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Abstract

Quality Estimation (QE) is an important com-

ponent in making Machine Translation (MT)

useful in real-world applications, as it is aimed

to inform the user on the quality of the MT

output at test time. Existing approaches re-

quire large amounts of expert annotated data,

computation, and time for training. As an alter-

native, we devise an unsupervised approach

to QE where no training or access to addi-

tional resources besides the MT system itself

is required. Different from most of the current

work that treats the MT system as a black box,

we explore useful information that can be ex-

tracted from the MT system as a by-product of

translation. By utilizing methods for uncer-

tainty quantification, we achieve very good

correlation with human judgments of quality,

rivaling state-of-the-art supervised QE models.

To evaluate our approach we collect the first

dataset that enables work on both black-box

and glass-box approaches to QE.

1 Introduction

With the advent of neural models, Machine Trans-

lation (MT) systems have made substantial prog-

ress, reportedly achieving near-human quality for

high-resource language pairs (Hassan et al., 2018;

Barrault et al., 2019). However, translation quality

is not consistent across language pairs, domains,

and datasets. This is problematic for low-resource

scenarios, where there is not enough training data

and translation quality significantly lags behind.

Additionally, neural MT (NMT) systems can be

deceptive to the end user as they can generate flu-

ent translations that differ in meaning from the orig-

inal (Bentivogli et al., 2016; Castilho et al., 2017).

Thus, it is crucial to have a feedback mechanism to

inform users about the trustworthiness of a given

MT output.

Quality estimation (QE) aims to predict the

quality of the output provided by an MT system at

test time when no gold-standard human translation

is available. State-of-the-art (SOTA) QE models

require large amounts of parallel data for pre-

training and in-domain translations annotated with

quality labels for training (Kim et al., 2017a;

Fonseca et al., 2019). However, such large collec-

tions of data are only available for a small set of

languages in limited domains.

Current work on QE typically treats the MT

system as a black box. In this paper we propose an

alternative glass-box approach to QE that allows

us to address the task as an unsupervised prob-

lem. We posit that encoder-decoder NMT models

(Sutskever et al., 2014; Bahdanau et al., 2015;

Vaswani et al., 2017) offer a rich source of infor-

mation for directly estimating translation quality:

(a) the output probability distribution from the

NMT system (i.e., the probabilities obtained by

applying the softmax function over the entire voca-

bulary of the target language); and (b) the attention

mechanism used during decoding. Our assumption

is that the more confident the decoder is, the higher

the quality of the translation.

While sequence-level probabilities of the top

MT hypothesis have been used for confidence esti-

mation in statistical MT (Specia et al., 2013; Blatz

et al., 2004), the output probabilities from deep

Neural Networks (NNs) are generally not well cal-

ibrated, that is, not representative of the true like-

lihood of the predictions (Nguyen and O’Connor,

2015; Guo et al., 2017; Lakshminarayanan et al.,

2017). Moreover, softmax output probabilities

tend to be overconfident and can assign a large

539

Transactions of the Association for Computational Linguistics, vol. 8, pp. 539–555, 2020. https://doi.org/10.1162/tacl a 00330

Action Editor: Stefan Riezler. Submission batch: 1/2020; Revision batch: 4/2020; Published 9/2020.
c© 2020 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

mailto:m.fomicheva@sheffield.ac.uk
mailto:f.blain,n.aletras@sheffield.ac.uk
mailto:l.specia@sheffield.ac.uk
mailto:ssun32@jhu.edu
mailto:lisa.yankovskaya@ut.ee
mailto:fishel@ut.ee
mailto:fguzman@fb.com
mailto:vishrav@fb.com
https://doi.org/10.1162/tacl_a_00330


probability mass to predictions that are far from the

training data (Gal and Ghahramani, 2016). To

overcome such deficiencies, we propose ways to

exploit output distributions beyond the top-1 pre-

diction by exploring uncertainty quantification

methods for better probability estimates (Gal

and Ghahramani, 2016; Lakshminarayanan et al.,

2017). In our experiments, we account for different

factors that can affect the reliability of model prob-

ability estimates in NNs, such as model architec-

ture, training, and search (Guo et al., 2017).

In addition, we study attention mechanism as

another source of information on NMT quality.

Attention can be interpreted as a soft alignment,

providing an indication of the strength of relation-

ship between source and target words (Bahdanau

et al., 2015). Although this interpretation is straight-

forward for NMT based on Recurrent Neural

Networks (RNN) (Rikters and Fishel, 2017), its

application to current SOTA Transformer models

with multihead attention (Vaswani et al., 2017)

is challenging. We analyze to what extent mean-

ingful information on translation quality can be

extracted from multihead attention.

To evaluate our approach in challenging sett-

ings, we collect a new dataset for QE with 6 lan-

guage pairs representing NMT training in high,

medium, and low-resource scenarios. To reduce

the chance of overfitting to particular domains, our

dataset is constructed from Wikipedia documents.

We annotate 10K segments per language pair. By

contrast to the vast majority of work on QE that

uses semi-automatic metrics based on post-editing

distance as gold standard, we perform quality

labeling based on the Direct Assessment (DA)

methodology (Graham et al., 2015b), which has

been widely used for popular MT evaluation cam-

paigns in the recent years. At the same time, the

collected data differs from the existing datasets

annotated with DA judgments for the well known

WMT Metrics task1 in two important ways: We

provide enough data to train supervised QE models

and access to the NMT systems used to generate

the translations, thus allowing for further explo-

ration of the glass-box unsupervised approach to

QE for NMT introduced in this paper.

Our main contributions can be summarized as

follows: (i) A new, large-scale dataset for sentence-

1http://www.statmt.org/wmt19/metrics-

task.html.

level2 QE annotated with DA rather than post-edit

ing metrics (§4); (ii) A set of unsupervised quality

indicators that can be produced as a by-product of

NMT decoding and a thorough evaluation of how

they correlate with human judgments of translation

quality (§3 and §5); (iii) The first attempt at

analysing the attention distribution for the pur-

poses of unsupervised QE in Transformer models

(§3 and §5); and (iv) The analysis on how model

confidence relates to translation quality for diff-

erent NMT systems (§6). Our experiments show

that unsupervised QE indicators obtained from

well-calibrated NMT model probabilities rival

strong supervised SOTA models in terms of corre-

lation with human judgments.

