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Abstract

Different metrics have been proposed to com-

pare Abstract Meaning Representation (AMR)

graphs. The canonical SMATCH metric (Cai

and Knight, 2013) aligns the variables of two

graphs and assesses triple matches. The recent

SEMBLEU metric (Song and Gildea, 2019) is

based on the machine-translation metric BLEU

(Papineni et al., 2002) and increases compu-

tational efficiency by ablating the variable-

alignment. In this paper, i) we establish criteria

that enable researchers to perform a principled

assessment of metrics comparing meaning rep-

resentations like AMR; ii) we undertake a

thorough analysis of SMATCH and SEMBLEU

where we show that the latter exhibits some

undesirable properties. For example, it does

not conform to the identity of indiscernibles

rule and introduces biases that are hard to

control; and iii) we propose a novel metric

S2
MATCH that is more benevolent to only

very slight meaning deviations and targets the

fulfilment of all established criteria. We assess

its suitability and show its advantages over

SMATCH and SEMBLEU.

1 Introduction

Proposed in 2013, the aim of Abstract Meaning

Representation (AMR) is to represent a sentence’s

meaning in a machine-readable graph format

(Banarescu et al., 2013). AMR graphs are rooted,

acyclic, directed, and edge-labeled. Entities, events,

properties, and states are represented as variables

that are linked to corresponding concepts (encoded

as leaf nodes) via is-instance relations (cf. Figure 1,

left). This structure allows us to capture complex

linguistic phenomena such as coreference, seman-

tic roles, or polarity.

When measuring the similarity between two

AMR graphs A and B, for instance for the pur-

pose of AMR parse quality evaluation, the metric

of choice is usually SMATCH (Cai and Knight,

2013). Its backbone is an alignment-search be-

tween the graphs’ variables. Recently, the SEMBLEU

metric (Song and Gildea, 2019) has been proposed

that operates on the basis of a variable-free AMR

(Figure 1, right),1 converting it to a bag of k-grams.

Circumventing a variable alignment search redu-

ces computational cost and ensures full determi-

nacy. Also, grounding the metric in BLEU (Papineni

et al., 2002) has a certain appeal, since BLEU is

quite popular in machine translation.

However, we find that we are lacking a

principled in-depth comparison of the properties of

different AMR metrics that would help informing

researchers to answer questions such as: Which

metric should I use to assess the similarity of

two AMR graphs, e.g., in AMR parser evaluation?

What are the trade-offs when choosing one metric

over the other? Besides providing criteria for such

a principled comparison, we discuss a property

that none of the existing AMR metrics currently

satisfies: They do not measure graded meaning

differences. Such differences may emerge because

of near-synonyms such as ruin – annihilate; skinny

– thin – slim; enemy – foe (Inkpen and Hirst,

2006; Edmonds and Hirst, 2002) or paraphrases

such as be able to – can; unclear – not clear. In

a classical syntactic parsing task, metrics do not

need to address this issue because input tokens are

typically projected to lexical concepts by lemma-

tization, hence two graphs for the same sentence

tend not to disagree on the concepts projected

from the input. This is different in semantic

parsing where the projected concepts are often

more abstract.

This article is structured as follows: We first

establish seven principles that one may expect a

metric for comparing meaning representations to

1Most research papers on AMR display the graphs in this

‘‘shallow’’ form. This increases simplicity and readability.

(Lyu and Titov, 2018; Konstas et al., 2017; Zhang et al.,

2019; Damonte and Cohen, 2019; Song et al., 2016).
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Figure 1: A cat drinks water. Simplified AMR graph

and underlying deep form with is-instance relations

(----I) from variables (solid) to concepts (dashed).

satisfy, in order to obtain meaningful and appro-

priate scores for the given purpose (§2). Based on

these principles we provide an in-depth analysis

of the properties of the AMR metrics SMATCH

and SEMBLEU (§3). We then develop S2
MATCH,

an extension of SMATCH that abstracts away from

a purely symbolic level, allowing for a graded

semantic comparison of atomic graph-elements

(§4). By this move, we enable SMATCH to take into

account fine-grained meaning differences. We

show that our proposed metric retains valuable

benefits of SMATCH, but at the same time is more

benevolent to slight meaning deviations. Our

code is available online at https://github.

com/Heidelberg-NLP/amr-metric-suite.

2 From Principles to AMR Metrics

The problem of comparing AMR graphs A,B ∈
D with respect to the meaning they express

occurs in several scenarios, for example, parser

evaluation or inter-annotator agreement calcula-

tion (IAA). To measure the extent to which A
and B agree with each other, we need a metric:
D×D → R that returns a score reflecting meaning

distance or meaning similarity (for convenience,

we use similarity). Below we establish seven

principles that seem desirable for this metric.

2.1 Seven Metric Principles

The first four metric principles are mathemati-

cally motivated:

I. continuity, non-negativity and upper-bound

A similarity function should be continuous, with

two natural edge cases:A,B are equivalent (maxi-

mum similarity) or unrelated (minimum simi-

larity). By choosing 1 as upper bound, we obtain

the following constraint on metric: D × D →
[0, 1].2

II. identity of indiscernibles This focal

principle is formalized by metric(A,B) = 1 ⇔
A = B. It is violated if a metric assigns a value

indicating equivalence to inputs that are not

equivalent or if it considers equivalent inputs as

different.

III. symmetry In many cases, we want a metric

to be symmetric: metric(A,B) = metric(B,A).
A metric violates this principle if it assigns a

pair of objects different scores when argument

order is inverted. Together with principles I and

II, it extends the scope of the metric to usages

beyond parser evaluation, as it also enables sound

IAA calculation, clustering, and classification

of AMR graphs when we use the metric as a

kernel (e.g., SVM). In parser evaluation, one may

dispense with any (strong) requirements for

symmetry—however, the metric must then be

applied in a standardized way, with a fixed order

of arguments.

In cases where there is no defined reference,

the asymmetry could be handled by aggregating

metric(A,B) and metric(B,A), for example,

using the mean. However, it is open what aggre-

gation is best suited and how to interpret re-

sults, for example, for metric(A,B) = 0.1 and

metric(B,A) = 0.9.

IV. determinacy Repeated calculation over the

same inputs should yield the same score. This

principle is clearly desirable as it ensures reprodu-

cibility (a very small deviation may be tolerable).

The next three principles we believe to be

desirable specifically when comparing meaning

representation graphs such as AMR (Banarescu

et al., 2013). The first two of the following prin-

ciples are motivated by computer science and

linguistics, whereas the last one is motivated by a

linguistic and an engineering perspective.

