
Learning Lexical Subspaces in a Distributional Vector Space

Kushal Arora∗ Aishik Chakraborty∗ Jackie C. K. Cheung

School of Computer Science, McGill University

Québec AI Instuite (Mila)

{kushal.arora,aishik.chakraborty}@mail.mcgill.ca,
jcheung@cs.mcgill.ca

Abstract

In this paper, we propose LEXSUB, a novel

approach towards unifying lexical and dis-

tributional semantics. We inject knowledge

about lexical-semantic relations into distribu-

tional word embeddings by defining subspaces

of the distributional vector space in which

a lexical relation should hold. Our frame-

work can handle symmetric attract and repel

relations (e.g., synonymy and antonymy,

respectively), as well as asymmetric relations

(e.g., hypernymy and meronomy). In a suite of

intrinsic benchmarks, we show that our model

outperforms previous approaches on related-

ness tasks and on hypernymy classification and

detection, while being competitive on word

similarity tasks. It also outperforms previous

systems on extrinsic classification tasks that

benefit from exploiting lexical relational cues.

We perform a series of analyses to understand

the behaviors of our model.1

1 Introduction

Pre-trained word embeddings are the bedrock of

modern natural language processing architectures.

This success of pre-trained word embeddings

is attributed to their ability to embody the

distributional hypothesis (Harris, 1954; Firth,

1957), which states that ‘‘the words that are used

in the same contexts tend to purport similar

meanings’’ (Harris, 1954).

The biggest strength of the embedding methods—

their ability to cluster distributionally related

words—is also their biggest weakness. This

contextual clustering of words brings together

words that might be used in a similar context in the

∗Equal contribution.
1Code avai lable at https://github.com/

aishikchakraborty/LexSub.

text, but that might not necessarily be semantically

similar, or worse, might even be antonyms (Lin

et al., 2003).

Several techniques have been proposed in the

literature to modify word vectors to incorporate

lexical-semantic relations into the embedding

space (Yu and Dredze, 2014; Xu et al., 2014; Fried

and Duh, 2014; Faruqui et al., 2015; Mrkšić et al.,

2016; Mrkšić et al., 2017; Glavaš and Vulić,

2018). The common theme of these approaches is

that they modify the original distributional vector

space using auxiliary lexical constraints to endow

the vector space with a sense of lexical relations.

However, a potential limitation of this approach is

that the alteration of the original distributional

space may cause a loss of the distributional

information that made these vectors so useful

in the first place, leading to degraded performance

when used in the downstream tasks.

This problem could be further exacerbated when

multiple relations are incorporated, especially as

different lexical-semantic relations have different

mathematical properties. For example, synonymy

is a symmetric relation, whereas hypernymy and

meronymy are asymmetric relations. It would be

difficult to control the interacting effects that

constraints induced by multiple relations could

have on the distributional space.

The solution that we propose is to enforce a

separation of concerns, in which distributional

information is addressed by a central main vector

space, whereas each lexical relation is handled by a

separate subspace of the main distributional space.

The interface between these components is then a

projection operation from the main distributional

space into a lexical subspace. Our framework,

LEXSUB, thus formulates the problem of enforcing

lexical constraints as a problem of learning a

311

Transactions of the Association for Computational Linguistics, vol. 8, pp. 311–329, 2020. https://doi.org/10.1162/tacl a 00316

c© 2020 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

Action Editor: Katrin Erk. Submission batch: 10/2019; Revision batch: 1/2020; Published 6/2020.

https://github.com/aishikchakraborty/LexSub
https://github.com/aishikchakraborty/LexSub
https://doi.org/10.1162/tacl_a_00316

Figure 1: A concept diagram contrasting other

post-hoc approaches with our LEXSUB framework.

Our LEXSUB framework enforces the lexical

constraints in lexical relation-specific subspaces,

whereas the other approaches try to learn lexical

relations in the original distributional vector space.

linear subspace for each of the lexical relations

within the distributional vector space. Figure 1

shows a conceptual diagram of the relationship

between the distributional space and the lexical

subspaces in LEXSUB.

We show that LEXSUB outperforms previous

methods in a variety of evaluations, particularly

on intrinsic relatedness correlation tasks, and in

extrinsic evaluations in downstream settings. We

also show that LEXSUB is competitive with existing

models on intrinsic similarity evaluation tasks.

We run a series of analyses to understand why our

method improves performance in these settings.

Our experimental results suggest that explicitly

separating lexical relations into their own

subspaces allows the model to better capture the

structure of each lexical relation without being

polluted by information from the distributional

space. Conversely, the main distributional vector

space is not polluted by the need to model

lexical relations in the same space, as is the case

for previous models. Furthermore, the explicit

linear projection that is learned ensures that a

relation-specific subspace exists in the original

distributional vector space, and can thus be

discovered by a downstream model if the extrinsic

task requires knowledge about lexical-semantic

relations.

Contributions. In summary, weproposeLEXSUB,

a framework for learning lexical linear subspaces

within the distributional vector space. The pro-

posed framework can model all major kinds of

lexical-semantic relations, namely, attract-sym-

metric, repel-symmetric, and attract-asymmetric.

We demonstrate that our approach outperforms

or is competitive with previous approaches on

intrinsic evaluations, and outperforms them on a

suite of downstream extrinsic tasks that might

benefit from exploiting lexical relational infor-

mation. Finally, we design a series of experiments

to better understand the behaviors of our model

and provide evidence that the separation of con-

cerns achieved by LEXSUB is responsible for its

improved performance.

2 Related Work

Several approaches have been proposed towards

unifying the lexical and distributional semantics.

These approaches can broadly be classified into

two categories: 1) post-hoc, and 2) ad-hoc ap-

proaches. Post-hoc approaches finetune pre-trained

embeddings by fitting them with lexical relations.

On the other hand, ad-hoc models add auxiliary

lexical constraints to the distributional similarity

loss. Both post-hoc and ad-hoc approaches rely on

lexical databases such as WordNet (Miller, 1995),

FrameNet (Baker et al., 1998), BabelNet (Navigli

and Ponzetto, 2012), and PPDB (Ganitkevitch

et al., 2013; Pavlick et al., 2015) for symbolically

encoded lexical relations that are translated into

lexical constraints. These lexical constraints en-

dow the embeddings with lexical-semantic rela-

tional information.

Post-hoc Approaches. In the post-hoc ap-

proach, pre-trained word vectors such as GloVe

(Pennington et al., 2014), Word2Vec (Mikolov

et al., 2013), FastText (Bojanowski et al., 2017),

or Paragram (Wieting et al., 2015) are fine-tuned

to endow them with lexical relational information

(Faruqui et al., 2015; Jauhar et al., 2015; Rothe and

Schütze, 2015; Wieting et al., 2015; Mrkšić et al.,

2016, 2017; Jo, 2018; Jo and Choi, 2018; Vulić

and Mrkšić, 2017; Glavaš and Vulić, 2018). In this

paper, we primarily discuss LEXSUB as a post-hoc

model. This formulation of LEXSUB is similar to the

other post-hoc approaches mentioned above with

the significant difference that the lexical relations

are enforced in a lexical subspace instead of the

original distributional vector space. Rothe et al.

(2016) explores the idea of learning specialized

subspaces with to reduce the dimensionality

of distributional space such that it maximally

preserves relevant task-specific information at

312

the expense of distributional information. Unlike

Rothe et al. (2016), our proposed method tries

to retain the distributional information in the

embeddings so that they can be used as a

general-purpose initialization in any NLP pipeline.

Embeddings from Rothe et al. (2016)’s method

can only be used for the task on which they were

trained.