2 Related Work

QE QE is typically addressed as a supervised

machine learning task where the goal is to predict

MT quality in the absence of reference translation.

Traditional feature-based approaches relied on

manually designed features, extracted from the

MT system (glass-box features) or obtained from

the source and translated sentences, as well as

external resources, such as monolingual or parallel

corpora (black-box features) (Specia et al., 2009).

Currently, the best performing approaches to

QE use NNs to learn useful representations for

source and target sentences (Kim et al., 2017b;

Wang et al., 2018; Kepler et al., 2019a). A notable

example is the Predictor-Estimator (PredEst) mo-

del (Kim et al., 2017b), which consists of an

encoder-decoder RNN (predictor) trained on par-

allel data for a word prediction task and a

unidirectional RNN (estimator) that produces

quality estimates leveraging the context represen-

tations generated by the predictor. Despite achiev-

ing strong performances, neural-based approaches

are resource-heavy and require a significant

amount of in-domain labeled data for training.

They do not use any internal information from the

MT system.

Existing work on glass-box QE is limited to

features extracted from statistical MT, such as

language model probabilities or number of hypo-

theses in the n-best list (Blatz et al., 2004; Specia

et al., 2013). The few approaches for unsupervised

QE are also inspired by the work on statistical MT

2While the paper covers QE at sentence level, the exten-

sion of our unsupervised metrics to word-level QE would be

straightforward and we leave it for future work.
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and perform significantly worse than supervised

approaches (Popović, 2012; Moreau and Vogel,

2012; Etchegoyhen et al., 2018). For example,

Etchegoyhen et al. (2018) use lexical translation

probabilities from word alignment models and

language model probabilities. Their unsupervised

approach averages these features to produce the

final score. However, it is largely outperformed by

the neural-based supervised QE systems (Specia

et al., 2018).

The only works that explore internal informa-

tion from neural models as an indicator of transla-

tion quality rely on the entropy of attention weights

in RNN-based NMT systems (Rikters and Fishel,

2017; Yankovskaya et al., 2018). However,

attention-based indicators perform competitively

only when combined with other QE features in a

supervised framework. Furthermore, this approach

is not directly applicable to the SOTA Transformer

model that uses multihead attention mechanism.

Recent work on attention interpretability showed

that attention weights in Transformer networks

might not be readily interpretable (Vashishth

et al., 2019; Vig and Belinkov, 2019). Voita

et al. (2019) show that different attention heads of

Transformer have different functions and some of

them are more important than others. This makes it

challenging to extract information from attention

weights in Transformer (see §5).

To the best of our knowledge, our work is the

first on glass-box unsupervised QE for NMT that

performs competitively with respect to the SOTA

supervised systems.

QE Datasets The performance of QE systems

has been typically assessed using the semi-automatic

Human-mediated Translation Edit Rate (Snover

et al., 2006) metric as gold standard. However,

the reliability of this metric for assessing the

performance of QE systems has been shown to be

questionable (Graham et al., 2016). The current

practice in MT evaluation is the so-called Direct

Assessment (DA) of MT quality (Graham et al.,

2015b), where raters evaluate the MT on a conti-

nuous 1–100 scale. This method has been shown to

improve the reproducibility of manual evaluation

and to provide a more reliable gold standard

for automatic evaluation metrics (Graham et al.,

2015a).

DA methodology is currently used for manual

evaluation of MT quality at the WMT translation

tasks, as well as for assessing the performance of

reference-based automatic MT evaluation metrics

at the WMT Metrics Task (Bojar et al., 2016,

2017; Ma et al., 2018, 2019). Existing datasets

with sentence-level DA judgments from the WMT

Metrics Task could in principle be used for bench-

marking QE systems. However, they contain only

a few hundred segments per language pair and

thus hardly allow for training supervised systems,

as illustrated by the weak correlation results for

QE on DA judgments based on the Metrics Task

data recently reported by Fonseca et al. (2019).

Furthermore, for each language pair the data con-

tains translations from a number of MT systems

often using different architectures, and these MT

systems are not readily available, making it impos-

sible for experiments on glass-box QE. Finally,

the judgments are either crowd-sourced or col-

lected from task participants and not professional

translators, which may hinder the reliability of

the labels. We collect a new dataset for QE that

addresses these limitations (§4).

Uncertainty Quantification Uncertainty quan-

tification in NNs is typically addressed using a

Bayesian framework where the point estimates of

their weights are replaced with probability dis-

tributions (MacKay, 1992; Graves, 2011; Welling

and Teh, 2011; Tran et al., 2019). Various approxi-

mations have been developed to avoid high train-

ing costs of Bayesian NNs, such as Monte Carlo

Dropout (Gal and Ghahramani, 2016) or model

ensembling (Lakshminarayanan et al., 2017). The

performance of uncertainty quantification methods

is commonly evaluated by measuring calibration,

that is, the relation between predictive probabil-

ities and the empirical frequencies of the pre-

dicted labels, or by assessing generalization of

uncertainty under domain shift (see §6).

Only a few studies have analyzed calibration in

NMT and they came to contradictory conclusions.

Kumar and Sarawagi (2019) measure calibration

error by comparing model probabilities and

the percentage of times NMT output matches

reference translation, and conclude that NMT

probabilities are poorly calibrated. However, the

calibration error metrics they use are designed for

binary classification tasks and cannot be easily

transferred to NMT (Kuleshov and Liang, 2015).

Ott et al. (2019) analyze uncertainty in NMT

by comparing predictive probability distributions

with the empirical distribution observed in human

translation data. They conclude that NMT models
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are well calibrated. However, this approach is

limited by the fact that there are many possible

correct translations for a given sentence and only

one human translation is available in practice.

Although the goal of this paper is to devise

an unsupervised solution for the QE task, the

analysis presented here provides new insights into

calibration in NMT. Different from existing work,

we study the relation between model probabilities

and human judgments of translation correctness.