V. no bias Meaning representations consist of

nodes and edges encoding specific information

types. Unless explicitly justified, a metric should

not unjustifiably or in unintended ways favor

correctness or penalize errors for specific substruc-

tures (e.g., leaf nodes). In case a metric favors or

penalizes certain substructures more than others,

in the interest of transparency, this should be made

clear and explicit, and should be easily verifiable

2At some places in this paper, due to conventions, we

project this score onto [0,100] and speak of points.
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and consistent. For example, if we wish to give

negation of the main predicate of a sentence a

two-times higher weight compared with negation

in an embedded sentence, we want this to be made

transparent. A concrete example for a transparent

bias is found in Cai and Lam (2019). They analyze

the impact of their novel top–down AMR parsing

strategy by integrating a root-distance bias into

SMATCH to focus on structures situated at the top

of a graph.

We now turn to properties that focus on the

nature of the objects we aim to compare: graph-

based compositional meaning representations.

These graphs consist of atomic conditions that

determine the circumstances under which a

sentence is true. Hence, our metric score should

increase with increasing overlap of A and B,

which we denote f(A,B), the number of matching

conditions. This overlap can be viewed from

a symbolic or/and a graded perspective (cf.,

e.g., Schenker et al. [2005], who denote these

perspectives as ‘‘syntactic’’ vs. ‘‘semantic’’).

From the symbolic perspective, we compare the

nodes and edges of two graphs on a symbolic

level, while from the graded perspective, we

take into account the degree to which nodes and

edges differ. Both types of matching involve a

precondition: If A and B contain variables, we

need a variable-mapping in order to match con-

ditions from A and B.3

VI. matching (graph-based) meaning repre-

sentations – symbolic match A natural symbolic

overlap-objective can be found in the Jaccard

index J (Jaccard, 1912; Real and Vargas, 1996;

Papadimitriou et al., 2010): Let t(G) be the set

of triples of graph G, f(A,B) = |t(A) ∩ t(B)|
the size of the overlap of A,B, and z(A,B) =
|t(A) ∪ t(B)| the size of their union. Then, we

wish that A and B are considered more simi-

lar to each other than A and C iff A and B
exhibit a greater relative agreement in their (sym-

bolic) conditions: metric(A,B)>metric(A,C)

⇔ f(A,B)
z(A,B) = J(A,B) > f(A,C)

z(A,C) = J(A,C). An

allowed exception to this monotonic relationship

3For example, consider graph A in Figure 1 and its

set of triples t(A): {〈x1, instance, drink-1〉〈x2, instance, cat〉,
〈x1, arg0, x2〉, 〈x1, arg1, x3〉, 〈x3, instance,water〉}. When

comparing A against graph B we need to judge whether

a triple t ∈ t(A) is also contained in B: t ∈ t(B). For

this, we need a mapping map: vars(A) → vars(B) where

vars(A) = {x1, .., xn}, vars(B) = {y1, .., ym} such that f
is maximized.

can occur if we want to take into account a

graded semantic match of atomic graph elements

or sub-structures, which we will now elaborate on.

VII. matching (graph-based) meaning repre-

sentations – graded semantic match: One

motivation for this principle can be found in

engineering, for example, when assessing the

quality of produced parts. Here, small deviations

from a reference may be tolerable within certain

limits. Similarly, two AMR graphs may match

almost perfectly—except for two small divergent

components. The extent of divergence can be

measured by the degree of similarity of the

two divergent components. In our case, we need

linguistic knowledge to judge what degree of

divergence we are dealing with and whether it is

tolerable.

For example, consider that graph A contains a

triple 〈x, instance, conceptA〉 and graph B a triple

〈y, instance, conceptB〉, while otherwise the graphs

are equivalent, and the alignment has set x =
y. Then f(A,B) should be higher when conceptA

is similar to conceptB compared to the case where

conceptA is dissimilar to conceptB. In AMR,

concepts are often abstract, so near-synonyms may

even be fully admissible (enemy–foe). Although

such (near-)synonyms are bound to occur fre-

quently when we compare AMR graphs of dif-

ferent sentences that may contain paraphrases, we

will see, in Section §4, that this can also occur

in parser evaluation, where two different graphs

represent the same sentence. By defining metric
to map to a range [0,1] we already defined it to

be globally graded. Here, we desire that graded

similarity may also hold of minimal units of AMR

graphs, such as atomic concepts or even sub-

graphs, for example, to reflect that injustice(x)
is very similar to justice(x) ∧ polarity(x,−).

2.2 AMR Metrics: SMATCH and SEMBLEU

With our seven principles for AMR similarity

metrics in place, we now introduce SMATCH and

SEMBLEU, two metrics that differ in their design

and assumptions. We describe each of them in

detail and summarize their differences, setting the

stage for our in-depth metric analysis (§3).

Align and match – SMATCH The SMATCH metric

operates in two steps. First, (i) we align the varia-

bles inA andB in the best possible way, by finding

a mapping map⋆: vars(A) → vars(B) that

yields a maximal set of matching triples between
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A and B. For example, if 〈xi, rel, xj〉 ∈ t(A)
and 〈map⋆(xi) rel,map⋆(xj)〉 = 〈yk, rel, ym〉 ∈
t(B), we obtain one triple match. (ii) We compute

Precision, Recall, and F1 score based on the set of

triples returned by the alignment search. The NP-

hard alignment search problem of step (i) is solved

with a greedy hill-climber: Let fmap(A,B) be

the count of matching triples under any mapping

function map. Then,

map⋆ = argmax
map

fmap(A,B) (1)

Multiple restarts with different seeds increase

the likelihood of finding better optima.

Simplify and match – SEMBLEU The SEMBLEU

metric in Song and Gildea (2019) can also be

described as a two-step procedure. But unlike

SMATCH it operates on a variable-free reduction

of an AMR graph G, which we denote by Gvf

(vf : variable-free, Figure 1, right-hand side).

In a first step, (i) SEMBLEU performs k-gram

extraction from Avf and Bvf in a breadth-first

traversal (path extraction). It then (ii) adopts the

BLEU score from MT (Papineni et al., 2002) to

calculate an overlap score based on the extracted

bags of k-grams:

SEMBLEU = BP · exp
(

n
∑

k=1

wk log pk

)

(2)

BP = e
min

{

1− |Bvf |
|Avf |

,0

}

(3)

where pk is BLEU’s modified k-gram precision that

measures k-gram overlap of a candidate against a

reference: pk =
|kgram(Avf )∩kgram(Bvf )|

|kgram(Avf )| . wk is the

(typically uniform) weight over chosen k-gram

sizes. SEMBLEU uses NIST geometric probability

smoothing (Chen and Cherry, 2014). The recall-

focused ‘‘brevity penalty’’ BP returns a value

smaller than 1 when the candidate length |Avf | is

smaller than the reference length |Bvf |.
The graph traversal performed in SEMBLEU

starts at the root node. During this traversal it

simplifies the graph by replacing variables with

their corresponding concepts (see Figure 1: the

node c becomes DRINK-01) and collects visited

nodes and edges in uni-, bi- and tri grams (k = 3
is recommended). Here, a source node together

with a relation and its target node counts as a

bi-gram. For the graph in Figure 1, the extracted

unigrams are {cat, water, drink-01}; the

extracted bi grams are {drink-01 arg1 cat,
drink-01arg2 water}.

