predictions of each

level of one trial.

Maximal depth # tokens per second

1 6,083

2 3,761

3 3,655

4 3,742

5 3,723

∞ (no restriction) 3,701

Table 7: Decoding speed on ACE-2005.

model extracts a shorter or longer span. It is

difficult to extract the proper spans of clauses that

contain numerous modifiers.

The second type is error derived from prono-

minal mention. Consider the following example:

‘‘They roar, they screech.’’. These ‘‘They’’s refer

to ‘‘tanks’’ in another sentence of the same docu-

ment and are indeed annotated as VEH (Vehicle).

Our model fails to detect these pronominal men-

tions or wrongly labels them as PER (Person).

Document context should be taken into considera-

tion to solve this problem.

These types of errors have been reported by

Katiyar and Cardie (2018), Ju et al. (2018), and

Lin et al. (2019) and still remain as challenges.

4.5 Running Time

We investigate how our recursive decoding

method impacts on the decoding speed in terms of

the number of words processed per second. We use

the model trained with ACE-2005 used for Table 6

and change the maximal depth of decoding to 1, 2,

3, 4, 5, and ∞. When the maximal depth is n, our

decoder Viterbi-decodes only from the 1st level to

the n-th level. Note that, when the maximal depth

is 1, the decoding process is completely the same

as the Viterbi decoding of the standard CRF. We

run them on an Intel i7 (2.7 GHz) CPU.

Results are listed in Table 7. The processed

words per second decrease by 38% when the

614

Method P (%) R (%) F1 (%)

Katiyar and Cardie (2018) 72.3 66.8 69.7

Wang et al. (2018)†15 74.9 71.8 73.3

Wang and Lu (2018)† 78.0 72.4 75.1

Straková et al. (2019)†16 78.92 75.33 77.08

This work 79.93 75.10 77.44

Straková et al. (2019) [BERT]† 84.71 83.96 84.33

This work [BERT] 85.23 84.72 84.97

Straková et al. (2019) [BERT+FLAIR]† 84.51 84.29 84.40

This work [BERT+FLAIR] 85.94 85.69 85.82

Table 8: Comparison on ACE-2004. ‘‘†’’ indicates the methods using POS tags.

maximal depth varies from 1 to 2. There are two

main reasons for this phenomenon. First, our de-

coder needs the processing for moving across

different levels. That processing is not necessary

when the maximal depth is 1. Second, the number

of the extracted spans at the 2nd level is large

and not negligible (12.5% of that of the extracted

spans at the 1st level as shown in Table 6). The

numbers of the extracted spans at the 3rd and

lower levels are small, and then the processed

words do not largely decrease when the maximal

depth increases over 2. Regardless, our decoder

does not take twice as long as the standard CRF

on ACE-2005.

4.6 Comparison on ACE-2004

We also compare our method with existing meth-

ods on the ACE-2004 dataset. We use the same

splits as Lu and Roth (2015). The setups are the

same as those of our experiment on ACE-2005.

Table 8 shows the results. As shown, our method

significantly outperforms existing methods. Note

that most of them use POS tags as an additional

input feature whereas our method does not.

4.7 Flat NER

To assess how our model works on flat NER task,

we additionally evaluate our model on CoNLL-

2003 (Tjong Kim Sang and De Meulder, 2003),

which is annotated with outermost entities only.

The setups here are the same as those of our

15Wang et al. (2018) did not report precision and recall

scores. Instead of Wang et al. (2018), Wang and Lu (2018)

reported the scores for the model of Wang et al. (2018).
16Straková et al. (2019) did not report precision and recall

scores in their paper. We requested this information from the

authors, and they provided their score data.

Method F1 (%)

Wang and Lu (2018)† 90.5

Straková et al. (2019)† 90.77

This work 91.14± 0.04

Lample et al. (2016)‡ 90.94

Ma and Hovy (2016)‡ 91.21

Liu et al. (2019)‡ 91.96± 0.04
This work − L&D‡ 90.84± 0.10

Devlin et al. (2019)‡ 92.80

Akbik et al. (2018)‡ 93.09± 0.12
Liu et al. (2019)‡ 93.47± 0.03
Jiang et al. (2019)‡ 93.47

Baevski et al. (2019)‡ 93.5

Table 9: Comparison on CoNLL-2003. We

group methods into two types. The first

group consists of the methods that do not

use any contextual word embeddings. The

second one consists of the methods that use

contextual word embeddings such as BERT

and FLAIR. ‘‘†’’ indicates the methods

using POS tags. ‘‘‡’’ indicates the methods

not designed to extract nested entities.

experiment on ACE-2005. We not only prepare

our proposed model but also the ablated model

without our training nor decoding method, as in

Section 4.2. The former model can extract spans

nested within other extracted spans regardless of

the property of the dataset, but the latter model

never extracts spans within other extracted spans.