Uncertainty quantification methods have been

successfully applied to various practical tasks, for

example, neural semantic parsing (Dong et al.,

2018), hate speech classification (Miok et al., 2019),

or back-translation for NMT (Wang et al., 2019).

Wang et al. (2019), whose work is the closest

to our work, explore a small set of uncertainty-

based metrics to minimize the weight of erroneous

synthetic sentence pairs for back translation in

NMT. However, improved NMT training with

weighted synthetic data does not necessarily imply

better prediction of MT quality. In fact, metrics

that Wang et al. (2019) report to perform the best

for back-translation do not perform well for QE

(see §3.2).

3 Unsupervised QE for NMT

We assume a sequence-to-sequence NMT archi-

tecture consisting of encoder-decoder networks

using attention (Bahdanau et al., 2015). The

encoder maps the input sequence ~x = x1, . . . , xI
into a sequence of hidden states, which is summa-

rized into a single vector using attention mecha-

nism (Bahdanau et al., 2015; Vaswani et al., 2017).

Given this representation the decoder generates an

output sequence ~y = y1, . . . , yT of length T . The

probability of generating ~y is factorized as:

p(~y|~x, θ) =

T
∏

t=1

p(yt|~y<t, ~x, θ)

where θ represents model parameters. The de-

coder produces the probability distribution p(yt|
~y<t, ~x, θ) over the system vocabulary at each time

step using the softmax function. The model is

trained to minimize cross-entropy loss. We use

SOTA Transformers (Vaswani et al., 2017) for

the encoder and decoder in our experiments.

In what follows, we propose unsupervised

quality indicators based on: (i) output probability

distribution obtained either from a standard deter-

ministic NMT (§3.1) or (ii) using uncertainty

quantification (§3.2), and (iii) attention weights

(§3.3).

3.1 Exploiting the Softmax Distribution

We start by defining a simple QE measure based

on sequence-level translation probability normal-

ized by length:

TP =
1

T

T
∑

t=1

log p(yt|~y<t, ~x, θ)

However, 1-best probability estimates from the

softmax output distribution may tend towards

overconfidence, which would result in high prob-

ability for unreliable MT outputs. We propose two

metrics that exploit output probability distribution

beyond the average of top-1 predictions. First,

we compute the entropy of softmax output distri-

bution over target vocabulary of size V at each

decoding step and take an average to obtain a

sentence-level measure:

Softmax-Ent = −
1

T

T
∑

t=1

V
∑

v=1

p(yvt ) log p(y
v
t )

where p(yt) represents the conditional distribu-

tion p(yt|~x, ~y<t, θ).

If most of the probability mass is concentrated

on a few vocabulary words, the generated target

word is likely to be correct. By contrast, if softmax

probabilities approach a uniform distribution

picking any word from the vocabulary is equally

likely and the quality of the resulting translation

is expected to be low.

Second, we hypothesize that the dispersion of

probabilities of individual words might provide

useful information that is inevitably lost when

taking an average. Consider, as an illustration,

that the sequences of word probabilities [0.1,

0.9] and [0.5, 0.5] have the same mean, but

might indicate very different behavior of the NMT

system, and consequently, different output quality.

To formalize this intuition we compute the

standard deviation of word-level log-probabilities,

Sent-Std =
√

E[P2]− (E[P])2

where P = p(y1), . . . , p(yT ) represents word-

level log-probabilities for a given sentence.
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3.2 Quantifying Uncertainty

It has been argued in recent work that deep

neural networks do not properly represent

model uncertainty (Gal and Ghahramani, 2016;

Lakshminarayanan et al., 2017). Uncertainty

quantification in deep learning typically relies

on the Bayesian formalism (MacKay, 1992;

Graves, 2011; Welling and Teh, 2011; Gal and

Ghahramani, 2016; Tran et al., 2019). Bayesian

NNs learn a posterior distribution over parameters

that quantifies model or epistemic uncertainty,

i.e., our lack of knowledge as to which model

generated the training data.3 Bayesian NNs usually

come with prohibitive computational costs and

various approximations have been developed to

alleviate this. In this paper we explore the Monte

Carlo (MC) dropout (Gal and Ghahramani,

2016).

Dropout is a method introduced by Srivastava

et al. (2014) to reduce overfitting when training

neural models. It consists in randomly masking

neurons to zero based on a Bernoulli distribution.

Gal and Ghahramani (2016) use dropout at test

time before every weight layer. They perform

several forward passes through the network and

collect posterior probabilities generated by the

model with parameters perturbed by dropout.

Mean and variance of the resulting distribution can

then be used to represent model uncertainty.

We propose two flavors of MC dropout-based

measures for unsupervised QE. First, we compute

the expectation and variance for the set of sentence-

level probability estimates obtained by running N

stochastic forward passes through the MT model

with model parameters θ̂ perturbed by dropout:

D-TP =
1

N

N
∑

n=1

TP
θ̂n

D-Var = E[TP2
θ̂
]− (E[TP

θ̂
])2

where TP is sentence-level probability as defined

in §3.1. We also look at a combination of the two:

D-Combo =
(

1−
D-TP

D-Var

)

We note that these metrics have also been used

by Wang et al. (2019), but with the purpose of

3A distinction is typically made between epistemic and

aleatoric uncertainty, where the latter captures the noise

inherent to the observations (Kendall and Gal, 2017). We

leave modeling this distinction in NMT for future work.

minimizing the effect of low-quality outputs on

NMT training with back translations.

Second, we measure lexical variation between

the MT outputs generated for the same source

segment when running inference with dropout. We

posit that differences between likely MT hypo-

theses may also capture uncertainty and potential

ambiguity and complexity of the original sentence.

We compute an average similarity score (sim)

between the set H of translation hypotheses:

D-Lex-Sim =
1

C

|H|
∑

i=1

|H|
∑

j=1

sim(hi, hj)

where hi, hj ∈ H, i 6= j and C = 2−1|H|(|H|−1)
is the number of pairwise comparisons for |H|
hypotheses. We use Meteor (Denkowski and

Lavie, 2014) to compute similarity scores.