SMATCH vs. SEMBLEU in a nutshell SEMBLEU

differs significantly from SMATCH. A key dif-

ference is that SEMBLEU operates on reduced

variable-free AMR graphs (Gvf )—instead of full-

fledged AMR graphs. By eliminating variables,

SEMBLEU bypasses an alignment search. This

makes the calculation faster and alleviates a

weakness of SMATCH: The hill-climbing search

is slightly imprecise. However, SEMBLEU is not

guided by aligned variables as anchors. Instead,

SEMBLEU uses an n-gram statistic (BLEU) to

compute an overlap score for graphs, based on

k-hop paths extracted from Gvf , using the root

node as the start for the extraction process.

SMATCH, by contrast, acts directly on variable-

bound graphs matching triples based on a selected

alignment. If in some application we wanted it,

both metrics allow the capturing of more ‘‘global’’

graph properties: SEMBLEU can increase its k-

parameter and SMATCH may match conjunctions

of (interconnected) triples. In the following

analysis, however, we will adhere to their default

configurations because this is how they are used

in most applications.

3 Assessing AMR Metrics with Principles

This section evaluates SMATCH and SEMBLEU

against the seven principles we established above

by asking: Why does a metric satisfy or violate a

given principle? and What does this imply? We

start with principles from mathematics.

I. Continuity, non-negativity, and upper-bound

This principle is fulfilled by both metrics as they

are functions of the formmetric : D×D → [0, 1].

II. Identity of indiscernibles This principle is

fundamental: An AMR metric must return maxi-

mum score if and only if the graphs are equivalent

in meaning. Yet, there are cases where SEMBLEU, in

contrast to SMATCH, does not satisfy this principle.

Figure 2 shows an example.

Here, SEMBLEU yields a perfect score for two

AMRs that differ in a single but crucial aspect:

Two of its ARGx roles are filled with arguments that

are meant to refer to distinct individuals that share

the same concept. The graph on the left is an ab-

straction of, for example, The man1 sees the other

man2 in the other man2, while the graph on the

right is an abstraction of The man1 sees himself 1
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Figure 2: Two AMRs with semantic roles filled

differently, SEMBLEU considers them as equivalent.

in the other man2. SEMBLEU does not recognize

the difference in meaning between a reflexive

and a non-reflexive relation, assigning maximum

similarity score, whereas SMATCH reflects such

differences appropriately because it accounts for

variables.

In sum, SEMBLEU does not satisfy principle II

because it operates on a variable-free reduction

of AMRs (Gvf ). One could address this prob-

lem by reverting to canonical AMR graphs and

adopting variable alignment in SEMBLEU. But this

would adversely affect the advertised efficiency

advantages over SMATCH. Re-integrating the align-

ment step would make SEMBLEU less efficient than

SMATCH because it would add the complexity of

breadth-first traversal, yielding a total complexity

of O(SMATCH) plus O(|V |+ |E|).

III. Symmetry This principle is fulfilled if

∀A,B ∈ D : metric(A,B) = metric(B,A).
Figure 3 shows an example where SEMBLEU does

not comply with this principle, to a significant

extent: When comparing AMR graph A against

B, it yields a score greater than 0.8, yet, when

comparing B to A the score is smaller than 0.5.

We perform an experiment that quantifies this

effect on a larger scale by assessing the frequency

and the extent of such divergences. To this

end, we parse 1,368 development sentences from

an AMR corpus (LDC2017T10) with an AMR

parser (obtaining graph bank A) and evaluate

it against another graph bank B (gold graphs or

another parser-output). We quantify the symmetry

violation by the symmetry violation ratio (Eq. 4)

and the mean symmetry violation (Eq. 5) given

some metric m:

svr =

∑|A|
i=1 I[m(Ai,Bi) 6= m(Bi,Ai)]

|A| (4)

msv =

∑|A|
i=1 |m(Ai,Bi)−m(Bi,Ai)|

|A| (5)

Figure 3: Symmetry violation for two parses of Things

are so heated between us, I don’t know what to do.

symmetry violation

svr (%, ∆>0.0001) msv (in points)

Graph banks SMATCH SEMBLEU SMATCH SEMBLEU

Gold ↔ GPLA 2.7 81.8 0.1 3.2

Gold ↔ CAMR 7.8 92.8 0.2 3.1

Gold ↔ JAMR 5.0 87.0 0.1 3.2

JAMR ↔ GPLA 4.2 86.0 0.1 3.0

CAMR ↔ GPLA 7.4 93.4 0.1 3.4

CAMR ↔ JAMR 7.9 91.6 0.2 3.3

avg. 5.8 88.8 0.1 3.2

Table 1: svr (Eq. 4), msv (Eq. 5) of AMR metrics.

BLEU symmetry violation, MT

data: newstest2018 ↔ (·) svr (%, ∆ > 0.0001) msv (in points)

worst-case 81.3 0.2

avg-case 72.7 0.2

Table 2: svr (Eq. 4), msv (Eq. 5) of BLEU, MT

setting.

We conduct the experiment with three AMR

systems, CAMR (Wang et al., 2016), GPLA (Lyu

and Titov, 2018), and JAMR (Flanigan et al.,

2014), and the gold graphs. Moreover, to provide

a baseline that allows us to better put the results

into perspective, we also estimate the symmetry

violation of BLEU (SEMBLEU’s MT ancestor) in

an MT setting. Specifically, we fetch 16 system

outputs of the WMT 2018 EN-DE metrics task

(Ma et al., 2018) and calculate BLEU(A,B) and

BLEU(B,A) of each sentence-pair (A,B) from the

MT system’s output and the reference (using the

same smoothing method as SEMBLEU). As worst-

case/avg.-case, we use the outputs from the team

where BLEU exhibits maximum/median msv.4

Table 1 shows that more than 80% of the

evaluated AMR graph pairs lead to a symmetry

violation with SEMBLEU (as opposed to less than

4worst: LMU uns.; avg.: LMU NMT (Huck et al., 2017).
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Figure 4: Symmetry evaluations of metrics. SEMBLEU (left column) and SMATCH (middle column) and BLEU as

a ‘baseline’ in an MT task setting on newstest2018. SEMBLEU: large divergence, strong outliers. SMATCH: few

divergences, few outliers; BLEU: many small divergences, zero outliers. (a) marks the case in Figure 3.