Ad-hoc Approaches. The ad-hoc class of

approaches add auxiliary lexical constraints to

the distributional similarity loss function, usually,

a language modeling objective like CBOW

(Mikolov et al., 2013) or recurrent neural

network language model (Mikolov et al., 2010;

Sundermeyer et al., 2012). These constraints can

either be viewed as a prior or as a regularizer to

the distributional objective (Yu and Dredze, 2014;

Xu et al., 2014; Bian et al., 2014; Kiela et al.,

2015a; Fried and Duh, 2014). In other work, the

original language modeling objective is modified

to incorporate lexical constraints (Liu et al., 2015;

Osborne et al., 2016; Bollegala et al., 2016;

Ono et al., 2015; Nguyen et al., 2016, 2017; Tifrea

et al., 2018). We discuss the ad-hoc formulation

of LEXSUB in Appendix A.

An alternate axis along which to classify

these approaches is by their ability to model

different types of lexical relations. These types can

be enumerated as symmetric-attract (synonymy),

symmetric-repel (antonymy), and asymmetric-

attract (hypernymy, meronymy). Most approaches

mentioned above can handle symmetric-attract

type relations, but only a few of them can

model other types of lexical relations. For

example, Ono et al. (2015) can exclusively

model antonymy, Tifrea et al. (2018) and

Nguyen et al. (2017) can only model hypernymy

whereas Mrkšić et al. (2016); Mrkšić et al.

(2017) can model synonymy and antonymy,

and Vulić and Mrkšić (2017) can handle

synonymy, antonymy, and hypernymy relations.

Our proposed framework can model all types

of lexical relations, namely, symmetric-attract,

symmetric-repel, and asymmetric-attract, and uses

of all four major lexical relations found in lexical

resources like WordNet, namely, synonymy,

antonymy, hypernymy, and meronymy, and could

flexibly include more relations. To our knowledge,

we are the first to use meronymy lexical relations.

Other Approaches. Several approaches do not

fall into either of the categories mentioned above.

A subset of these approaches attempts to learn

lexical relations, especially hypernymy, directly

by embedding a lexical database, for example,

Poincaré Embeddings (Nickel and Kiela, 2017)

or Order-Embeddings (Vendrov et al., 2015).

Another set of approaches, like DIH (Chang et al.,

2018) or Word2Gauss (Vilnis and McCallum,

2014; Athiwaratkun and Wilson, 2017) attempt

to learn the hypernymy relation directly from the

corpus without relying on any lexical database.

The third set of approaches attempt to learn a scor-

ing function over a sparse bag of words (SBOW)

features. These approaches are summarized by

Shwartz et al. (2017).

3 Model

3.1 Task Definition

Given a vocabulary set V {x1, x2, x3,xn},

our objective is to create a set of vectors

{x1, x2, x3, . . . , xn} ∈ R
d that respect both

distributional similarity as well as lexical-

semantic relations. We refer to these vectors as

the main vector space embeddings. Let R be the

relation set corresponding to a lexical-semantic

relation r. The elements of this relation set are

ordered pairs of words (xi, xj) ∈ V × V ; that

is, if (xi, xj) ∈ R, then xi and xj are related by

the lexical relation r. For symmetric relations

like synonymy and antonymy, (xi, xj) ∈ R
implies (xj, xi) ∈ R. Similarly, for asymmetric

relations like hypernymy and meronymy, xj is

related to xi by relation r if (xi, xj) ∈ R and

(xj, xi) /∈ R.

Our model has two components. The first

component helps the model learn the lexical

subspaces within the distributional vector space.

These subspaces are learned using a loss function

Llex defined in Section 3.2.4. The second com-

ponent helps the model learn the distributional

vector space. The training of this vector space

is aided by a loss function Ldist defined in

Section 3.3. The total loss that we optimize is

therefore defined as: Ltotal = Ldist +Llex.

Distance Function. In the subsequent subsec-

tions, we will build lexical subspace distance

functions using the cosine distance function,

d(x, y) = 1 − x · y/(‖x‖‖y‖) where x and y are

embeddings for the word x and y, respectively.

313

3.2 Learning Lexical Subspaces in the

Distributional Space

In this section, we discuss three types of abstract

lexical losses—attract symmetric, attract asym-

metric, and repel symmetric—that are commonly

found in lexical databases like WordNet. We then

discuss a negative sampling loss that prevents the

model from finding trivial solutions to the lexical

objective.

3.2.1 Abstract Lexical Relation Loss

Let xi and xj be a pair of words related by a lexical

relation r. We project their embeddings xi, xj ∈
R
d to an h-dimensional lexical subspace (h < d)

using a learned relation-specific projection matrix

W proj
r with dimensions h × d. The distance

between any two words xi and xj in the lexical

subspace is defined as a distance between their

projected embeddings. We define this lexico-

relational subspace specific distance function

dprojr as

dprojr (xi, xj) = d(W proj
r xi,W

proj
r xj) (1)

The lexical subspaces can be categorized into

three types: attract symmetric, attract asymmetric,

and repel symmetric. In an attract symmetric

subspace, the objective is to minimize the distance

between the lexically related word pair xi and xj .
The corresponding loss function is:

Latt-sym
r =

1

|R|

∑

xi,xj∈R

dprojr (xi, xj) (2)

Similarly, for repel symmetric lexical relations

such as antonymy, the goal is to maximize the

distance (up to a margin γ) between the two

projected embeddings. We define a repel loss for

r, Lrep
r , as:

Lrep
r =

1

|R|

∑

xi,xj∈R

max
(

0, γ − dprojr (xi, xj)
)

(3)

In the case of attract asymmetric relations,

we encode the asymmetry of the relationship

between xi and xj by defining an asymmetric

distance function dasymr in terms of this affine

transformation of embeddings of xi and xj as:

dasymr (xi, xj) = dprojr (W asym
r xi + basymr , xj)

(4)

where W asym
r (an h × d matrix) and basymr (an

h-dimensional vector) are the parameters of the

affine function.

The attract asymmetric loss function is then

defined in terms of dasymr as:

Latt-asym
r =

1

|R|

∑

xi,xj∈R



dasymr (xi, xj) +

max
(

0, γ − dasymr (xj , xi)
)



 (5)

The first term of the Latt-asym
r brings xi’s

projected embedding closer to the embedding of

xj . The second term avoids the trivial solution

of parameterized affine function collapsing to a

identity function. This is achieved by maximizing

the distance between xi and the affine projection

of xj .

3.2.2 Negative Sampling

We supplement our lexical loss functions with a

negative sampling loss. This helps avoid the trivial

solutions such as all words embeddings collapsing

to a single point for attract relations and words

being maximally distant in the repel subspace.

We generate negative samples by uniformly

sampling n words from the vocabulary V . For

attract subspaces (both attract symmetric and

attract asymmetric), we ensure that negatively

sampled words in the subspace are at a minimum

distance δmin
r from xi. Similarly, for repel

subspaces, we ensure that negative samples are

at a distance of at-most δmax
r from xi. The attract

and repel negative sampling losses are:

Lattr-neg
r =

∑

xi,xj

n
∑

l=1

max
(

0, δmin
r − dprojr (xi, xl)

)

Lrep-neg
r =

∑

xi,xj

n
∑

l=1

max
(

0, dprojr (xi, xl)− δmax
r

)

where xl indicates the negative sample drawn

from a uniform distribution over vocabulary.

3.2.3 Relation-Specific Losses

Synonymy Relations. As synonymy is an

attract symmetric relation, we use Lattr-sym
syn as our

lexical loss and Lattr-neg
syn as our negative sampling

loss, with the negative sampling loss weighted by

a negative sampling ratio hyperparameter µ.