3.3 Attention

Attention weights represent the strength of con-

nection between source and target tokens, which

may be indicative of translation quality (Rikters

and Fishel, 2017). One way to measure it is to

compute the entropy of the attention distribution:

Att-Ent = −
1

I

I
∑

i=1

J
∑

j=1

αji logαji

where α represents attention weights, I is the

number of target tokens and J is the number of

source tokens.

This mechanism can be applied to any NMT

model with encoder-decoder attention. We focus

on attention in Transformer models, as it is

currently the most widely used NMT architecture.

Transformers rely on various types of attention,

multiple attention heads, and multiple encoder

and decoder layers. Encoder-decoder attention

weights are computed for each head (H) and

for each layer (L) of the decoder, as a result we

get [H × L] matrices with attention weights. It is

not clear which combination would give the best

results for QE. To summarize the information from

different heads and layers, we propose to compute

the entropy scores for each possible head/layer

combination and then choose the minimum value

or compute the average:

AW:Ent-Min = min{hl}(Att-Enthl)

AW:Ent-Avg =
1

H × L

H
∑

h=1

L
∑

l=1

Att-Enthl
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4 Multilingual Dataset for QE

The quality of NMT translations is strongly af-

fected by the amount of training data. To study

our unsupervised QE indicators under different

conditions, we collected data for 6 language pairs

that includes high-, medium-, and low-resource

conditions. To add diversity, we varied the direc-

tions into and out-of English, when permitted by

the availability of expert annotators into non-

English languages. Thus our dataset is composed

by the high-resource English–German (En-De)

and English–Chinese (En-Zh) pairs; by the medium-

resource Romanian–English (Ro-En) and Estonian–

English (Et-En) pairs; and by the low-resource

Sinhala–English (Si-En) and Nepali–English (Ne-

En) pairs. The dataset contains sentences extracted

from Wikipedia and the MT outputs manually

annotated for quality.

Document and Sentence Sampling We follow the

sampling process outlined in FLORES (Guzmán

et al., 2019). First, we sampled documents from

Wikipedia for English, Estonian, Romanian,

Sinhala, and Nepali. Second, we selected the top

100 documents containing the largest number of

sentences that are: (i) in the intended source

language according to a language-id classifier4

and (ii) have the length between 50 and 150

characters. In addition, we filtered out sentences

that have been released as part of recent Wikipedia

parallel corpora (Schwenk et al., 2019), ensuring

that our dataset is not part of parallel data com-

monly used for NMT training.

For every language, we randomly selected 10K

sentences from the sampled documents and then

translated them into English using the MT models

described below. For German and Chinese we

selected 20K sentences from the top 100 docu-

ments in English Wikipedia. To ensure sufficient

representation of high- and low-quality transla-

tions for high-resource language pairs, we selected

the sentences with minimal lexical overlap with

respect to the NMT training data.

NMT systems For medium- and high-resource

language pairs we trained the MT models based on

the standard Transformer architecture (Vaswani

et al., 2017) and followed the implementation

details described in Ott et al. (2018b). We used

publicly available MT datasets such as Paracrawl

(Esplà et al., 2019) and Europarl (Koehn, 2005).

4https://fasttext.cc.

Si-En and Ne-En MT systems were trained based

on Big-Transformer architecture as defined in

Vaswani et al. (2017). For the low-resource

language pairs, the models were trained following

the FLORES semi-supervised setting (Guzmán

et al., 2019),5 which involves two iterations of

backtranslation using the source and the target

monolingual data. Table 1 specifies the amount of

data used for training.

DA Judgments We followed the FLORES

setup (Guzmán et al., 2019), which presents a form

of DA (Graham et al., 2013). The annotators are

asked to rate each sentence from 0–100 according

to the perceived translation quality. Specifically,

the 0–10 range represents an incorrect translation;

11–29, a translation with few correct keywords,

but the overall meaning is different from the

source; 30–50, a translation with major mistakes;

51–69, a translation which is understandable and

conveys the overall meaning of the source but

contains typos or grammatical errors; 70–90, a

translation that closely preserves the semantics

of the source sentence; and 91–100, a perfect

translation.

Each segment was evaluated independently

by three professional translators from a single

language service provider. To improve annotation

consistency, any evaluation in which the range of

scores among the raters was above 30 points was

rejected, and an additional rater was requested to

replace the most diverging translation rating until

convergence was achieved. To further increase the

reliability of the test and development partitions

of the dataset, we requested an additional set

of three annotations from a different group of

annotators (i.e., from another language service

provider) following the same annotation protocol,

thus resulting in a total of six annotations per

segment.

Raw human scores were converted into z-

scores, that is, standardized according to each

individual annotator’s overall mean and standard

deviation. The scores collected for each segment

were averaged to obtain the final score. Such

setting allows for the fact that annotators may

genuinely disagree on some aspects of quality.

In Table 1 we show a summary of the statistics

from human annotations. Besides the NMT train-

ing corpus size and the distribution of the DA

scores for each language pair, we report mean

5https://bit.ly/36YaBlU.
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scores diff

Pair size avg p25 median p75 avg std

High-resource En-De 23.7M 84.8 80.7 88.7 92.7 13.7 8.2

En-Zh 22.6M 67.0 58.7 70.7 79.0 12.1 6.4

Mid-resource Ro-En 3.9M 68.8 50.1 76.0 92.3 10.7 6.7

Et-En 880K 64.4 40.5 72.0 89.3 13.8 9.4

Low-resource Si-En 647K 51.4 26.0 51.3 77.7 13.4 8.7

Ne-En 564K 37.7 23.3 33.7 49.0 11.5 5.9

Table 1: Multilingual QE dataset. Size of the NMT training corpus (size) and

summary statistics for the raw DA scores (average, 25th percentile, median, and

75th percentile). As an indicator of annotators’ consistency, the last two columns

show the mean (avg) and standard deviation (std) of the absolute differences

(diff) between the scores assigned by different annotators to the same segment.

and standard deviation of the average differences

between the scores assigned by different annota-

tors to each segment, as an indicator of annotation

consistency. First, we observe that, as expected,

the amount of training data per language pair

correlates with the average quality of an NMT

system. Second, we note that the distribution

of human scores changes substantially across

language pairs. In particular, we see very little

variability in quality for En-De, which makes QE

for this language pair especially challenging (see

§5). Finally, as shown in the right-most columns,

annotation consistency is similar across language

pairs and comparable to existing work that follows

DA methodology for data collection. For example,

Graham et al. (2013) report an average difference

of 25 across annotators’ scores.