10% for SMATCH). The msv of SMATCH is consi-

derably smaller compared to SEMBLEU: 0.1 vs. 3.2

points F1 score. Even though the BLEU metric is

inherently asymmetric, most of the symmetry

violations are negligible when applied in MT (high

svr, low msv, Table 2). However, when applied

to AMR graphs ‘‘via’’ SEMBLEU the asymmetry

is amplified by a factor of approximately 16 (0.2

vs. 3.2 points). Figure 4 visualizes the symme-

try violations of SEMBLEU (left), SMATCH (middle),

and BLEU (right). The SEMBLEU-plots show that

the effect is widespread, some cases are extreme,

many others are less extreme but still considerable.

This stands in contrast to SMATCH but also to BLEU,

which itself appears well calibrated and does not

suffer from any major asymmetry.

In sum, symmetry violations with SMATCH are

much fewer and less pronounced than those

observed with SEMBLEU. In theory, SMATCH is

fully symmetric, however, violations can occur

due to alignment errors from the greedy variable-

alignment search (we discuss this issue in the next

paragraph). By contrast, the symmetry violation

of SEMBLEU is intrinsic to the method because

the underlying overlap measure BLEU is inherently

asymmetric, however, this asymmetry is amplified

in SEMBLEU compared to BLEU.5

IV. Determinacy This principle states that

repeated calculations of a metric should yield iden-

5As we show below (principle V), this is due to the way in

which k-grams are extracted from variable-free AMR graphs.

# restarts

1 2 3 5 7

corpus vs. corpus 2.6e−4 1.7e−4 8.1e−5 5.7e−5 5.6e−5

graph vs. graph 1.3e−3 1.0e−3 8.5e−4 5.3e−4 4.0e−4

Table 3: Expected determinacy error ǫ in SMATCH

F1.

tical results. Because there is no randomness in

SEMBLEU, it fully complies with this principle.

The reference implementation of SMATCH does not

fully guarantee deterministic variable alignment

results, because it aligns the variables by means of

greedy hill-climbing. However, multiple random

initializations together with the small set of AMR

variables imply that the deviation will be ≤ ǫ
(a small number close to 0).6 In Table 3 we

measure the expected ǫ: it displays the SMATCH F1

standard deviation with respect to 10 independent

runs, on a corpus level and on a graph-pair level

(arithmetic mean).7 We see that ǫ is small, even

when only one random start is performed (corpus

level: ǫ = 0.0003, graph level: ǫ = 0.0013).

We conclude that the hill-climbing in SMATCH is

unlikely to have any significant effects on the final

score.

V. No bias A similarity metric of (A)MRs

should not unjustifiably or unintentionally favor

6Additionally, ǫ = 0 is guaranteed when resorting to a

(costly) ILP calculation (Cai and Knight, 2013).
7Data: dev set of LDC2017T10, parses by GPLA.
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Figure 5: Left: In April, a woman rides a car from

Rome to Pisa. root nodes A: travel-01 vs. B: drive-01.

Right: In Apr., a sailor travels with a ship from P.

to N.

the correctness or penalize errors pertaining to

any (sub-)structures of the graphs. However, we

find that SEMBLEU is affected by a bias that affects

(some) leaf nodes attached to high-degree nodes.

The bias arises from two related factors: (i) when

transformingG to Gvf , SEMBLEU replaces variable

nodes with concept nodes. Thus, nodes that were

leaf nodes in G can be raised to highly connected

nodes in Gvf . (ii) breadth-first k-gram extraction

starts from the root node. During graph traversal,

concept leaves—now occupying the position of

(former) variable nodes with a high number of

outgoing (and incoming) edges—will be visited

and extracted more frequently than others.

The two factors in combination make SEMBLEU

penalize a wrong concept node harshly when it

is attached to a high-degree variable node (the

leaf is raised to high-degree when transforming G
to Gvf ). Conversely, correct or wrongly assigned

concepts attached to nodes with low degree are

only weakly considered.8 For example, consider

Figure 5. SEMBLEU considers two graphs that

express quite distinct meanings (left and right) as

more similar than graphs that are almost equivalent

in meaning (left, variant A vs. B). This is because

the leaf that is attached to the root is raised to a

highly connected node in Gvf and thus is over-

frequently contained in the extracted k-grams,

whereas the other leaves will remain leaves in

Gvf .

Analyzing and quantifying SEMBLEU’s bias To

better understand the bias, we study three limiting

8This may have severe consequences, e.g., for negation,

since negation always occurs as a leaf in G and Gvf .

Therefore, SEMBLEU, by-design, is benevolent to polarity

errors.

√√√

SEMBLEU O(3d) O(d2 + d) O(d2 + 2d)
SMATCH O(d) O(d) O(d)

Table 4: Error impact depending on error location

in a tree with node degree d.

Figure 6: # of k-grams entered by a node in SEMBLEU.

cases: (i) the root is wrong (√√√ ) (ii) d leaf nodes are

wrong ( ) and (iii) one branching node is wrong

( ). Depending on a specific node and its position

in the graph, we would like to know onto how

many k-grams (SEMBLEU) or triples (SMATCH) the

errors are projected. For the sake of simplicity,

we assume that the graph always comes in its

simplified form Gvf , that it is a tree, and that

every non-leaf node has the same out-degree d.

The result of our analysis is given in Table 49

and exemplified in Figure 6. Both show that the

number of times k-gram extraction visits a node

heavily depends on its position and that with

growing d, the bias gets amplified (Table 4).10

For example, when d = 3, 3 wrong leaves

yield 9 wrong k-grams, and 1 wrong branching

node can already yield 18 wrong k-grams. By

contrast, in SMATCH the weight of d leaves always

approximates the weight of 1 branching node of

degree d.

In sum, in SMATCH the impact of a wrong node

is constant for all node types and rises linearly

with d. In SEMBLEU the impact of a node rises

approximately quadratically with d and it also

depends on the node type, because it raises some

(but not all) leaves in G to connected nodes in

Gvf .

9Proof sketch, SMATCH, d leaves: d triples, a root: d triples,

a branching node: d+1 triples. SEMBLEU
wk=1/3
k=3 , d leaves: 3d

k-grams (d tri, d bi, d uni). A root: d2 tri, d bi, 1 uni. A

branching node: d2+d+1 tri, d+1 bi, 1 uni.
10Consider that in AMR, d can be quite high, e.g., a

predicate with multiple arguments and additional modifiers.