314

Lsyn = Lattr-sym
syn + µLattr-neg

syn (6)

Antonymy Relations. Antonymy relation is the

mirror image of the synonymy relation; hence,

we use the same subspace for both the relations;

(i.e., W proj
ant = W proj

syn). As antonymy is a repel

lexical relation, we use Lrep
syn as our lexical loss

and Lrep-neg
syn as our negative loss.

Lant = Lrep
syn + µLrep-neg

syn (7)

Hypernymy Relations. Hypernymy is an

attract asymmetric relation, hence, we use

Lattr-asym
hyp

as the lexical loss and Lattr-neg
hyp

as

negative sampling loss.

Lhyp = Lattr-asym
hyp + µLattr-neg

hyp (8)

Meronymy Relations. Meronymy is also an

attract-asymmetric relation. Therefore, in a similar

manner, the lexical loss will be Lattr-asym
mer and

negative sampling loss will be Lattr-neg
mer :

Lmer = Lattr-asym
mer + µLattr-neg

mer (9)

3.2.4 Total Lexical Subspace Loss

Based on the individual lexical losses defined

above, the total lexical subspace loss defined as

follows:

Llex = νsynLsyn+νantLant+νhypLhyp+νmerLmer

(10)

where νsyn, νant, νhyp, νmer ∈ [0, 1] are lexical

relation ratio hyperparameters weighing the im-

portance of each of the lexical relation.

3.3 Preserving the Distributional Space

In the post-hoc setting, we start from pre-

trained embeddings X = [x1, x2, . . . , xn]
T ∈

R
n×d to learn retrofitted embeddings X′ =

[x′
1, x

′
2, . . . , x′

n]
T ∈ R

n×d. The Ldist component

aims to minimize the change in L2 distance

between the word embeddings in order to preserve

the distributional information in the pre-trained

embeddings:

Ldist =
1

n
‖X −X ′‖

2
2 (11)

3.4 Overall Loss Function

The overall loss of LEXSUB isLtotal = Ldist+Llex.

Lexical Relation Num Pairs

Synonyms 239,100
Antonyms 12,236
Hypernyms/Hyponyms 20,887
Meronyms/Holonyms 31,181

Table 1: Statistics for lexical relation pairs ex-

tracted from WordNet.

4 Training Setup

In this section, we describe the datasets and models

that we use in our experiments. The output of our

model is the main vector space embedding that is

endowed with the specialized lexical subspaces.

All our evaluations are done on the main vector

space embeddings unless stated otherwise.

4.1 Training Dataset

Our experiments were conducted using GloVe

embeddings (Pennington et al., 2014) of 300-

dimension trained on 6 billion tokens from the

Wikipedia 2014 and Gigaword 5 corpus. The vo-

cabulary size for GloVe embeddings is 400,000.

4.2 Lexical Resource

We use WordNet (Miller, 1995) as the lexical

database for all experiments. We consider all four

types of lexical relations: synonymy, antonymy,

hypernymy, and meronymy. Only those relation

triples where both words occur in the vocabulary

are considered. We consider both instance and

concept hypernyms for hypernymy relations, and

for meronomy relations, part, substance, as well as

member meronyms were included as constraints.

Table 1 shows the relation-wise split used in the

experiments.

4.3 Models and Hyperparameters

We learn 300-dimensional embeddings during

training. We use Adagrad (Duchi et al., 2011)

as our optimizer with learning rate 0.5. We train

the models for 100 epochs. For the lexical losses,

we take n = 10, µ = 10, γ = 2, δsynmax = 1.5,

δsynmin = 0.5, δmer
min=1, δhypmin=1.0, and νsyn=0.01,

νhyp=0.01, νmer=0.001.

We rely on the validation sets corresponding

to our extrinsic tasks (Section 6.2) for choosing

these hyperparameter values. We ran a grid search

on the hyperparameter space and selected the final

set of hyperparameters by first ranking validation

315

results for each task in descending order, then

calculating the mean rank across the tasks. We

selected the hyperparameters that achieved the

best (i.e., lowest) mean rank.

5 Baselines

Vanilla. The Vanilla baselines refer to the

original GloVe word embeddings without any

lexical constraints.

Retrofitting. Retrofitting (Faruqui et al., 2015)

uses similarity constraints from lexical resources

to pull similar words together. The objective

function that retrofitting optimizes consists of a

reconstruction loss Ldist and a symmetric-attract

loss Lsyn
att-sym with d = h, W proj

syn = Ih, and

d= ‖ · ‖2.

Counterfitting. Counterfitting (Mrkšić et al.,

2016) builds up on retrofitting but also support

repel symmetric relations. Their objective func-

tion consists of three parts: Synonym Attract,

Antonym Repel, and a Vector Space Preservation

loss, similar to Lsyn
att-sym, Lsyn

rep-sym, and Ldist,

respectively.

LEAR. LEAR (Vulić and Mrkšić, 2017)

expands the counterfitting framework by adding

a Lexical Entailment (LE) loss. This LE loss

encodes a hierarchical ordering between con-

cepts (hyponym-hypernym relationships) and can

handle attract asymmetric relations.

We train each of the baseline models using the

lexical resources described in Section 4.2. LEAR,

LEXSUB, and Counterfitting were trained on all

four lexical relations whereas the Retrofitting

was trained only on attract relations, namely,

synonymy, hypernymy, and meronymy. This is

due to Retofitting’s inability to handle repel

type relations. We also report the results of

our experiments with LEXSUB and the baselines

trained on the lexical resource from LEAR in

Appendix B.

6 Evaluations

6.1 Intrinsic Tasks

Word Similarity Task. We use four popular

word similarity test sets to evaluate word

similarity. We use the men3k dataset by (Bruni

et al., 2014) and the relatedness section of the

WordSim353 dataset (Agirre et al., 2009) to

measure the ability of the embedding’s to retain the

distributional information. We use the SimLex-

999 dataset (Hill et al., 2015) and SimVerb 3500

(Gerz et al., 2016) to evaluate the embedding’s

ability to detect graded synonymy and antonymy

relations. Both the relatedness and similarity tasks

were evaluated in the main vector space for

LEXSUB.

Hypernymy Tasks. Following Roller et al.

(2018), we consider three tasks involving hyper-

nymy: graded hypernymy evaluation, hypernymy

classification, and directionality detection. We use

the hypernymy subspace embeddings for LEXSUB

for these experiments.

For graded hypernymy evaluation, we use

the Hyperlex dataset (Vulić et al., 2017) and

report the results on the complete hyperlex dataset.

We measure Spearman’s ρ between the cosine

similarity of embeddings of the word pairs and the

human evaluations.

The hypernymy classification task is an

unsupervised task to classify whether a pair of

words are hypernym/hyponym of each other. We

consider four of the five benchmark datasets

considered in Roller et al. (2018); namely, BLESS

(Baroni and Lenci, 2011), LEDS (Baroni et al.,

2012), EVAL (Santus et al., 2014), and WBLESS

(Weeds et al., 2014). We do not consider the

SHWARTZ dataset (Shwartz et al., 2016), as the

number of OOV was high (38% for LEXSUB,

Retrofitting, and LEAR and 60% for Counter-

fitting for GloVe). The evaluation is done by

ranking the word pairs by cosine similarity and

computing the mean average precision over the

ranked list.

The hypernymy directionality detection task

is designed to detect which of the two terms is the

hypernym of the other; that is, given two wordsw1

and w2, is w1 the hypernym of w2 or vice versa.

We consider two of the three datasets from Roller

et al., (2018); namely, WBLESS and BIBLESS

(Kiela et al., 2015b). The classification setup is

similar to Roller et al. (2018) and is done using

the open source package provided by the authors.2

6.2 Extrinsic Tasks

We evaluate our embeddings on five extrinsic

tasks that could benefit from the lexical relational

2https://github.com/facebookresearch/

hypernymysuite.