We use the 100-dimensional GloVe embeddings

for both models as in our previous experiments.

The results are in Table 9. We compare our

method with existing methods that do not adopt

any contextual word embeddings (the upside of

Table 9) here, although we also show results from

615

recent work with contextual word embeddings for

reference. First, in comparison with the methods

designed for nested NER (Wang and Lu, 2018;

Straková et al., 2019), our method performs better

even on CoNLL-2003. This means that our method

works well on not only nested NER but also flat

NER. Next, we compare with methods that can

handle only flat NER. Table 9 shows that our

method is comparable to the standard BiLSTM-

CRF models (Lample et al., 2016; Ma and Hovy,

2016) on CoNLL-2003. However, note that there

are some differences between the experiments of

the previous studies (Lample et al., 2016; Ma and

Hovy, 2016) and our experiment. For example,

different word embeddings are used, or the hidden

size of LSTM is not aligned. Nevertheless, we can

compare our proposed model to the ablated model.

As shown in Table 9, there is a significant gap

(p < 0.005 with the permutation test) between the

two scores, 91.14(±0.04)% and 90.84(±0.10)%.

We analyze this gap in detail and find that our

proposed model performs well especially in the

cases where it is difficult to decide which is

suitable, an inner span or an outer span. Given the

following sentence: ‘‘An assessment group made

up of the State Council’s Port Office, the Civil

Aviation Administration of China, the General

Administration of Customs and other authorities

had granted the airport permission to handle

foreign aircraft, Xinhua said .’’. In the CoNLL-

2003 dataset, the four spans ‘‘State Council’’,

‘‘Civil Aviation Administration of China’’, ‘‘Gen-

eral Administration of Customs’’, and ‘‘Xinhua’’

are annotated as ORG (Organization). Both

models correctly detect the latter three entities

in most trials, but the ablated model tends to

extract ‘‘State Council ’s Port Office’’ instead of

‘‘State Council’’. On the other hand, our proposed

model tends to extract both ‘‘State Council ’s Port

Office’’ and ‘‘State Council’’. ‘‘State Council ’s

Port Office’’ is indeed a false-positive, but our

model can detect the correct entity span ‘‘State

Council’’ more steadily than the ablated model.

Thus, our proposed model achieves the higher

F1-score.
Recently, Liu et al. (2019) proposed a new

architecture for sequence labeling, which can

capture global information at the sentence level

better than BiLSTM, and reported an F1-

score of 91.96% when using conventional word

embeddings (93.47% when using BERT). It is

true that our model based on BiLSTM does not

perform as well as their model, but our decoder

can be combined with their proposed encoder.

We leave it for future work.

5 Related Work

Alex et al. (2007) proposed several ways to

combine multiple CRFs for such tasks. They found

that, when they cascaded separate CRFs of each

entity type by using the output from the previous

CRF as the input features of the current CRF, best

performance was yielded. However, their method

could not handle nested entities of the same entity

type. In contrast, Ju et al. (2018) dynamically

stacked multiple layers that recognize entities

sequentially from innermost ones to outermost

ones. Their method can deal with nested entities

of the same entity type.

Finkel and Manning (2009) proposed a CRF-

based constituency parser for this task such that

each named entity is a node in the parse tree.

However, its time complexity is the cube of

the length of a given sentence, making it not

scalable to large datasets involving long sentences.

Later on, Wang et al. (2018) proposed a scalable

transition-based approach, a constituency forest

(a collection of constituency trees). Its time

complexity is linear in the sentence length.

Lu and Roth (2015) introduced a mention

hypergraph representation for capturing nested

entities as well as crossing entities (two entities

overlap but neither is contained in the other).