528



Eliminating biases A possible approach to

reduce SEMBLEU’s biases could be to weigh the

extracted k-gram matches according to the degree

of the contained nodes. However, this would imply

that we assume some k-grams (and thus also some

nodes and edges) to be of greater importance than

others—in other words, we would eliminate one

bias by introducing another. Because the breadth-

first traversal is the metric’s backbone, this issue

may be hard to address well. When BLEU is used

for MT evaluation, there is no such bias because

the k-grams in a sentence appear linearly.

VI. Graph matching: Symbolic perspective

This principle requires that a metric’s score grows

with increasing overlap of the conditions that are

simultaneously contained in A and B. SMATCH

fulfills this principle since it matches two AMR

graphs inexactly (Yan et al., 2016; Riesen et al.,

2010) by aligning variables such that the triple

matches are maximized. Hence, SMATCH can be

seen as a graph-matching algorithm that works

on any pair of graphs that contain (some) nodes

that are variables. It fulfills the Jaccard-based

overlap objective, which symmetrically measures

the amount of triples on which two graphs agree,

normalized by their respective sizes (since SMATCH

F1 = 2J/(1 + J) is a monotonic relation).

Because SEMBLEU does not satisfy principles

II and III (id. of indescernibles and symmetry),

it is a corollary that it cannot fulfill the overlap

objective.11 Generally, SEMBLEU does not com-

pare and match two AMR graphs per se, instead

it matches the results of a graph-to-bag-of-paths

projection function (§2.2) and the input may not

be recoverable from the output (surjective-only).

Thus, matching the outputs of this function cannot

be equated to matching the inputs on a graph-level.

4 Towards a More Semantic Metric for

Semantic Graphs: S2
MATCH

This section focuses on principle VII, semantically

graded graph matching, a principle that none of

the AMR metrics considered so far satisfies. A

11Proof by symmetry violation:

w.l.o.g. ∃A,B: metric(A,B)>metric(B,A)⇒ f(A,B)
> f(B,A) → � , since f(A,B) = |t(A) ∩ t(B)| =
|t(B) ∩ t(A)| = f(B,A) /// Proof by identity of

indiscernibles:

w.l.o.g. ∃ A,B,C: metric(A,B) = metric(A,C) = 1 ∧
f(A,B)/z(A,B) = 1 > f(A,C)/z(A,C)�

Figure 7: Three different AMR graphs representing

The cat sprints; The kitten runs; The giraffe sleeps and

pairwise similarity scores from SEMBLEU, SMATCH, and

S2MATCH (see (§4) for S2Match).

fulfilment of this principle also increases the capa-

city of a metric to assess the semantic similarity

of two AMR graphs from different sentences.

For example, when clustering AMR graphs or

detecting paraphrases in AMR-parsed texts, the

ability to abstract away from concrete lexica-

lizations is clearly desirable. Consider Figure 7,

with three different graphs. Two of them (A,B)
are similar in meaning and differ significantly

fromC . However, both SMATCH and SEMBLEU yield

the same result in the sense that metric(A,B) =
metric(A,C). Put differently, neither metric

takes into account that giraffe and kitten are two

quite different concepts, while cat and kitten are

more similar. However, we would like this to be

reflected by our metric and obtain metric (A,
B) > metric(A,C) in such a case.

S2
MATCH We propose the S2

MATCH metric (Soft

Semantic match, pronounced: [estu:mætS℄) that

builds on SMATCH but differs from it in one

important aspect: Instead of maximizing the

number of (hard) triple matches between two

graphs during alignment search, we maximize

the (soft) triple matches by taking into account

the semantic similarity of concepts. Recall that

an AMR graph contains two types of triples:

instance and relation triples (e.g., Figure 7, left:

〈a, instance, cat〉 and 〈c, arg 0, a〉). In SMATCH,

two triples can only be matched if they are

identical. In S2
MATCH, we relax this constraint,

which has also the potential to yield a different,

and possibly, a better variable alignment. More

precisely, in SMATCH we match two instance triples
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Figure 8: ‘6 Abu Sayyaf suspects were captured last

week in a raid in Metro Manila.’ gold (top) vs. parsed

AMR (bottom). SMATCH aligns criminal-organization

to city (red); S2
MATCH aligns criminal-organization to

suspect-01, city to country-region (blue).

〈a, instance, x〉 ∈ A and 〈map(a), instance, y〉 ∈
B as follows:

hardMatch = I[x = y] (6)

where I(c) equals 1 if c is true and 0 otherwise.

S2
MATCH relaxes this condition:

softMatch = 1− d(x, y), (7)

where d is an arbitrary distance function d :
X × X → [0, 1]. For example, in practice, if

we represent the concepts as vectors x, y ∈ R

n ,

we can use

d(x, y) = min

{

1, 1− yTx

‖x‖2 ‖y‖2

}

. (8)

When plugged into Eq. 7, this results in the

cosine similarity ∈ [0, 1]. It may be suitable to

set a threshold τ (e.g., τ = 0.5), to only consider

the similarity between two concepts if it is above

τ (softMatch = 0 if 1 − d(x, y) < τ ). In the

determinacy error

avg. msv (Eq. 5) 1 restart 2 restarts 4 restarts

SMATCH 0.0011 1.3e−3 1.0e−3 5.3e−4

S2
MATCH 0.0005 9.0e−4 6.1e−4 2.1e−4

relative change −54.6% −30.7% −39.0% −60.3%

Table 5: S2
MATCH improves upon SMATCH by

reducing the extent of its non-determinacy.

following pilot experiments, we use cosine (Eq. 8)

and τ = 0.5 over 100-dimensional GloVe vectors

(Pennington et al., 2014).

To summarize, S2
MATCH is designed to either

yield the same score as SMATCH—or a slightly

increased score when it aligns concepts that are

symbolically distinct but semantically similar.

An example, from parser evaluation, is shown in

Figure 8. Here, S2
MATCH increases the score to

63 F1 (+10 points) by detecting a more adequate

alignment that accounts for the graded similarity

of two related AMR concepts pairs. We believe

that this is justified: The two graphs are very

similar and an F1 of 53 is too low, doing the

parser injustice.

On a technical note, the changes in alignments

also have the outcome that S2
MATCH mends some

of SMATCH’s flaws: It better addresses principles

III and IV, reducing the symmetry violation and

determinacy error (Table 5).

Qualitative study: Probing S2
MATCH’s choices

This study randomly samples 100 graph pairs from

those where S2
MATCH assigned higher scores than

SMATCH.12 Two annotators were asked to judge the

similarity of all aligned concepts with similarity

score<1.0: Are the concepts dissimilar, similar, or

extremely similar? For concepts judged dissimilar,

we conclude that S2
MATCH erroneously increased

the score; if judged as (extremely) similar, we

conclude that the decision was justified. We

calculate three agreement statistics that all show

large consensus among our annotators (Cohen’s

kappa: 0.79, squared kappa: 0.87, Pearson’s ρ:

0.91) According to the annotations, the decision

to increase the score is mostly justified: in 56%

and 12% of cases both annotators voted that the

newly aligned concepts are extremely similar and

similar, respectively, while the agreed dissimilar

label makes up 25% of cases.