316

https://github.com/facebookresearch/hypernymysuite
https://github.com/facebookresearch/hypernymysuite

cues. We do so by injecting our embeddings into

recent high-performing models for those tasks.

The tasks and models are:

NER Classification. We use the CoNLL 2003

NER task (Tjong Kim Sang and De Meulder,

2003) for the Named Entity Recognition (NER)

Task. The dataset consists of news stories from

Reuters where the entities have been labeled into

four classes (PER, LOC, ORG, MISC). We use

the model proposed by Peters et al. (2018) for the

NER task.

Sentiment Classification. We use the Bi-

Attentive Classification Network (BTN) by

McCann et al. (2017) to train a sentiment classifier.

We train all models for sentiment classification on

the Stanford Sentiment Treebank (SST) (Socher

et al., 2013). We use a two-class granularity

where we remove the ‘‘neutral’’ class following

McCann et al. (2017) and just use the ‘‘positive’’

and ‘‘negative’’ classes for classification.

Textual Entailment. For textual entailment

experiments, we use the Decomposable Attention

model by Parikh et al. (2016) for our experiments.

We train and evaluate the models on the

Stanford Natural Language Inference (SNLI)

dataset (Bowman et al., 2015) using the standard

train, test and validation split.

Question Answering. We use the SQUAD1.1

question answering dataset (Rajpurkar et al.,

2016). The dataset contains 100k+ crowd-sourced

question answer pairs. We use the BiDAF model

(Seo et al., 2016) for the question answering task.

We report the accuracy on the development set for

SQuAD.

Paraphrase Detection. For the paraphrase

detection task, we use the BIMPM model by

Wang et al. (2017) for our experiments. We train

and evaluate the models on the Quora Question

Pairs (QQP) dataset3 using the standard splits.

Method For the above models, we use the

reference implementations of the models provided

by the AllenNLP toolkit (Gardner et al., 2018).

We replace the input layer of these models with

the embeddings we want to evaluate. We use two

different setups for our extrinsic experiments and

report results for both.

3https://www.kaggle.com/c/quora-question-

pairs.

Setup 1: In our first setup, we standardize

several representational and training decisions

to remove potential confounding effects. This

ensures that performance differences in the

extrinsic tasks are reflective of the quality of

the embeddings under evaluation. We achieve this

by making the following changes to all extrinsic

task models. First, for the Vanilla models, we use

pretrained GloVe embeddings of 300 dimensions,

trained on 6 billion tokens. Similarly, we train

all post-hoc embeddings using the 6 billion token

300-dimensional pretrained GloVe embeddings

and plug these post-hoc embeddings into the

extrinsic task model. Second, we remove character

embeddings from the input layer. Finally, we do

not fine-tune the pretrained embeddings.

Setup 2: In order to demonstrate that we are

not unfairly penalizing the base models, we

also conduct a second set of experiments where

models for all the extrinsic tasks are trained in

the original settings (i.e., without the changes

mentioned above). In these experiments, we do

not remove character embeddings from any model,

nor do we put any restrictions on fine-tuning of

the pretrained word embeddings. These results for

both the experiments are reported in Table 4.

7 Results

We now report on the results of our comparisons

of LEXSUB to Vanilla embeddings and baselines

trained on the same lexical resource as LEXSUB.

We use the main vector space embeddings

in all our experiments except for hypernymy

experiments, for which we use the hypernymy

space embeddings.

Intrinsic Evaluations. Table 2 shows that our

model outperforms the Vanilla baseline on both

relatedness and similarity tasks, outperforms

all the other baselines on relatedness, and is

competitive with the other baselines on all the

word similarity tasks. Table 3 demonstrates that

we considerably outperform Vanilla as well as

other baseline post-hoc methods on hypernymy

tasks. Thus, our subspace-based approach can

learn lexical-semantic relations and can perform

as well or better than the approaches that enforce

lexical constraints directly on the distributional

space.

Another important result from Table 2 is the

poor performance of LEAR and Counterfitting

317

https://www.kaggle.com/c/quora-question-pairs
https://www.kaggle.com/c/quora-question-pairs

Relatedness Tasks Similarity Tasks

Models men3k(ρ) WS-353R(ρ) Simlex(ρ) Simverb(ρ)

Vanilla 0.7375 0.4770 0.3705 0.2275

Retrofitting 0.7437 0.4701 0.4435 0.2976

Counterfitting 0.6487 0.2497 0.4870 0.4119

LEAR 0.6850 0.3385 0.5998 0.5637

LEXSUB 0.7493 0.4956 0.5044 0.3983

Table 2: Similarity and relatedness results for baselines and LEXSUB. The results indicate that LEXSUB

outperforms all the baselines on relatedness tasks and is competitive on the similarity tasks. This

indicates that our model retains the distributional information better than the other models while also

learning synonymy and antonymy relations.

Models Similarity (ρ) Directionality (Acc) Classification (Acc)

Hyperlex wbless bibless bless leds eval weeds

Vanilla 0.1352 0.5101 0.4894 0.1115 0.7164 0.2404 0.5335

Retrofitting 0.1055 0.5145 0.4909 0.1232 0.7279 0.2639 0.5547

Counterfitting 0.1128 0.5279 0.4934 0.1372 0.7246 0.2900 0.5734

LEAR 0.1384 0.5362 0.5024 0.1453 0.7399 0.2852 0.5872

LEXSUB 0.2615 0.6040 0.4952 0.2072 0.8525 0.3946 0.7012

Table 3: Hypernymy evaluation results for baselines and LEXSUB. LEXSUB considerably outperforms all

the other methods and the Vanilla on nearly all hypernymy tasks. We attribute this performance to our

novel loss function formulation for asymmetric relations and the separation of concerns imposed by the

LEXSUB.

on relatedness tasks like men3k and WS-

353R. We hypothesize that enforcing symmetric-

repel (Counterfitting) and asymmetric-attract

(Counterfitting and LEAR) constraints directly

on the distributional space leads to distortion

of the distributional vector space, resulting in

poor performance on relatedness tasks. LEXSUB

performs competitively on similarity tasks without

sacrificing its performance in relatedness tasks,

unlike contemporary methods that sacrifice

relatedness by optimizing for similarity.

Extrinsic Evaluations. Table 4 presents the

results of the extrinsic evaluations. Rows 3–7

present the results for first setup—that is,

experiments without confounds (Setup 1) such as

character embeddings and further fine-tuning of

the input embeddings. The results for the models

trained with the original setting (Setup 2) are

presented in rows 9–14. In the original setting,

the model for QQP, SQuAD, and NER contains

additional trainable character embeddings in the

input layer. The original NER model further

fine-tunes the input embeddings.

In our first set of experiments, we find that the

LEXSUB model outperforms the baseline methods

on every extrinsic task and Vanilla on every

extrinsic task except SNLI. In the case of our

second experiment, LEXSUB outperforms previous

post-hoc methods in all extrinsic tasks but does

worse than GloVe in NER. We hypothesize

the relatively poor performance of LEXSUB with

respect to GloVe on NER might be due to the

task-specific fine-tuning of the embeddings.

In fact, we find that the baseline approaches,

with a few exceptions, do worse than Vanilla

across the whole suite of extrinsic tasks in both

the settings. Taken together, this indicates that

our subspace-based approach is superior if the

objective is to use these modified embeddings in

downstream tasks.