One issue in their approach is the spurious

structures of the representation. Muis and Lu

(2017) incorporated mention separators to address

the spurious structures issue, but it still suffers

from the structural ambiguity issue. Wang and Lu

(2018) proposed a hypergraph representation free

of structural ambiguity. However, they introduced

a hyperparameter, the maximal length of an

entity, to reduce the time complexity. Setting

the hyperparameter to a small number results in

speeding up but ignoring longer entity segments.

Katiyar and Cardie (2018) proposed another

hypergraph-based approach that learns the struc-

ture using an LSTM network in a greedy manner.

However, their method has a hyperparameter that

sets a threshold for selecting multiple candidate

mentions. It must be carefully tuned for adjusting

the trade-off between recall and precision.

616

Sohrab and Miwa (2018) proposed a neural

exhaustive model that enumerates all possible

spans as potential entity mentions and classifies

them. However, they also use the maximal-length

hyperparameter to reduce time complexity.

Fisher and Vlachos (2019) proposed a novel neu-

ral network architecture that merges tokens or enti-

ties into entities forming nested structures and then

labels each of them. Their architecture, however,

needs the maximal nesting level hyperparameter.

Lin et al. (2019) proposed a sequence-to-nuggets

architecture that first identify anchor words of all

mentions and then recognize the mention bound-

aries for each anchor word. Their method also

use the maximal-length hyperparameter to reduce

time complexity.

Straková et al. (2019) proposed an encoding

algorithm to allow the modeling of multiple named

entity labels in a linearized scheme and proposed

a neural model that predicts sequential labels for

each token. Zheng et al. (2019) proposed a method

that can detect entities boundaries with sequence

labeling models. These two methods do not require

special hyperparameters. They can also deal with

crossing entities as well as nested entities in con-

trast to our method, but our experiments demon-

strate that our method can perform well because

crossing entities are very rare (Lu and Roth, 2015;

Wang et al., 2018).

6 Conclusion

We propose learning and decoding methods for

extracting nested entities. Our decoding method

iteratively recognizes entities from outermost ones

to inner ones in an outside-to-inside way. It recur-

sively searches a span of each extracted entity

for nested entities with second-best sequence de-

coding. We also design an objective function

for training that ensures our decoding algorithm.

Our method has no hyperparameters beyond those

of conventional CRF-based models. Our method

achieves 85.82%, 84.34%, and 77.36% F1-scores

on ACE-2004, ACE-2005, and GENIA datasets,

respectively.

For future work, one interesting direction is

joint modeling of NER with entity linking or

coreference resolution. Previous studies (Durrett

and Klein, 2014; Luo et al., 2015; Nguyen et al.,

2016; Martins et al., 2019) demonstrated that

leveraging mutual dependency of the NER, link-

ing, and coreference tasks could boost each

performance. We would like to address this issue

while taking nested entities into account.

Acknowledgments

We thank Aldrian Obaja Muis for helpful com-

ments, and many anonymous reviewers and the

action editor for helpful feedback on various

drafts of the paper. We are also grateful to Jana

Straková for sharing experimental results. Eduard

Hovy was supported in part by DARPA grant

FA8750-18-2-0018 funded under the AIDA

program.

References

Alan Akbik, Tanja Bergmann, Duncan Blythe,

Kashif Rasul, Stefan Schweter, and Roland

Vollgraf. 2019. FLAIR: An easy-to-use frame-

work for state-of-the-art NLP. In Proceedings

of the 2019 Conference of the North American

Chapter of the Association for Computational

Linguistics (Demonstrations), pages 54–59,

Minneapolis, Minnesota, Association for Com-

putational Linguistics.

Alan Akbik, Duncan Blythe, and Roland Vollgraf.

2018. Contextual string embeddings for se-

quence labeling. In Proceedings of the 27th

International Conference on Computational

Linguistics, pages 1638–1649, Santa Fe, New

Mexico, USA, Association for Computational

Linguistics.

Beatrice Alex, Barry Haddow, and Claire Grover.

2007. Recognising nested named entities in

biomedical text. In Biological, Translational,

andClinical Language Processing, pages 65–72,

Prague, Czech Republic. Association for Com-

putational Linguistics.

Alexei Baevski, Sergey Edunov, Yinhan Liu, Luke

Zettlemoyer, and Michael Auli. 2019. Cloze-

driven pretraining of self-attention networks.