12Automatic graphs by GPLA, on LDC2017T10, dev set.
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input span region (excerpt) amr region gold (excerpt) amr region parser (excerpt) cos points F1↑ annotation

40 km southwest of :quant 40:unit ( k2 / kilometer ) ( k22 / km :unit-of (d23 / distance-quantity 0.72 1.2 ex. similar

improving agricultural prod. (i2 / improve-01 . . . :mod ( f2 / farming ) (i31 / improve-01:mod ( a23 / agriculture ) 0.73 3.0 ex. similar

other deadly bacteria op3 ( b / bacterium . . . :mod (o / other))) op3 ( b13 / bacteria :ARG0-of:mod (o12 / other))) 0.80 5.1 ex. similar

drug and law enforcement aid (a / and:op2 ( a3 / aid-01 :ARG1 (a9 / and:op1 ( d8 / drug ) :op2 (l10 / law))) 0.67 1.8 similar

Get a lawyer and get a divorce. :op1 (g / get-01:mode imp. :ARG0 ( y / you ) :op1 ( g0 / get-01 :ARG1 (l2 / lawyer):mode imp.) 0.80 4.8 dissimilar

The unusual development. ARG0 (d / develop-01:mod ( u / usual :polarity -)) :ARG0 (d1 / develop-02:mod ( u0 / unusual )) 0.60 14.0 dissimilar

Table 6: Examples where S2
MATCH assigns a higher score, accounting for the similarity of aligned concepts .

Table 6 lists examples of good or ill-founded

score increases. We observe, for example, that

S2
MATCH accounts for the similarity of two con-

cepts of different number: bacterium (gold) vs.

bacteria (parser) (line 3). It also captures abbre-

viations (km – kilometer) and closely related

concepts (farming – agriculture). SEMBLEU and

SMATCH would penalize the corresponding triples

in exactly the same way as predicting a truly

dissimilar concept.

An interesting case is seen in line 7. Here,

usual and unusual are correctly annotated as

dissimilar, since they are opposite concepts.

S2
MATCH, equipped with GloVe embeddings,

measures a cosine of 0.6, above the chosen

threshold, which results in an increase of the score

by 14 points (the increase is large as these two

graphs are tiny). It is well known that synonyms

and antonyms are difficult to distinguish with

distributional word representations, because they

often share similar contexts. However, the case

at hand is orthogonal to this problem: usual in

the gold graph is modified with the polarity ‘−’,

whereas the predicted graph assigned the (non-

negated) opposite concept unusual. Hence, given

the context in the gold graph, the prediction is

semantically almost equivalent. This points to an

aspect of principle VII that is not yet covered

by S2
MATCH: It assesses graded similarity at the

lexical, but not at the phrasal level, and hence

cannot account for compositional phenomena.

In future work, we aim to alleviate this issue

by developing extensions that measure semantic

similarity for larger graph contexts, in order to

fully satisfy all seven principles.13

Quantitative study: Metrics vs. human raters

This study investigates to what extent the judg-

ments of the three metrics under discussion resem-

ble human judgements, based on the following

two expectations. First, the more a human rates

13As we have seen, this requires much care. We therefore

consider this next step to be out of scope of the present paper.

two sentences to be semantically similar in their

meaning, the higher the metric should rate the cor-

responding AMR graphs (meaning similarity).

Second, the more a human rates two sentences

to be related in their meaning (maximum: equi-

valence), the higher the score of our metric of

the corresponding AMR graphs should tend to be

(meaning relatedness). Albeit not the exact same

(Budanitsky and Hirst, 2006), the tasks are closely

related and both in conjunction should allow us to

better assess the performance of our AMR metrics.

As ground truth for the meaning similarity

rating task we use test data of the Semantic

Textual Similarity (STS) shared task (Cer et al.,

2017), with 1,379 sentence pairs annotated for

meaning similarity. For the meaning-relatedness

task we use SICK (Marelli et al., 2014) with

9,840 sentence pairs that have been additionally

annotated for semantic relatedness.14 We proceed

as follows: We normalize the human ratings to

[0,1]. Then we apply GPLA to parse the sen-

tence tuples (si, s
′
i), obtaining tuples (parse(si),

parse(s′i)) and score the graph pairs with the

metrics: SMATCH(i), S2
MATCH(i), SEMBLEU(i), and

H(i), where H(i) is the human score. For both

tasks SMATCH and S2
MATCH yield better or equal

correlations with human raters than SEMBLEU

(Table 7). When considering the RMS error
√

n−1
∑n

i=1(H(i)−metric(i))2. the difference

is even more pronounced.

This deviation in the absolute scores is also

reflected by the score density distributions plotted

in Figure 9: SEMBLEU underrates a good proportion

of graph pairs whose input sentences were rated as

highly semantically similar or related by humans.

This may well relate to the biases of different node

types (cf. §3). Overall, S2
MATCH appears to provide

14An example from SICK. Max. score: A man is cooking

pancakes–The man is cooking pancakes. Min. score: Two

girls are playing outdoors near a woman.–The elephant is

being ridden by the man. To further enhance the soundness

of the SICK experiment we discard pairs with a contradiction

relation and retain 8,416 pairs with neutral or entailment.
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RMSE RMSE (quant) Pearson’s ρ Spearman’s ρ

task SB SM S
2

M SB SM S
2

M SB SM S
2

M SB SM S
2

M

STS 0.34 0.25 0.25 0.25 0.11 0.10 0.52 0.55 0.55 0.51 0.53 0.53

SICK 0.38 0.25 0.24 0.32 0.14 0.13 0.62 0.64 0.64 0.66 0.66 0.66

Table 7: RMSE (lower is better) and correlation results of our metrics in our STS and

SICK investigations. RMSE (quant): RMSE on empirical quantile distribution with quantiles

0.1,0.2,. . . ,0.9.

Figure 9: Sentence meaning similarity distributions.

a better fit with the score-distribution of the human

rater when measuring semantic similarity and

relatedness, the latter being notably closer to

the human reference in some regions than the

otherwise similar SMATCH. A concrete example

from the STS data is given in Figure 10. Here,

S2
MATCH detects the similarity between the abstract

anaphors it and this and assigns a score that better

reflects the human score compared to SMATCH and

SEMBLEU, the latter being far too low. However, in

total, we conclude that S2
MATCH’s improvements

seem rather small and no metric is perfectly

aligned with human scores, possibly because

gradedness of semantic similarity that arises in

combination with constructional variation is not

yet captured—more research is needed to extend

S2
MATCH’s scope to such cases.