Data Splits To enable comparison between

supervised and unsupervised approaches to QE,

we split the data into 7K training partition, 1K

development set, and two test sets of 1K sentences

each. One of these test sets is used for the experi-

ments in this paper, the other is kept blind for

future work.

Additional Data To support our discussion of

the effect of NMT training on the correlation

between predictive probabilities and perceived

translation quality presented in §6, we trained var-

ious alternative NMT system variants, translated

and annotated 400 original Estonian sentences

from our test set with each system variant.

The data, the NMT models, and the DA

judgments are available at https://github.

com/facebookresearch/mlqe.

5 Experiments and Results

Below we analyze how our unsupervised QE

indicators correlate with human judgments.

5.1 Settings

Benchmark Supervised QE Systems We com-

pare the performance of the proposed unsuper-

vised QE indicators against the best performing

supervised approaches with available open-source

implementation, namely, the Predictor-Estimator

(PredEst) architecture (Kim et al., 2017b) provided

by OpenKiwi toolkit (Kepler et al., 2019b), and an

improved version of the BiRNN model provided

by DeepQuest toolkit (Ive et al., 2018), which we

refer to as BERT-BiRNN (Blain et al., 2020).

PredEst. We trained PredEst models (see §2)

using the same parameters as in the default

configurations provided by Kepler et al. (2019b).

Predictor models were trained for 6 epochs on the

same training and development data as the NMT

systems, while the Estimator models were trained

for 10 epochs on the training and development sets

of our dataset (see §4). Unlike Kepler et al.

(2019b), the Estimator was not trained using

multitask learning, as our dataset currently does

not contain any word-level annotation. We use

the model corresponding to the best epoch as

identified by the metric of reference on the

development set: perplexity for the Predictor and

Pearson correlation for the Estimator.

BERT-BiRNN. This model, similarly to the

recent SOTA QE systems (Kepler et al., 2019a),

uses a large-scale pre-trained BERT model to

obtain token-level representations that are then
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fed into two independent bidirectional RNNs to

encode both the source sentence and its trans-

lation independently. The two resulting sentence

representations are then concatenated as a weighted

sum of their word vectors, using an attention

mechanism. The final sentence-level representa-

tion is then fed to a sigmoid layer to produce the

sentence-level quality estimates. During training,

BERT was fine-tuned by unfreezing the weights

of the last four layers along with the embedding

layer. We used early stopping based on Pearson

correlation on the development set, with a patience

of 5.

Unsupervised QE For the dropout-based indi-

cators (see §3.2), we use dropout rate of 0.3, the

same as for training the NMT models (see §4). We

perform N = 30 inference passes to obtain the

posterior probability distribution. N was chosen

following the experiments in related work (Dong

et al., 2018; Wang et al., 2019). However, we

note that increasing N beyond 10 results in very

small improvements on the development set. The

implementation of stochastic decoding with MC

dropout is available as part of the fairseq toolkit

(Ott et al., 2019) at https://github.com/

pytorch/fairseq.

5.2 Correlation with Human Judgments

Table 2 shows Pearson correlation with DA for

our unsupervised QE indicators and for the super-

vised QE systems. Unsupervised QE indicators are

grouped as follows: Group I corresponds to the

measurements obtained with standard decoding

(§3.1); Group II contains indicators computed

using MC dropout (§3.2); and Group III contains

the results for attention-based indicators (§3.3).

Group IV corresponds to the supervised QE

models presented in §5.1. We use the Hotelling-

Williams test to compute significance of the differ-

ence between dependent correlations (Williams,

1959) with p-value < 0.05. For each language

pair, results that are not significantly outperformed

by any method are marked in bold; results that

are not significantly outperformed by any other

method from the same group are underlined.

We observe that the simplest measure that can

be extracted from NMT, sequence-level probab-

ility (TP), already performs competitively, in

particular for the medium-resource language

pairs. TP is consistently outperformed by D-TP,

indicating that NMT output probabilities are not

well calibrated. This confirms our hypothesis that

estimating model uncertainty improves correlation

with perceived translation quality. Furthermore,

our approach performs competitively with strong

supervised QE models. Dropout-based indicators

significantly outperform PredEst and rival BERT-

BiRNN for four language pairs.6 These results

position the proposed unsupervised QE methods

as an attractive alternative to the supervised

approach in the scenario where the NMT model

used to generate the translations can be accessed.

For both unsupervised and supervised methods

performance varies considerably across language

pairs. The highest correlation is achieved for the

medium-resource languages, whereas for high-

resource language pairs it is drastically lower.

The main reason for this difference is a lower

variability in translation quality for high-resource

language pairs. Figure 2 shows scatter plots for

Ro-En, which has the best correlation results,

and En-De with the lowest correlation for all

quality indicators. Ro-En has a substantial number

of high-quality sentences, but the rest of the

translations are uniformly distributed across the

quality range. The distribution for En-De is highly

skewed, as the vast majority of the translations are

of high quality. In this case capturing meaningful

variation appears to be more challenging, as the

differences reflected by the DA may be more

subtle than any of the QE methods is able to

reveal.