We hypothesize that these results are indicative

of the fact that the preservation of distributional

information is crucial to the downstream perfor-

mance of the embeddings. Thebaseline approaches,

318

Models NER(F1) SST-2(Acc) SNLI(Acc) SQuAD(EM) QQP(Acc)

Experiments with Setup 1

Vanilla 87.88 87.31 85.00 64.23 87.08

Retrofitting 86.16 88.58 84.68 64.01 87.01

Counterfitting 80.09 86.77 84.99 62.86 87.10

LEAR 83.20 88.08 83.74 63.10 86.06

LEXSUB 88.06 88.91 85.00 64.65 87.31

Experiments with Setup 2

Vanilla 89.83 87.31 85.00 66.62 88.45

Retrofitting 85.56 88.58 84.68 66.21 88.54

Counterfitting 84.44 86.77 84.99 66.51 88.44

LEAR 85.47 88.08 83.74 65.71 87.67

LEXSUB 89.76 88.91 85.00 66.94 88.69

State of the Art 93.50 95.60 91.60 88.95 90.10

Table 4: Extrinsic evaluation results for baselines and LEXSUB. Setup 1 refers to the experiments

without extrinsic model confounds such as character embeddings and further fine-tuning of the input

embeddings. Setup 2 refers to the experiments in the original AllenNLP setting where the model for

QQP, SQuAD, and, NER contains additional trainable character embeddings in the input layer, and the

original NER model further fine-tunes the input embeddings. In both the setups, we see that LEXSUB

outperforms the baselines on most of the extrinsic tasks. We hypothesize the relatively poor performance

of LEXSUB compared to Vanilla on NER might be due to the task-specific fine-tuning of the embeddings.

which learn the lexical-semantic relations in

the original distributional space, disrupt the

distributional information, leading to poor

extrinsic task performance. We expand on this

point in Section 8.3.

State-of-the-Art Results in Extrinsic Tasks.

We have also added the current state-of-the-

art results for the respective extrinsic tasks in

Table 4 (last row). The current state of the art

for NER is Baevski et al. (2019). The authors

also use the model proposed by Peters et al.

(2018) but initialize the model with contextualized

embeddings from a bi-directional transformer.

Similarly, the current state of the art for SST-2 and

QQP (ERNIE 2.0; Sun et al., 2019), SNLI (MT-

DNN; Liu et al., 2019), and SQuAD (XLNet; Yang

et al., 2019) are all initialized with contextualized

embeddings from a bidirectional transformer-

based model trained on a data that is orders of

magnitude larger than the GloVe variant used in

our experiments. The contextualized embeddings,

because of their ability to represent the word in

the context of its usage, are considerably more

powerful than GloVe, hence the models relying

on them are not directly comparable to our model

or the other baselines.

8 Analysis

In this section, we perform several analyses

to understand the behaviors of our model and

the baselines better, focusing on the following

questions:

Q1: How well do LEXSUB’s lexical subspaces

capture the specific lexical relations for which

they were optimized, as opposed to the other

relations?

Q2: Can the lexical subspaces and the manifolds

in the main distributional space be exploited by a

downstream neural network model?

Q3: How well do the models preserve relatedness

in the main distributional space?

8.1 LEXSUB Subspace Neighborhoods (Q1)

Table 5 lists the top five neighbors for selected

query words for each of the lexical subspaces of

the LEXSUB, as well as the main vector space. The

distance metric used for computing the neighbors

for main vector space, synonymy, hypernymy,

and meronymy subspaces are d, dprojr , dasymr , and

dasymr , respectively. We see that most of the closest

neighbors in the learned subspace are words that

are in the specified lexical relation with the query

words.

319

Neighbors poem automobile church

Syn Sub. poems, frameworks, artist,

poetry, letters

motorcar, auto, car,

automobiles, cars

churches, churchs, infirmary,

microstates, prelims

Hyp Sub. elegy, sonnet, aria, epic,

ditty

minivan, suv, coupe,

two-seater, phaeton

duomo, cathedral, abbey,

kirk, jamestown

Mer Sub. canto, verses, cantos,

rime, prosody

gas, highs, throttles,

pod, accelerator

apsis, chancel, christian,

bema, transept

Main V.S. poems, verse, poetry,

verses, prose

auto, automobiles, car,

cars, automotives

churches, episcopal, cathedral,

catholic, chapel

Table 5: Neighborhoods for the query words for the main vector space, as well as each of the lexical

subspaces. Words in bold letters indicate that the given word is related to the query word by the

said lexical relation. The distance metric used for computing the neighbors for main vector space,

synonymy, hypernymy, and meronymy subspaces are d, dprojr , dasymr , and dasymr , respectively.

Models syn hyp . mer

Vanilla 0.1512 0.0842 0.1191

Retrofitting 0.2639 0.1999 0.1896

Counterfitting 0.3099 0.3194 0.2641

LEAR 0.4338 0.3443 0.2713

LEXSUB 0.2108 0.0794 0.1307

Syn Subspace. 0.4574 0.0392 0.0977

Hyp Subspace. 0.0162 0.4180 0.0048

Mer Subspace. 0.0125 0.0102 0.4908

Table 6: MAP@100 scores for query words taken

from Hyperlex and Simlex999.

To systematically quantify these results, we

compute the mean average precision (MAP) over

the top 100 neighbors for a list of query words.

We use the words from the Hyperlex (Vulić et al.,

2017) and Simlex (Hill et al., 2015) datasets as the

query words for this experiment. For each query

word and for each lexical relation, we obtain a list

of words from WordNet which are related to the

query word through that particular lexical relation.

These words form the gold-standard labels for

computing the average precision for the query

word. Table 6 shows the MAP scores for the top

100 neighborhood words for the baselines, for

LEXSUB, and for its lexical subspaces. The main

vector space subspace does worse than all the

baselines, which is expected because the baselines

learn to fit their lexical relations in the original

distributional space. However, if we look at the

individual lexical subspaces, we can see that the

synonymy, hypernymy, and meronymy subspaces

have the best MAP score for their respective

relation, demonstrating the separation of concerns

property that motivated our approach.

8.2 Lexical Relation Prediction Task (Q2)

One of the motivations behind enforcing explicit

lexical constraints on the distributional space is

to learn lexico-relational manifolds within the

distributional vector space. On any such lexico-

relational manifold, the respective lexical relation

will hold. For example, on a synonymy manifold,

all the synonyms of a word would be clustered

together and the antonyms would be maximally

distant. The deep learning based models then will

be able to exploit these lexico-relational manifolds

to improve generalization on the downstream

tasks. To evaluate this hypothesis, we propose

a simplified classification setup of predicting

the lexical relation between a given word pair.

If a downstream model is able to detect these

manifolds, it should be able to generalize beyond

the word pairs seen in the training set.

Lexical Relation Prediction Dataset. The

lexical relation prediction dataset is composed

of word pairs as input and their lexical relation

as the target. The problem is posed as a

four-way classification problem between the

relations synonymy, antonymy, hypernymy, and

meronomy. The dataset is collected from WordNet

and has a total of 606,160 word pairs and labels

split in 80/20 ratio into training and validation.

The training set contains 192,045 synonyms,

9,733 antonyms, 257,844 hypernyms, and 25,308
meronyms. Similarly, the validation set by relation

split is 96,022 synonyms, 4,866 antonyms,

128,920 hypernyms, and 12,652 meronyms.

We use the word pairs with lexical relation

labels from the Hyperlex (Vulić et al., 2017)

as our test set. We only consider synonymy,

320

Models Val(F1) Test(F1)

Vanilla 0.5905 0.2936

Retrofitting 0.6546 0.2899

Counterfitting 0.6366 0.3275

LEAR 0.6578 0.3211

LEXSUB 0.7962 0.4050

Table 7: Macro-averaged F1 across four lexical

relation classes, namely, synonymy, antonymy,

hypernymy, and meronymy, for lexical relation

prediction task.

antonymy, meronomy, and degree-1 hypernymy

relations from the Hyperlex as these directly map

to our training labels. We remove all the word

pairs that occur in the training set. This leads to

917 examples with 194 synonym, 98 antonym,

384 hypernym, and 241 meronym pairs.4

Lexical Relation Prediction Model. We use a

Siamese Network for the relation classification

task. The input to the model is a one-hot encoded

word pair, which is fed into the embedding

layer. This embedding layer is initialized with

the embedding that is to be evaluated and is not

fine-tuned during training. This is followed by

a 1,500-dimensional affine hidden layer with

a ReLU activation function that is shared by

both word embeddings. This shared non-linear

layer is expected to learn a mapping from the

distributional vector space to lexico-relational

manifolds within the distributional vector space.