5 Metrics’ effects on parser evaluation

We have seen that different metrics can assign

different scores to the same pair of graphs. We

now want to assess to what extent this affects

rankings: Does one metric rank a graph higher

or lower than the other? And can this affect the

ranking of parsers on benchmark datasets?

Quantitative study: Graph rankings In this

experiment, we assess whether our metrics rank

graphs differently. We use LDC2017T10 (dev)

parses by CAMR [c1. . .cn], JAMR [j1. . .jn] and

gold graphs [y1. . .yn]. Given metrics F and G
we obtain results FC := [F(c1, y1) . . .F(cn, yn)]
and analogouslyFJ ,GC andGJ . We calculate two

Figure 10: An example from STS, where S2
MATCH

yields a score that better reflects the human judgement,

due to detecting a similarity between the abstract

anaphora it and this .

statistics: (i) the ratio of cases i where the metrics

differ in their preference for one parse over the

other (FJ
i −FC

i ) · (GJ
i −GC

i ) < 0, and, to assess

significance, (ii) a t-test for paired samples on the

differences assigned by the metrics between the

parsers:FJ−FC andGJ−GC . Table 8 shows that

SMATCH and S2
MATCH both differ (significantly)

from SEMBLEU in 15% – 20% of cases. SMATCH

and S2
MATCH differ on individual rankings in appr.

4% of cases. Furthermore, we note a considerable

amount of cases (8.1%) where SEMBLEU disagrees

with itself in the preference for one parse over the

other.15

The differing preferences of S2
MATCH for

either candidate parse can be the outcome of

small divergences due to the alignment search

or because S2
MATCH accounts for the lexical

similarity of concepts, perhaps supported by a

new variable alignment. Figure 11 shows two

examples where S2
MATCH prefers a different

candidate parse compared to SMATCH. In the first

example (Figure 11a), S2
MATCH prefers the parse

15That is, SB(A,G)>SB(B,G) albeit SB(G,A)<SB(G,B).
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SM
G
A,B SM

A,B
G SB

G
A,B SB

A,B
G S2M

G
A,B S2M

A,B
G

SM
G
A,B 0.0 1.5 17.6† 19.0† 4.0 4.1

SM
A,B
G – 0.0 17.9† 19.5† 3.9 4.0

SB
G
A,B – – 0.0 8.1† 18.4† 19.2†

SB
A,B
G – – – 0.0 19.1† 19.3†

S2M
G
A,B – – – – 0.0 1.2

S2M
A,B
G – – – – 0.0

Table 8: Cross-metric comparison on individual graph rankings. Percentage of cases where

metrics differ in their preference for one parse over the other. metricYX : short for metric(X,Y ).

† indicates significance in score differences assigned to parse pairs at p<0.005.

Figure 11: Two examples, where S2
MATCH disagrees

with SMATCH in its preference of a candidate parse (for

clarity, wiki-links are omitted in this display).

produced by JAMR and changes the alignment

legally-NULL (SMATCH) to legally-law (S2
MATCH).

In the second example 11b, S2
MATCH prefers the

parse produced by CAMR, because it detects the

similarity between military and navy and poor

and poverty. Therefore, S2
MATCH can assess that

the CAMR parse and the gold graph substantially

agree on the root concept of the graph, which is

not the case in the JAMR parse.

Quantitative study: Parser rankings Having

seen that our metrics disagree on the ranking of

individual graphs, we now quantify the effects on

the ranking of parsers. We collect outputs of three

state-of-art parsers on the test set of LDC2017T10:

GPLA, a sequence-to-graph transducer (STOG),

and a neural top-down parser (TOP-DOWN).

Table 9 shows that SMATCH and S2
MATCH agree

on the ranking of all three parsers, but both

disagree with SEMBLEU on the ranks of the 42nd

and 3rd parser: unlike SEMBLEU, the SMATCH

variants rate GPLA higher than TOP-DOWN. A

factor that may have contributed to the different

rankings perhaps lies in SEMBLEU’s biases towards

connected nodes: Compared with TOP-DOWN,

GPLA delivers more complex parses, with more

edges (avg. |E|: 32.8 vs. 32.1) and higher graph

density (avg. density: 0.065 vs. 0.059). This is a

nice property, because it indicates that the graphs

of GPLA better resemble the rich gold graph

structures (avg. density: 0.063, avg. |E|: 34.2).

When inspecting this more closely, and looking

at single (parse, gold) pairs, we observe further

evidence for this: the structural error, in degree and

density, is lower for GPLA than for TOP-DOWN

(Table 9, right columns), with an error reduction

of -27% (degree, 0.08 vs. 0.11) and -14% (density,

0.0067 vs. 0.0078).
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metric scores structure error

SM SBG
A SBA

G S2
M node degree graph density

STOG 76.3|1 59.6|1 58.9|1 77.9|1 0.08 0.0069

GPLA 74.5|2 54.2|3 52.9|3 76.2|2 0.08 0.0068

TOP-DOWN 73.2|3 54.5|2 53.1|2 75.0|3 0.11 0.0078

Table 9: Ranking parsers: STOG (Zhang et al.); GPLA (Lyu and Titov);

TOP-DOWN (Cai and Lam, 2019). The structure error is defined as
1

1371

∑1371
i=1 |f(goldi) − f(predi)|, where f either is node degree or graph density.

All four metrics differ significantly in their scores (paired t-test, p<0.05).

principle SMATCH SEMBLEU S2
MATCH Sec.

I. Cont., non-neg. & upper-bound 3 3 3 -

II. id. of indescernibles 3ǫ 7 3δ<ǫ §3

III. symmetry 3ǫ 7 3δ<ǫ §3

IV. determinacy 3ǫ 3 3δ<ǫ §3

V. low bias 3 7 3 §3

VI. symbolic graph matching 3 7 3 §3

VII. graded graph matching 7 7 3

LEX §4

Table 10: Evaluation of three AMR metrics using our seven principles.3ǫ:

fulfilled with a very small ǫ-error.

In sum, by building graphs of higher com-

plexity, GPLA takes a greater risk when attaching

wrong concepts to connected nodes where errors

are penalized more strongly by SEMBLEU than

SMATCH, according to the biases we have studied in

§3 (Table 4). In that sense, STOG also takes more

risks, but it may get more of such concepts right

and so the bias transitions from penalty to reward,

potentially explaining the large performance ∆
(+6) of STOG to the other parsers, as measured

by SEMBLEU, in contrast to S(2)MATCH (∆: +2).