The reason for a lower correlation for Sinhala

and Nepalese is different. For unsupervised indi-

cators it can be due to the difference in model

capacity7 and the amount of training data. On the

one hand, increasing depth and width of the model

may negatively affect calibration (Guo et al.,

2017). On the other hand, due to the small amount

of training data the model can overfit, resulting in

inferior results both in terms of translation quality

and correlation. It is noteworthy, however, that

supervised QE system suffers a larger drop in

performance than unsupervised indicators, as its

6We note that PredEst models are systematically and

significantly outperformed by BERT-BiRNN. This is not

surprising, as large-scale pretrained representations have been

shown to boost model performance for QE (Kepler et al.,

2019a) and other natural language processing tasks (Devlin

et al., 2019).
7Models for these languages were trained using

Transformer-Big architecture from Vaswani et al. (2017).
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Low-resource Mid-resource High-resource

Method Si-En Ne-En Et-En Ro-En En-De En-Zh

I TP 0.399 0.482 0.486 0.647 0.208 0.257

Softmax-Ent (-) 0.457 0.528 0.421 0.613 0.147 0.251

Sent-Std (-) 0.418 0.472 0.471 0.595 0.264 0.301

II D-TP 0.460 0.558 0.642 0.693 0.259 0.321

D-Var (-) 0.307 0.299 0.356 0.332 0.164 0.232

D-Combo (-) 0.286 0.418 0.475 0.383 0.189 0.225

D-Lex-Sim 0.513 0.600 0.612 0.669 0.172 0.313

III AW : Ent-Min (-) 0.097 0.265 0.329 0.524 0.000 0.067

AW : Ent-Avg (-) 0.10 0.205 0.377 0.382 0.090 0.112

AW : best head/layer (-) 0.255 0.381 0.416 0.636 0.241 0.168

IV PredEst 0.374 0.386 0.477 0.685 0.145 0.190

BERT-BiRNN 0.473 0.546 0.635 0.763 0.273 0.371

Table 2: Pearson (r) correlation between unsupervised QE indicators and human DA

judgments. Results that are not significantly outperformed by any method are marked

in bold; results that are not significantly outperformed by any other method from the

same group are underlined.

Figure 1: Token-level probabilities of high-quality (left) and low-quality (right) Et-En translations.

predictor component requires large amounts of

parallel data for training. We suggest, therefore,

that unsupervised QE is more stable in low-

resource scenarios than supervised approaches.

We now look in more detail at the three groups

of unsupervised measurements in Table 2.

Group I Average entropy of the softmax output

(Softmax-Ent) and dispersion of the values of

token-level probabilities (Sent-Std) achieve a

significantly higher correlation than TP metric

for four language pairs. Softmax-Ent captures

uncertainty of the output probability distribution,

which appears to be a more accurate reflection of

the overall translation quality. Sent-Std captures a

pattern in the sequence of token-level probabilities

that helps detect low-quality translation illustrated

in Figure 1. Figure 1 shows two Et-En translations

that have drastically different absolute DA scores

of 62 and 1, but the difference in their sentence-

level log-probability is negligible: −0.50 and

−0.48 for the first and second translations,

respectively. By contrast, the sequences of token-

level probabilities are very different, as the

second sentence has larger variation in the log-

probabilities for adjacent words, with very high

probabilities for high-frequency function words

and low probabilities for content words.

Group II The best results are achieved by

the D-Lex-Sim and D-TP metrics. Interestingly,

D-Var has a much lower correlation, because
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L
o

w
Q

u
al

it
y

Original Tanganjikast püütakse niiluse ahvenat ja kapentat.

Reference Nile perch and kapenta are fished from Lake Tanganyika.

MT Output There is a silver thread and candle from Tanzeri.

Dropout There will be a silver thread and a penny from Tanzer.

There is an attempt at a silver greed and a carpenter from Tanzeri.

There will be a silver bullet and a candle from Tanzer.

The puzzle is being caught in the chicken’s gavel and the coffin.

H
ig

h
Q

u
al

it
y

Original Siis aga võib tekkida seesmise ja välise vaate vahele lõhe.

Reference This could however lead to a split between the inner and outer view.

MT Output Then there may be a split between internal and external viewpoints.

Dropout Then, however, there may be a split between internal and external viewpoints.

Then, however, there may be a gap between internal and external viewpoints.

Then there may be a split between internal and external viewpoints.

Then there may be a split between internal and external viewpoints.

Table 3: Example of MC dropout for a low-quality (top) and a high-quality (bottom) MT outputs.

by only capturing variance it ignores the actual

probability estimate assigned by the model to the

given output.8

Table 3 provides an illustration of how model

uncertainty captured by MC dropout reflects the

quality of MT output. The first example contains

a low quality translation, with a high variability

in MT hypotheses obtained with MC dropout. By

contrast, MC dropout hypotheses for the second

high-quality example are very similar and, in

fact, constitute valid linguistic paraphrases of

each other. This fact is directly exploited by the

D-Lex-Sim metric that measures the variability

between MT hypotheses generated with perturbed

model parameters and performs on pair with

D-TP. Besides capturing model uncertainty,

D-Lex-Sim reflects the potential complexity of

the source segments, as the number of different

possible translations of the sentences is an indi-

cator of their inherent ambiguity.9

Group III While our attention-based metrics

also achieve a sensible correlation with human

judgments, it is considerably lower than the rest

of the unsupervised indicators. Attention may not

provide enough information to be used as a quality

indicator of its own, since there is no direct

8This is in contrast with the work by Wang et al. (2019)

where D-Var appears to be one of the best performing metric

for NMT training with back-translation demonstrating an

essential difference between this task and QE.
9Note that D-Lex-Sim involves generating N additional

translation hypotheses, whereas the D-TP only requires

re-scoring an existing translation output and is thus less

expensive in terms of time.

Figure 2: Scatter plots for the correlation between D-TP

(x-axis) and standardized DA scores (y-axis) for Ro-En

(top) and En-De (bottom).

mapping between words in different languages,

and, therefore, high entropy in attention weights

does not necessarily indicate low translation

quality. We leave experiments with combined

attention and probability-based measures to future

work.

The use of multihead attention with multiple

layers in Transformer may also negatively affect
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the results. As shown by Voita et al. (2019),

different attention heads are responsible for diffe-

rent functions. Therefore, combining the informa-

tion coming from different heads and layers in a

simple way may not be an optimal solution. To

test whether this is the case, we computed atten-

tion entropy and its correlation with DA for all

possible combinations of heads and layers. As

shown in Table 2, the best head/layer combina-

tion (AW : best head/layer) indeed significantly

outperforms other attention-based measurements

for all language pairs suggesting that this method

should be preferred over simple averaging. Using

the best head/layer combination for QE is limited

by the fact that it requires validation on a dataset

annotated with DA and thus is not fully unsuper-

vised. This outcome opens an interesting direction

for further experiments to automatically discover

the best possible head/layer combination.