The shared layer is followed by two different

sets of two-dimensional 125 × 4 affine layers,

one for each word. These linear layers are put

in place to capture the various idiosyncrasies of

lexical relations such as asymmetry and attract

and repel nature. Finally, the cosine similarity of

the hidden representation corresponding to two

words is fed into the softmax layer to map the

output to probabilities. The models are trained for

30 epochs using the Adagrad (Duchi et al., 2011)

optimizer with an initial learning rate of 0.01 and

a gradient clipping ratio of 5.0.

Table 7 shows the results of our lexical

relation prediction experiments. All the post-hoc

models except for retrofitting can exploit the

4The Lexical Relation Prediction Dataset can be downloaded

from https://github.com/aishikchakraborty/

LexSub.

Models mean shift

Retrofitting 32.12

Counterfitting 32.97

LEAR 32.09

LEXSUB 1.13

Table 8: Mean shift comparison between baselines

and LEXSUB models.

lexical relation manifold to classify word pairs

by their lexical relation. The LEXSUB model again

outperforms all the baseline models in the task.

We hypothesize that this is because LEXSUB learns

the lexical relations in a linear subspace which

happens to be the simplest possible manifold.

Hence, it might be easier for downstream models

to exploit it for better generalization.

8.3 Preserving the Distributional Space (Q3)

As previously discussed, one of the main

motivations of LEXSUB is to separate the learning

of lexical relations into subspaces, so that the

main distributional vector space is not deformed

to as great a degree. We directly measure this

deformation by computing the mean shift in the

learned embedding space. We define the mean

shift as the average L2-distance between the

learned and the Vanilla embeddings. We find

that the mean shift for LEXSUB is about 30 times

lower than the baselines (Table 8). This shows that

LEXSUB better preserves the original distributional

space, which may explain its better performance

in intrinsic relatedness evaluations and extrinsic

evaluations.

9 Conclusion

We presented LEXSUB, a novel framework for

learning lexical subspaces in a distributional

vector space. The proposed approach properly

separates various lexical relations from

the main distributional space, which leads

to improved downstream task performance,

interpretable learned subspaces, and preservation

of distributional information in the distributional

space.

In future work, we plan to extend our framework

to contextualized embeddings and expand the

framework to support hyperbolic distances, which

321

https://github.com/aishikchakraborty/LexSub
https://github.com/aishikchakraborty/LexSub

Relatedness Tasks Similarity Tasks

Models men3k(ρ) WS-353R(ρ) Simlex(ρ) Simverb(ρ)

Vanilla 0.5488 0.3917 0.3252 0.2870

ad-hoc LEXSUB 0.5497 0.3943 0.3489 0.3215

(a) Intrinsic evaluation results for ad-hoc models in word similarity and relatedness tasks.

Models Similarity (ρ) Directionality (Acc) Classification (Acc)

Hyperlex wbless bibless bless leds eval weeds

Vanilla 0.1354 0.5309 0.5129 0.1202 0.6987 0.2402 0.5473

adhoc LEXSUB 0.1639 0.5362 0.5220 0.1237 0.7029 0.2456 0.5476

(b) Intrinsic evaluation results for ad-hoc models in hypernymy classification tasks.

Models NER(F1) SST(Acc) SNLI(Acc) SQuAD(EM) QQP(Acc)

Vanilla 86.67 85.78 83.99 68.22 87.83

ad-hoc LEXSUB 86.73 86.00 84.00 68.50 88.33

(c) Extrinsic Evaluation results (Setup 1) for ad-hoc models.

Table 9: Intrinsic and extrinsic experiment results for the ad-hoc LEXSUB. The Vanilla model here refers

to language model embeddings trained on Wikitext-103 without the lexical constraints. Ad-hoc LEXSUB

outperforms the Vanilla embeddings on both intrinsic and extrinsic tasks indicating the gains from

post-hoc LEXSUB can be extended to the ad-hoc formulation.

can better model hierarchical relations like

hypernymy.

Acknowledgments

We would like to thank the reviewers for their

valuable comments. This work is supported by

funding from Samsung Electronics. The last

author is supported by the Canada CIFAR AI

Chair program. This research was enabled in

part by support provided by Calcul Québec,5 and

Compute Canada.6 We would also like to thank

Prof. Timothy O’Donnell, Ali Emami, and Jad

Kabbara for their valuable input.

Appendix A: Ad-hoc LEXSUB

In this section, we show how LEXSUB can be

extended to the ad-hoc setting. We achieve this by

substituting the GloVe reconstruction loss from

Section 3.3 with a language modeling objective

that enables us to learn the embedding matrix X′

from scratch.

5https://www.calculquebec.ca.
6https://www.computecanada.ca.

The Ad-hoc Distributional Space. Given a set

of tokens in a corpus C = (w1, w2, . . . , wt), we

minimize the negative log likelihood function:

Ladhoc
dist = −

k
∑

i=1

logP (wi|wi−k, · · · , wi−1; θ)

where k is the size of the sequence under con-

sideration, and the conditional probability P is

modeled using a neural language model with θ
parameters which includes the embedding matrix

X′ = [x′
1, · · · , x′

n]
T .

Ad-hoc LEXSUB Loss. The total loss in case of

ad-hoc LEXSUB is thus: Ltotal = Ladhoc
dist + Llex,

where Llex is defined by equation 10.

Training Dataset. The ad-hoc model is trained

on the Wikitext-103 dataset (Merity et al., 2016).

We preprocess the data by lowercasing all the

tokens in the dataset across the splits, and limiting

the vocabulary to top 100k words.

Ad-Hoc LEXSUB Model. The distributional

component of our ad-hoc model is a two-layer

QRNN-based language model (Bradbury et al.,

2016) with a 300-dimensional embedding layer

and a 1,200-dimensional hidden layer. The batch-

size, BPTT length, and dropout ratio values for

322

https://www.calculquebec.ca
https://www.computecanada.ca

Relatedness Tasks Similarity Tasks

Models men3k(ρ) WS-353R(ρ) Simlex(ρ) Simverb(ρ)

Vanilla 0.7375 0.4770 0.3705 0.2275

Retrofitting 0.7451 0.4662 0.4561 0.2884

Counterfitting 0.6034 0.2820 0.5605 0.4260

LEAR 0.5024 0.2300 0.7273 0.7050

LEXSUB 0.7562 0.4787 0.4838 0.3371

(a) Intrinsic evaluation results for for baselines and LEXSUB trained with lexical resource from LEAR.

Models Similarity (ρ) Directionality (Acc) Classification (Acc)

Hyperlex wbless bibless bless leds eval weeds

Vanilla 0.1352 0.5101 0.4894 0.1115 0.7164 0.2404 0.5335

Retrofitting 0.1718 0.5603 0.5469 0.1440 0.7337 0.2648 0.5846

Counterfitting 0.3440 0.6196 0.6071 0.1851 0.7344 0.3296 0.6342

LEAR 0.4346 0.6779 0.6683 0.2815 0.7413 0.3623 0.6926

LEXSUB 0.5327 0.8228 0.7252 0.5884 0.9290 0.4359 0.9101

(b) Hypernymy evaluation results for baselines and LEXSUB trained with lexical resource from LEAR.