In Proceedings of the 2019 Conference on Em-

piricalMethods in Natural Language Processing

and the 9th International Joint Conference on

Natural Language Processing (EMNLP-IJCNLP),

pages 5360–5369, Hong Kong, China. Associ-

ation for Computational Linguistics.

Kate Byrne. 2007. Nested named entity recogni-

tion in historical archive text. In International

617

Conference on Semantic Computing (ICSC

2007), pages 589–596.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng

Tsai, and Hang Li. 2007. Learning to rank:

From pairwise approach to listwise approach.

In Proceedings of the 24th International Con-

ference on Machine Learning, pages 129–136.

Billy Chiu, Gamal Crichton, Anna Korhonen, and

Sampo Pyysalo. 2016. How to train good word

embeddings for biomedical NLP. In Proceed-

ings of the 15th Workshop on Biomedical

Natural Language Processing, pages 166–174,

Berlin, Germany. Association for Computa-

tional Linguistics.

Jason P. C. Chiu and Eric Nichols. 2016. Named

entity recognition with bidirectional LSTM-

CNNs. Transactions of the Association for

Computational Linguistics, 4:357–370.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. BERT: Pre-training

of deep bidirectional transformers for language

understanding. In Proceedings of the 2019

Conference of the North American Chapter of

the Association for Computational Linguistics:

Human Language Technologies, Volume 1

(Long and Short Papers), pages 4171–4186,

Minneapolis, Minnesota. Association for Com-

putational Linguistics.

George Doddington, Alexis Mitchell, Mark

Przybocki, Lance Ramshaw, Stephanie Strassel,

and Ralph Weischedel. 2004. The automatic

content extraction (ACE) program – tasks,

data, and evaluation. In Proceedings of

the Fourth International Conference on Lan-

guage Resources and Evaluation (LREC’04),

Lisbon, Portugal. European Language Re-

sources Association (ELRA).

Greg Durrett and Dan Klein. 2014. A joint model

for entity analysis: Coreference, typing, and

linking. Transactions of the Association for

Computational Linguistics, 2:477–490.

Jenny Rose Finkel and Christopher D. Manning.

2009. Nested named entity recognition. In Pro-

ceedings of the 2009 Conference on Empirical

Methods in Natural Language Processing,

pages 141–150, Singapore. Association for

Computational Linguistics.

Joseph Fisher and Andreas Vlachos. 2019.

Merge and label: A novel neural network

architecture for nested NER. In Proceedings of

the 57th Annual Meeting of the Association for

Computational Linguistics, pages 5840–5850,

Florence, Italy. Association for Computational

Linguistics.

Zhiheng Huang, Yi Chang, Bo Long, Jean-

Francois Crespo, Anlei Dong, Sathiya Keerthi,

and Su-Lin Wu. 2012. Iterative Viterbi A*

algorithm for k-best sequential decoding. In

Proceedings of the 50th Annual Meeting of

the Association for Computational Linguistics

(Volume 1: Long Papers), pages 611–619, Jeju

Island, Korea. Association for Computational

Linguistics.

Yufan Jiang, Chi Hu, Tong Xiao, Chunliang

Zhang, and Jingbo Zhu. 2019. Improved

differentiable architecture search for language

modeling and named entity recognition. In

Proceedings of the 2019 Conference on

Empirical Methods in Natural Language

Processing and the 9th International Joint

Conference on Natural Language Processing

(EMNLP-IJCNLP), pages 3585–3590, Hong

Kong, China. Association for Computational

Linguistics.

Meizhi Ju, Makoto Miwa, and Sophia Ananiadou.

2018. A neural layered model for nested

named entity recognition. In Proceedings of

the 2018 Conference of the North American

Chapter of the Association for Computational

Linguistics: Human Language Technologies,

Volume 1 (Long Papers), pages 1446–1459,

New Orleans, Louisiana. Association for Com-

putational Linguistics.

Nobuhiro Kaji, Yasuhiro Fujiwara, Naoki

Yoshinaga, and Masaru Kitsuregawa. 2010.

Efficient staggered decoding for sequence

labeling. In Proceedings of the 48th Annual

Meeting of the Association for Computational

Linguistics, pages 485–494, Uppsala, Sweden,

Association for Computational Linguistics.