6 Discussion

In the previous section we studied the performance

of our unsupervised quality indicators for different

language pairs. In this section we validate our

results by looking at two additional factors:

domain shift and underlying NMT system.

6.1 Domain Shift

One way to evaluate how well a model represents

uncertainty is to measure the difference in model

confidence under domain shift (Hendrycks and

Gimpel, 2016; Lakshminarayanan et al., 2017;

Snoek et al., 2019). A well-calibrated model

should produce low confidence estimates when

tested on data points that are far away from the

training data.

Overconfident predictions on out-of-domain

sentences would undermine the benefits of

unsupervised QE for NMT. This is particularly

relevant given the current wide use of NMT for

translating mixed domain data online. Therefore,

we conduct a small experiment to compare model

confidence on in-domain and out-of-domain data.

We focus on the Et-En language pair. We use

the test partition of the MT training dataset as

our in-domain sample. To generate the out-of-

domain sample, we sort our Wikipedia data (prior

to sentence sampling stage in §4) by distance to the

training data and select the top 500 segments with

the largest distance score. To compute distance

scores we follow the strategy of Niehues and Pham

(2019) that measures the test/training data distance

based on the hidden states of NMT encoder.

We compute model posterior probabilities for

the translations of the in-domain and out-of-

domain sample either obtained through standard

decoding, or using MC dropout. TP obtains

average values of −0.440 and −0.445 for in-

domain and out-of-domain data, respectively,

whereas for D-TP these values are −0.592 and

−0.685. The difference between in-domain and

out-of-domain confidence estimates obtained by

standard decoding is negligible. The difference

between MC-dropout average probabilities for in-

domain vs. out-of-domain samples was found to be

statistically significant under Student’s t-test, with

p-value < 0.01. Thus, expectation over predictive

probabilities with MC dropout indeed provides a

better estimation of model uncertainty for NMT,

and therefore can improve the robustness of

unsupervised QE on out-of-domain data.

6.2 NMT Calibration across NMT Systems

Findings in the previous section suggest that

using model probabilities results in fairly high

correlation with human judgments for various

language pairs. In this section we study how

well these findings generalize to different NMT

systems. The list of model variants that we

explore is by no means exhaustive and was

motivated by common practices in MT and by the

factors that can negatively affect model calibration

(number of training epochs) or help represent

uncertainty (model ensembling). For this small-

scale experiment we focus on Et-En. For each

system variant we translated 400 sentences from

the test partition of our dataset and collected the

DA accordingly. As baseline, we use a standard

Transformer model with beam search decoding.

All system variants are trained using Fairseq

implementation (Ott et al., 2019) for 30 epochs,

with the best checkpoint chosen according to the

validation loss.

First, we consider three system variants with

differences in architecture or training: RNN-based

NMT (Bahdanau et al., 2015; Luong et al., 2015),

Mixture of Experts (MoE, He et al., 2018; Shen

et al., 2019; Cho et al., 2019), and model ensemble

(Garmash and Monz, 2016).

Shen et al. (2019) use the MoE framework to

capture the inherent uncertainty of the MT task

where the same input sentence can have multiple
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Method r DA

TP-Beam 0.482 58.88

TP-Sampling 0.533 42.02

TP-Diverse beam 0.424 55.12

TP-RNN 0.502 43.63

TP-Ensemble 0.538 61.19

TP-MoE 0.449 51.20

D-TP 0.526 58.88

Table 4: Pearson correlation (r) between

sequence-level output probabilities (TP) and

average DA for translations generated by

different NMT systems.

correct translations. A mixture model introduces a

multinomial latent variable to control generation

and produce a diverse set of MT hypotheses. In

our experiment we use hard mixture model with

uniform prior and 5 mixture components. To

produce the translations we generate from a ran-

domly chosen component with standard beam

search. To obtain the probability estimates we ave-

rage the probabilities from all mixture components.

Previous work has used model ensembling as

a strategy for representing model uncertainty

(Lakshminarayanan et al., 2017; Pearce et al.,

2018).10 In NMT, ensembling has been used to

improve translation quality. We train four Trans-

former models initialized with different random

seeds. At decoding time predictive distributions

from different models are combined by averaging.

Second, we consider two alternatives to beam

search: diverse beam search (Vijayakumar et al.,

2016) and sampling. For sampling, we generate

translations one token at a time by sampling from

the model conditional distribution p(yj|~y<j, ~x, θ),
until the end of sequence symbol is generated. For

comparison, we also compute the D-TP metric for

the standard Transformer model on the subset of

400 segments considered for this experiment.

Table 4 shows the results. Interestingly, the

correlation between output probabilities and DA

is not necessarily related to the quality of MT

outputs. For example, sampling produces much

higher correlation although the quality is much

10Note that MC dropout discussed in §3.2 can be interpreted

as an ensemble model combination where the predictions are

averaged over an ensemble of NNs (Lakshminarayanan et al.,

2017).

Figure 3: Pearson correlation between translation

quality and model probabilities (orange), and Meteor

(blue) over training epochs.

lower. This is in line with previous work that

indicates that sampling results in better calibrated

probability distribution than beam search (Ott et al.,

2018a). System variants that promote diversity in

NMT outputs (diverse beam search and MoE) do

not achieve any improvement in correlation over

standard Transformer model.

The best results both in quality and QE are

achieved by ensembling, which provides addi-

tional evidence that better uncertainty quantifica-

tion in NMT improves correlation with human

judgments. MC dropout achieves very similar

results. We recommend using either of these two

methods for NMT systems with unsupervised QE.

6.3 NMT Calibration across

Training Epochs

The final question we address is how the corre-

lation between translation probabilities and trans-

lation quality is affected by the amount of training.