Models NER(F1) SST-2(Acc) SNLI(Acc) SQuAD(EM) QQP(Acc)

Vanilla 87.88 87.31 85.00 64.23 87.08

retrofitting 85.88 87.26 84.61 64.91 86.98

Counterfitting 80.00 87.53 84.93 63.70 86.82

LEAR 80.23 88.08 83.70 62.96 86.01

LEXSUB 88.02 88.69 85.03 64.95 87.65

(c) Extrinsic evaluation results (Setup 1) for baselines and LEXSUB trained with lexical resource from LEAR.

Table 10: Intrinsic and extrinsic experiment results for baselines and LEXSUB trained with lexical

resource from LEAR. We observe a similar trend in the intrinsic and the extrinsic evaluation as to when

the models were trained on lexical resources from Section 4.2. This indicates that the LEXSUB stronger

performance is due to our novel subspace-based formulation rather than its ability to better exploit a

specific lexical resource.

our model are 30, 140, and 0.1 respectively. We

train our model for 10 epochs using the Adam

(Kingma and Ba, 2014) optimizer with an initial

learning rate of 0.001, which is reduced during

training by a factor of 10 in epochs 3, 6, and 7.

We use the same set of hyperparameters that were

used for the post-hoc experiments.

Results Table 9c presents the extrinsic

evaluations of the ad-hoc LEXSUB model. Vanilla,

in this case, refers to embeddings from the

language model trained on Wikitext-103 without

any lexical constraints. We observe that ad-hoc

LEXSUB outperforms Vanilla on all extrinsic tasks,

demonstrating that learning lexical relations in

subspaces is also helpful in the ad-hoc setting.

We observe similar gains for ad-hoc LEXSUB on

intrinsic evaluation in Table 9a and 9b.

Appendix B: Experiments with Lexical

Resource from Vulić and Mrkšić (2017)

In Section 7, we discussed the performance

of LEXSUB and the baselines trained on the

lexical resource presented in Section 4.2. In this

section, we repeat the same set of experiments

but with the LEXSUB and the baselines trained

on lexical resource from LEAR, our strongest

competitor. The objective of these experiments

is to ascertain that the LEXSUB’s competitive

advantage is due to our novel subspace-based

323

formulation rather than its ability to better exploit

the lexical resource discussed in Section 4.2.

The hyperparameters used to train the models is

the same as Section 4.3. For baselines, we use the

hyperparameters reported in the respective papers.

We observe a similar trend in intrinsic and

extrinsic evaluation. LEXSUB outperforms all the

baselines on relatedness (Table 10a), hypernymy

intrinsic tasks (Table 10b), and all the extrinsic

tasks (Table 10c). We again observe that

LEAR and Counterfitting perform poorly in the

relatedness tasks. We suspect the poor relatedness

score of LEAR and Counterfitting is because these

models distort the original distributional space.

References

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana

Kravalova, Marius Paşca, and Aitor Soroa.

2009. A study on similarity and relatedness

using distributional and WordNet-based ap-

proaches. In Proceedings of Human Language

Technologies: The 2009 Annual Conference of

the North American Chapter of the Association

for Computational Linguistics on - NAACL ’09,

page 19, Boulder, Colorado. Association for

Computational Linguistics.

Ben Athiwaratkun and Andrew Wilson. 2017.

Multimodal Word Distributions. In Proceed-

ings of the 55th Annual Meeting of the Associa-

tion for Computational Linguistics (Volume 1:

Long Papers), pages 1645–1656.

Alexei Baevski, Sergey Edunov, Yinhan Liu,

Luke Zettlemoyer, and Michael Auli. 2019.

Cloze-driven Pretraining of Self-attention Net-

works. In Proceedings of the 2019 Conference

on Empirical Methods in Natural Language

Processing and the 9th International Joint

Conference on Natural Language Process-

ing (EMNLP-IJCNLP), pages 5360–5369,

Hong Kong, China. Association for Compu-

tational Linguistics.

Collin F. Baker, Charles J. Fillmore, and John B.

Lowe. 1998. The Berkeley FrameNet Project.

In Proceedings of the 17th International Con-

ference on Computational Linguistics - Vol-

ume 1, COLING ’98, pages 86–90, Montreal,

Quebec, Canada. Association for Computa-

tional Linguistics.

Marco Baroni, Raffaella Bernardi, Ngoc-Quynh

Do, and Chung-chieh Shan. 2012. Entailment

above the word level in distributional semantics.

In Proceedings of the 13th Conference of the

European Chapter of the Association for

Computational Linguistics, pages 23–32.

Marco Baroni and Alessandro Lenci. 2011. How

We BLESSed Distributional Semantic Eval-

uation. In Proceedings of the GEMS 2011

Workshop on GEometrical Models of Natural

Language Semantics, GEMS ’11, pages 1–10,

Edinburgh, Scotland. Association for Compu-

tational Linguistics.

Jiang Bian, Bin Gao, and Tie-Yan Liu. 2014.

Knowledge-powered Deep Learning for Word

Embedding. In Proceedings of the 2014th

European Conference on Machine Learning

and Knowledge Discovery in Databases - Vol-

ume Part I, ECMLPKDD’14, pages 132–148,

Nancy, France. Springer-Verlag.

Piotr Bojanowski, Edouard Grave, Armand Joulin,

and Tomas Mikolov. 2017. Enriching Word

Vectors with Subword Information. Transac-

tions of the Association for Computational

Linguistics, 5:135–146.

Danushka Bollegala, Alsuhaibani Mohammed,

Takanori Maehara,and Ken-ichi Kawarabayashi.

2016. Joint Word Representation Learning

Using a Corpus and a Semantic Lexicon. In

Proceedings of the Thirtieth AAAI Confer-

ence on Artificial Intelligence, AAAI’16,

pages 2690–2696, Phoenix, Arizona. AAAI

Press.

Samuel Bowman, Gabor Angeli, Christopher

Potts, and Christopher D. Manning. 2015. A

large annotated corpus for learning natural lan-

guage inference. In Conference Proceedings -

EMNLP 2015: Conference on Empirical

Methods in Natural Language Processing,

pages 632–642. Association for Computational

Linguistics (ACL).

James Bradbury, Stephen Merity, Caiming Xiong,

and Richard Socher. 2016. Quasi-Recurrent

Neural Networks. arXiv:1611.01576 [cs].

Elia Bruni, Nam Khanh Tran, and Marco Baroni.

2014. Multimodal Distributional Semantics.

Journal of Artificial Intelligence Research,

49(1):1–47.

324

Haw-Shiuan Chang, Ziyun Wang, Luke Vilnis,

and Andrew McCallum. 2018. Distributional

Inclusion Vector Embedding for Unsupervised

Hypernymy Detection. In Proceedings of the

2018 Conference of the North American Chap-

ter of the Association for Computational

Linguistics: Human Language Technologies,

Volume 1 (Long Papers), pages 485–495,

New Orleans, Louisiana. Association for Com-

putational Linguistics.

John Duchi, Elad Hazan, and Yoram Singer. 2011.

Adaptive Subgradient Methods for Online

Learning and Stochastic Optimization. Jour-

nal of Machine Learning Research, 12(Jul):

2121–2159.

Manaal Faruqui, Jesse Dodge, Sujay Kumar

Jauhar, Chris Dyer, Eduard Hovy, and Noah A.

Smith. 2015. Retrofitting Word Vectors to

Semantic Lexicons. In Proceedings of the 2015

Conference of the North American Chapter

of the Association for Computational Lin-

guistics: Human Language Technologies,

pages 1606–1615.

J. R. Firth. 1957. A synopsis of linguistic theory,

1930–1955. Studies in Linguistic Analysis.