6 Summary of Our Metric Analyses

Table 10 summarizes our analyses’ integral

results. Principle I is fulfilled by all metrics

as they exhibit continuity, non-negativity and

an upper bound. Principle II, however, is not

satisfied by SEMBLEU because it can mistake two

graphs of different meaning as equivalent. This

is because it ablates a variable-alignment and

therefore cannot capture facets of coreference.

Yet, a positive outcome of this is that it is fast

to compute. This could make it first choice in

some recent AMR parsing approaches that use

reinforcement learning (Naseem et al., 2019),

where rapid feedback is needed. It also marks

a point by fully satisfying Principle IV, yielding

fully deterministic results. SMATCH, by contrast,

either needs to resort to a costly ILP solution or (in

practice) uses hill-climbing with multiple restarts

to reduce divergence to a negligible amount.

A central insight brought out by our analy-

sis is that SEMBLEU exhibits biases that are hard

to control. This is caused by two (interacting)

factors: (i) The extraction of k-grams is applied

on the graph top to bottom and visits some nodes

more frequently than others. (ii) It raises some

(but not all) leaf nodes to connected nodes, and

these nodes will be overly frequently contained

in extracted k-grams. We have shown that these

two factors in combination lead to large biases

that researchers should be aware of when using

SEMBLEU (§3). Its ancestor BLEU does not suffer

from such biases since it extracts k-grams linearly

from a sentence.

Given that SEMBLEU is built on BLEU, it is

inherently asymmetric. However, we have shown

that the asymmetry (Principle III) measured for

BLEU in MT is amplified by SEMBLEU in AMR,

mainly due to the biases it incurs (Principle V).

Although asymmetry can be tolerated in parser

evaluation if outputs are compared against gold

graphs in a standardized manner, it is difficult to
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apply an asymmetric metric to measure IAA or

to compare parses for detecting paraphrases, or

in tri-parsing, where no reference is available. If

the asymmetry is amplified by a bias, it becomes

harder to judge the scores. Finally, considering

that SEMBLEU does not match AMR graphs on

the graph-level but matches extracted bags-of-

k-grams, it turns out that it cannot be categorized

as a graph matching algorithm as defined in

Principle VI.

Principle VI is fulfilled by SMATCH without any

transformation on AMR graphs. It searches for an

optimal variable alignment and counts matching

triples. As a corollary, it fulfills principles I, II,

III and V. The fact that SMATCH fulfills all but one

principle backs up many prior works that use it as

sole criterion for IAA and parse evaluation.

Our principles also helped us detect a weakness

of all present AMR metrics: They operate on a

discrete level and cannot assess graded meaning

differences. As a first step, we propose S2
MATCH:

It preserves beneficial properties of SMATCH but is

benevolent to slight lexical meaning deviations.

Besides parser evaluation, this property makes

the metric also more suitable for other tasks, for

example, it can be used as a kernel in an SVM

that classifies AMRs to determine whether two

sentences are equivalent in meaning. In such

a case, S2
MATCH is bound to detect meaning-

similarities that cannot be captured by SMATCH or

SEMBLEU, for example, due to paraphrases being

projected into the parses.

7 Related Work

Developing similarity metrics for meaning

representations (MRs) is important, as it, inter

alia, affects semantic parser evaluation and

computation of IAA statistics for sembanking.

MRs are designed to represent the meaning of text

in a well-defined, interpretable form that is able

to identify meaning differences and support infe-

rence. Bos (2016, 2019) has shown how AMR

can be translated to FOL, a well-established

MR formalism. Discourse Representation Theory

(DRT; Kamp, 1981; Kamp and Reyle, 1993)

is based on and extends FOL to discourse

representation. A recent shared task on DRS

parsing used the COUNTER metric (Abzianidze

et al., 2019; Evang, 2019), an adaption of SMATCH,

underlining SMATCH’s general applicability. Its

extension S2
MATCH may also prove beneficial for

DRS.

Other research into AMR metrics aims at

making the comparison fairer by normalizing

graphs (Goodman, 2019). Anchiêta et al. (2019)

argue that one should not, for example, insert an

extra is-root node when comparing AMR graphs

(as done in SEMBLEU and SMATCH). Damonte et al.

(2017) extend SMATCH to analyze individual AMR

facets (co-reference, WSD, etc.). Cai and Lam

(2019) adapt SMATCH to analyze their parser’s

performance in predicting triples that are in

close proximity to the root. Our metric S2
MATCH

allows for straightforward integration of these

approaches.

Computational AMR tasks Since the intro-

duction of AMR, many AMR-related tasks have

emerged. Most prominent is AMR parsing (Wang

et al., 2015, 2016; Damonte et al., 2017; Konstas

et al., 2017; Lyu and Titov, 2018; Zhang et al.,

2019). The inverse task generates text from AMR

graphs (Song et al., 2017, 2018; Damonte and

Cohen, 2019). Opitz and Frank (2019) rate the

quality of automatic AMR parses without costly

gold data.

8 Conclusion

We motivated seven principles for metrics

measuring the similarity of graph-based (Abstract)

Meaning Representations, from mathematical,

linguistic and engineering perspectives. A metric

that fulfills all principles is applicable to a wide

spectrum of cases, ranging from parser evaluation

to sound IAA calculation. Hence (i) our princi-

ples can inform (A)MR researchers who desire

to compare and select among metrics, and (ii)

they ease and guide the development of new

metrics.

We provided examples for both scenarios. We

showcased (i) by utilizing our principles as guide-

lines for an in-depth analysis of two AMR metrics:

SMATCH and the recent SEMBLEU metrics, two

quite distinct approaches. Our analysis uncovered

that the latter does not satisfy some principles,

which might reduce its safety and applicability.

In line with (ii), we target the fulfilment of all

seven principles and propose S2
MATCH, a metric

that accounts for graded similarity of concepts as

atomic graph components. In future work, we aim

for a metric that accounts for graded compositional

similarity of subgraphs.

535



Acknowledgments

We are grateful to the anonymous reviewers and

the action editors for their valuable time and

comments. This work has been partially funded

by DFG within the project ExpLAIN. Between

the Lines – Knowledge-based Analysis of Argu-

mentation in a Formal Argumentation Inference

System; FR 1707/-4-1, as part of the RATIO

Priority Program; and by the the Leibniz Science-

Campus Empirical Linguistics & Computational

Language Modeling, supported by Leibniz Asso-

ciation grant no. SAS2015-IDS-LWC and by

the Ministry of Science, Research, and Art of

Baden-Wurttemberg.

References

Lasha Abzianidze, Rik van Noord, Hessel

Haagsma, and Johan Bos. 2019. The first shared

task on discourse representation structure pars-

ing. In Proceedings of the IWCS Shared Task

on Semantic Parsing, Gothenburg, Sweden.
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