We train our base Et-En Transformer system for

60 epochs. We generate and evaluate translations

after each epoch. We use the test partition of the

MT training set and assess translation quality

with Meteor evaluation metric. Figure 3 shows

the average Meteor scores (blue) and Pearson cor-

relation (orange) between segment-level Meteor

scores and translation probabilities from the MT

system for each epoch.

Interestingly, as the training continues test

quality stabilizes whereas the relation between

model probabilities and translation quality is

deteriorated. During training, after the model is
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able to correctly classify most of the training

examples, the loss can be further minimized by

increasing the confidenceof predictions (Guo et al.,

2017). Thus longer training does not affect output

quality but damages calibration.

7 Conclusions

We have devised an unsupervised approach to QE

where no training or access to any additional

resources besides the MT system is required.

Besides exploiting softmax output probability

distribution and the entropy of attention weights

from the NMT model, we leverage uncertainty

quantification for unsupervised QE. We show

that, if carefully designed, the indicators extracted

from the NMT system constitute a rich source

of information, competitive with supervised QE

methods.

We analyzed how different MT architectures

and training settings affect the relation between

predictive probabilities and translation quality. We

showed that improved translation quality does not

necessarily imply a stronger correlation between

translation quality and predictive probabilities.

Model ensemble have been shown to achieve

optimal results both in terms of translation

quality and when using output probabilities as

an unsupervised quality indicator.

Finally, we created a new multilingual dataset

for QE covering various scenarios for MT dev-

elopment including low- and high-resource lan-

guage pairs. Both the dataset and the MT models

needed to reproduce the results of our experi-

ments are available athttps://github.com/

facebookresearch/mlqe.

This work can be extended in many directions.

First, our sentence-level unsupervised metrics

could be adapted for QE at other levels (word,

phrase, and document). Second, the proposed

metrics can be combined as features in supervised

QE approaches. Finally, other methods for

uncertainty quantification, as well as other types

of uncertainty, can be explored.
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Daniela Zaharie, and Marko Robnik-Šikonja.
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De Souza, and Trevor Cohn. 2013. QuEst-A

Translation Quality Estimation Framework. In

Proceedings of the 51st Annual Meeting of

the Association for Computational Linguistics:

System Demonstrations, pages 79–84.

Lucia Specia, Marco Turchi, Nicola Cancedda,

Marc Dymetman, and Nello Cristianini.

2009. Estimating the sentence-level quality

of machine translation systems. In 13th

Conference of the European Association for

Machine Translation, pages 28–37.

Nitish Srivastava, Geoffrey Hinton, Alex

Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: a simple way

to prevent neural networks from overfitting.

The Journal of Machine Learning Research,

15(1):1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le.

2014. Sequence to sequence learning with neu-

ral networks. In Advances in Neural Informa-

tion Processing Systems, pages 3104–3112.

Dustin Tran, Mike Dusenberry, Mark van der

Wilk, and Danijar Hafner. 2019. Bayesian layers:

A module for neural network uncertainty. In

Advances in Neural Information Processing

Systems, pages 14633–14645.

Shikhar Vashishth, Shyam Upadhyay, Gaurav

Singh Tomar, and Manaal Faruqui. 2019.

Attention interpretability across NLP tasks.

arXiv preprint arXiv:1909.11218.

Ashish Vaswani, Noam Shazeer, Niki Parmar,

Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Łukasz Kaiser, and Illia Polosukhin. 2017.

Attention is all you need. In Advances in

Neural Information Processing Systems,

pages 5998–6008.

Jesse Vig and Yonatan Belinkov. 2019. Analyzing

the structure of attention in a transformer

language model. In Proceedings of the

2019 ACL Workshop BlackboxNLP: Analyzing

and Interpreting Neural Networks for NLP,

pages 63–76.

Ashwin K. Vijayakumar, Michael Cogswell,

Ramprasath R. Selvaraju, Qing Sun, Stefan Lee,

David Crandall, and Dhruv Batra. 2016. Di-

verse beam search: Decoding diverse solutions

from neural sequence models. arXiv preprint

arXiv:1610.02424.

Elena Voita, David Talbot, Fedor Moiseev, Rico

Sennrich, and Ivan Titov. 2019. Analyzing

multi-head self-attention: Specialized heads do

the heavy lifting, the rest can be pruned. In

Proceedings of the 57th Annual Meeting of

the Association for Computational Linguistics,

pages 5797–5808, Florence, Italy. Association

for Computational Linguistics.

Jiayi Wang, Kai Fan, Bo Li, Fengming

Zhou, Boxing Chen, Yangbin Shi, and Luo

Si. 2018. Alibaba submission for WMT18

quality estimation task. In Proceedings of the

Third Conference on Machine Translation:

Shared Task Papers, pages 809–815, Belgium,

Brussels. Association for Computational Lin-

guistics.

Shuo Wang, Yang Liu, Chao Wang, Huanbo Luan,

and Maosong Sun. 2019. Improving back-

translation with uncertainty-based confidence

estimation. In Proceedings of the 2019

Conference on Empirical Methods in Natural

Language Processing and the 9th International

Joint Conference on Natural Language

Processing, pages 791–802.

Max Welling and Yee W. Teh. 2011. Bayesian

learning via stochastic gradient langevin dy-

namics. In Proceedings of the 28th Inter-

national Conference on Machine Learning

(ICML-11), pages 681–688.

Evan James Williams. 1959. Regression Analysis,

14, Wiley, New York.

Elizaveta Yankovskaya, Andre Tattar, and

Mark Fishel. 2018. Quality estimation with

force-decoded attention and cross-lingual em-

beddings. In Proceedings of the Third Con-

ference on Machine Translation, Volume 2:

Shared Tasks Papers. Brussels, Belgium.

555


	Introduction
	Related Work
	Unsupervised QE for NMT
	Exploiting the Softmax Distribution
	Quantifying Uncertainty
	Attention

	Multilingual Dataset for QE
	Experiments and Results
	Settings
	Correlation with Human Judgments

	Discussion
	Domain Shift
	NMT Calibration across NMT Systems
	NMT Calibration across  Training Epochs

	Conclusions