Arzoo Katiyar and Claire Cardie. 2018. Nested

named entity recognition revisited. In Pro-

ceedings of the 2018 Conference of the North

American Chapter of the Association for

Computational Linguistics: Human Language

618

Technologies, Volume 1 (Long Papers),

pages 861–871, New Orleans, Louisiana,

Association for Computational Linguistics.

J.-D. Kim, T. Ohta, Y. Tateisi, and J. Tsujii. 2003.

GENIA corpus—a semantically annotated

corpus for bio-textmining. Bioinformatics,

19(Suppl 1):i180–i182.

John D. Lafferty, Andrew McCallum, and

Fernando C. N. Pereira. 2001. Conditional ran-

dom fields: Probabilistic models for segmenting

and labeling sequence data. In Proceedings

of the Eighteenth International Conference on

Machine Learning, pages 282–289.

Guillaume Lample, Miguel Ballesteros, Sandeep

Subramanian, Kazuya Kawakami, and Chris

Dyer. 2016. Neural architectures for named

entity recognition. In Proceedings of the 2016

Conference of the North American Chapter of

the Association for Computational Linguistics:

Human Language Technologies, pages 260–270,

San Diego, California. Association for Com-

putational Linguistics.

Hongyu Lin, Yaojie Lu, Xianpei Han, and Le

Sun. 2019. Sequence-to-nuggets: Nested entity

mention detection via anchor-region networks.

In Proceedings of the 57th Annual Meeting of

the Association for Computational Linguistics,

pages 5182–5192, Florence, Italy. Association

for Computational Linguistics.

Yijin Liu, Fandong Meng, Jinchao Zhang, Jinan

Xu, Yufeng Chen, and Jie Zhou. 2019. GCDT:

A global context enhanced deep transition

architecture for sequence labeling. In Pro-

ceedings of the 57th Annual Meeting of the

Association for Computational Linguistics,

pages 2431–2441, Florence, Italy. Association

for Computational Linguistics.

Wei Lu and Dan Roth. 2015. Joint mention

extraction and classification with mention

hypergraphs. In Proceedings of the 2015

Conference on Empirical Methods in Natural

Language Processing, pages 857–867, Lisbon,

Portugal. Association for Computational

Linguistics.

Gang Luo, Xiaojiang Huang, Chin-Yew Lin, and

Zaiqing Nie. 2015. Joint entity recognition and

disambiguation. In Proceedings of the 2015

Conference on Empirical Methods in Natural

Language Processing, pages 879–888, Lisbon,

Portugal. Association for Computational

Linguistics.

Liangchen Luo, Yuanhao Xiong, Yan Liu, and

Xu Sun. 2019. Adaptive gradient methods with

dynamic bound of learning rate. CoRR, abs/

1902.09843. Version 1.

Xuezhe Ma and Eduard Hovy. 2016. End-

to-end sequence labeling via bi-directional

LSTM-CNNs-CRF. In Proceedings of the

54th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long

Papers), pages 1064–1074, Berlin, Germany.

Association for Computational Linguistics.

Christopher Manning, Mihai Surdeanu, John

Bauer, Jenny Finkel, Steven Bethard, and David

McClosky. 2014. The Stanford CoreNLP natu-

ral language processing toolkit. In Proceedings

of 52nd Annual Meeting of the Association

for Computational Linguistics: System Demon-

strations, pages 55–60, Baltimore, Maryland.

Association for Computational Linguistics.

Pedro Henrique Martins, Zita Marinho, and

André F. T. Martins. 2019. Joint learning of

named entity recognition and entity linking.

In Proceedings of the 57th Annual Meeting of

the Association for Computational Linguistics:

Student Research Workshop, pages 190–196,

Florence, Italy. Association for Computational

Linguistics.

Aldrian Obaja Muis and Wei Lu. 2017. Label-

ing gaps between words: Recognizing overlap-

ping mentions with mention separators. In

Proceedings of the 2017 Conference on Empiri-

cal Methods in Natural Language Processing,

pages 2608–2618, Copenhagen, Denmark.

Association for Computational Linguistics.

David Nadeau and Satoshi Sekine. 2007. A survey

of named entity recognition and classification.

Lingvisticæ Investigationes, 30(1):3–26.

Dat Ba Nguyen, Martin Theobald, and Gerhard

Weikum. 2016. J-NERD: Joint named entity

recognition and disambiguation with rich

linguistic features. Transactions of the Associa-

tion for Computational Linguistics, 4:215–229.

619

Jeffrey Pennington, Richard Ocher, and

Christopher Manning. 2014. GloVe: Global

vectors for word representation. In Proceedings

of the 2014 Conference on Empirical Methods

in Natural Language Processing (EMNLP),

pages 1532–1543, Doha, Qatar. Association for

Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2017.

Reporting score distributions makes a differ-

ence: Performance study of LSTM-networks

for sequence tagging. In Proceedings of the

2017 Conference on Empirical Methods in

Natural Language Processing, pages 338–348,

Copenhagen, Denmark. Association for Com-

putational Linguistics.

Nambirajan Seshadri and Carl-Erik W. Sundberg.

1994. List Viterbi decoding algorithms with

applications. IEEE Transactions on Communi-

cations, 42(234):313–323.

Mohammad Golam Sohrab and Makoto Miwa.

2018. Deep exhaustive model for nested named

entity recognition. In Proceedings of the 2018

Conference on Empirical Methods in Natural

Language Processing, pages 2843–2849, Brus-

sels, Belgium. Association for Computational

Linguistics.

Frank K. Soong and Eng-Fong Huang. 1990. A

Tree.Trellis based fast search for finding the n

best sentence hypotheses in continuous speech

recognition. In Speech and Natural Language:

Proceedings of a Workshop Held at Hidden

Valley, Pennsylvania, June 24-27,1990.

Jana Straková, Milan Straka, and Jan Hajic.

2019, Jul. Neural architectures for nested NER

through linearization. In Proceedings of the

57th Annual Meeting of the Association for

Computational Linguistics, pages 5326–5331,

Florence, Italy. Association for Computational

Linguistics.

Emma Strubell, Patrick Verga, David Belanger,

and Andrew McCallum. 2017. Fast and

accurate entity recognition with iterated dilated

convolutions. In Proceedings of the 2017

Conference on Empirical Methods in Natural

Language Processing, pages 2670–2680,

Copenhagen, Denmark. Association for Com-

putational Linguistics.

Yuka Tateisi and Jun-ichi Tsujii. 2004. Part-of-

speech annotation of biology research abstracts.

In Proceedings of the Fourth International Con-

ference on Language Resources and Evalua-

tion (LREC’04), Lisbon, Portugal. European

Language Resources Association (ELRA).

Erik F. Tjong Kim Sang and Fien De Meulder.

2003. Introduction to the CoNLL-2003 shared

task: Language-independent named entity re-

cognition. In Proceedings of the Seventh Con-

ference on Natural Language Learning at

HLT-NAACL 2003, pages 142–147.

Bailin Wang and Wei Lu. 2018. Neural segmental

hypergraphs for overlapping mention recogni-

tion. In Proceedings of the 2018 Conference

on Empirical Methods in Natural Language

Processing, pages 204–214, Brussels, Belgium.

Association for Computational Linguistics.

Bailin Wang, Wei Lu, Yu Wang, and Hongxia

Jin. 2018. A neural transition-based model for

nested mention recognition. In Proceedings of

the 2018 Conference on Empirical Methods in

Natural LanguageProcessing, pages 1011–1017,

Brussels, Belgium. Association for Computa-

tional Linguistics.

Yefeng Wang. 2009. Annotating and recognising

named entities in clinical notes. In Proceedings

of the ACL-IJCNLP 2009 Student Research

Workshop, pages 18–26, Suntec, Singapore.

Association for Computational Linguistics.

Changmeng Zheng, Yi Cai, Jingyun Xu, Ho-fung

Leung, and Guandong Xu. 2019. A boundary-

aware neural model for nested named entity

recognition. In Proceedings of the 2019 Confer-

ence on Empirical Methods in Natural Lan-

guage Processing and the 9th International

Joint Conference on Natural Language Pro-

cessing (EMNLP-IJCNLP), pages 357–366,

Hong Kong, China. Association for Compu-

tational Linguistics.

620

	Introduction
	Method
	Usage of CRF
	Decoding
	Training
	Characteristics

	Experimental Settings
	Datasets
	Model and Training

	Experimental Results
	Comparison with Existing Methods
	Ablation Study
	Analysis of Behavior
	Error Analysis
	Running Time
	Comparison on ACE-2004
	Flat NER

	Related Work
	Conclusion