Daniel Fried and Kevin Duh. 2014. Incorporating

Both Distributional and Relational Semantics in

Word Representations. arXiv:1412.4369 [cs].

Juri Ganitkevitch, Benjamin Van Durme, and

Chris Callison-Burch. 2013. PPDB: The Para-

phrase Database. In Proceedings of the

2013 Conference of the North American

Chapter of the Association for Computational

Linguistics: Human Language Technologies,

pages 758–764. Atlanta, Georgia. Association

for Computational Linguistics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind

Tafjord, Pradeep Dasigi, Nelson Liu, Matthew

Peters, Michael Schmitz, and Luke Zettlemoyer.

2018. AllenNLP: A Deep Semantic Natural

Language Processing Platform. arXiv:1803.

07640 [cs].

Daniela Gerz, Ivan Vulić, Felix Hill, Roi Reichart,

and Anna Korhonen. 2016. SimVerb-3500: A

Large-Scale Evaluation Set of Verb Similarity.

In Proceedings of the 2016 Conference on Em-

pirical Methodsin Natural LanguageProcessing,

pages 2173–2182, Austin, Texas. Association

for Computational Linguistics.

Goran Glavaš and Ivan Vulić. 2018. Explicit

Retrofitting of Distributional Word Vectors.

In Proceedings of the 56th Annual Meeting of

the Association for Computational Linguistics

(Volume 1: Long Papers), pages 34–45.

Zellig S. Harris. 1954. Distributional Structure.

WORD, 10(2-3):146–162.

Felix Hill, Roi Reichart, and Anna Korhonen.

2015. SimLex-999: Evaluating Semantic Models

With (Genuine) Similarity Estimation. Compu-

tational Linguistics, 41(4):665–695.

Sujay Kumar Jauhar, Chris Dyer, and Eduard

Hovy. 2015. Ontologically Grounded Multi-

sense Representation Learning for Semantic

Vector Space Models. In Proceedings of the

2015 Conference of the North American Chap-

ter of the Association for Computational

Linguistics: Human Language Technologies,

pages 683–693, Denver, Colorado. Association

for Computational Linguistics.

Hwiyeol Jo. 2018. Expansional Retrofitting

for Word Vector Enrichment. arXiv:1808.

07337 [cs].

Hwiyeol Jo and Stanley Jungkyu Choi. 2018.

Extrofitting: Enriching Word Representation

and its Vector Space with Semantic Lexicons.

In Proceedings of The Third Workshop on Rep-

resentation Learning for NLP, pages 24–29,

Melbourne, Australia. Association for Compu-

tational Linguistics.

Douwe Kiela, Felix Hill, and Stephen Clark.

2015a. Specializing Word Embeddings for Sim-

ilarity or Relatedness. In Proceedings of the

2015 Conference on Empirical Methods in Nat-

ural Language Processing, pages 2044–2048,

Lisbon, Portugal. Association for Computa-

tional Linguistics.

Douwe Kiela, Laura Rimell, Ivan Vulić, and

Stephen Clark. 2015b. Exploiting Image Gen-

erality for Lexical Entailment Detection. In

Proceedings of the 53rd Annual Meeting of the

Association for Computational Linguistics and

the 7th International Joint Conference on Nat-

ural Language Processing (Volume 2: Short

325

Papers), pages 119–124, Beijing, China, Asso-

ciation for Computational Linguistics,

Diederik P. Kingma and Jimmy Ba. 2014.

Adam: A Method for Stochastic Optimization.

arXiv:1412.6980 [cs].

Dekang Lin, Shaojun Zhao, Lijuan Qin, and Ming

Zhou. 2003. Identifying Synonyms Among

Distributionally Similar Words. In Proceed-

ings of the 18th International Joint Con-

ference on Artificial Intelligence, IJCAI’03,

pages 1492–1493. Acapulco, Mexico. Morgan

Kaufmann Publishers Inc..

Quan Liu, Hui Jiang, Si Wei, Zhen-Hua Ling,

and Yu Hu. 2015. Learning Semantic Word

Embeddings based on Ordinal Knowledge

Constraints. In Proceedings of the 53rd Annual

Meeting of the Association for Computational

Linguistics and the 7th International Joint

Conference on Natural Language Processing

(Volume 1: Long Papers), pages 1501–1511.

Beijing, China. Association for Computational

Linguistics.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and

Jianfeng Gao. 2019. Multi-Task Deep Neural

Networks for Natural Language Understanding.

In Proceedings of the 57th Annual Meeting of

the Association for Computational Linguistics,

pages 4487–4496, Florence, Italy. Association

for Computational Linguistics.

Bryan McCann, James Bradbury, Caiming Xiong,

and Richard Socher. 2017. Learned in Trans-

lation: Contextualized Word Vectors. In I. Guyon,

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,

S. Vishwanathan, and R. Garnett, editors,

Advances in Neural Information Processing

Systems 30, pages 6294–6305. Curran Asso-

ciates, Inc.

Stephen Merity, Caiming Xiong, James Bradbury,

and Richard Socher. 2016. Pointer Sentinel

Mixture Models. arXiv:1609.07843 [cs].

Tomas Mikolov, Kai Chen, Greg Corrado,

and Jeffrey Dean. 2013. Efficient Estimation

of Word Representations in Vector Space.

arXiv:1301.3781 [cs].

Tomas Mikolov, Martin Karafiát, Lukás Burget,

Jan Cernocký, and Sanjeev Khudanpur.

2010. Recurrent neural network based lan-

guage model. In Eleventh Annual Conference

of the International Speech Communication

Association.

George A. Miller. 1995. WordNet: A Lexical

Database for English. Communications of ACM,

38(11):39–41.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise

Thomson, Milica Gašić, Lina M. Rojas-Barahona,

Pei-Hao Su, David Vandyke, Tsung-Hsien Wen,

and Steve Young. 2016. Counter-fitting Word

Vectors to Linguistic Constraints. In Pro-

ceedings of the 2016 Conference of the North

American Chapter of the Association for

Computational Linguistics: Human Language

Technologies, pages 142–148.

Nikola Mrkšić, Ivan Vulić, Diarmuid Ó Séaghdha,

Ira Leviant, Roi Reichart, Milica Gašić, Anna

Korhonen, and Steve Young. 2017. Semantic

Specialization of Distributional Word Vector

Spaces using Monolingual and Cross-Lingual

Constraints. Transactions of the Association for

Computational Linguistics, 5(0):309–324.

Roberto Navigli and Simone Paolo Ponzetto.

2012. BabelNet: The automatic construction,

evaluation and application of a wide-coverage

multilingual semantic network. Artificial Intel-

ligence, 193:217–250.

Kim Anh Nguyen, Maximilian Köper, Sabine

Schulte im Walde, and Ngoc Thang Vu.

2017. Hierarchical Embeddings for Hypernymy

Detection and Directionality. In Proceedings of

the 2017 Conference on Empirical Methods in

Natural Language Processing, pages 233–243.

Kim Anh Nguyen, Sabine Schulte im Walde,

and Ngoc Thang Vu. 2016. Integrating Distribu-

tional Lexical Contrast into Word Embeddings

for Antonym-Synonym Distinction. In Pro-

ceedings of the 54th Annual Meeting of the

Association for Computational Linguistics

(Volume 2: Short Papers), pages 454–459,

Berlin, Germany. Association for Computa-

tional Linguistics.

Maximillian Nickel and Douwe Kiela. 2017.

Poincaré Embeddings for Learning Hierar-

chical Representations. In I. Guyon, U. V.

Luxburg, S. Bengio, H. Wallach, R. Fergus,

326

S. Vishwanathan, and R. Garnett, editors,

Advances in Neural Information Processing

Systems 30, pages 6338–6347. Curran Asso-

ciates, Inc.

Masataka Ono, Makoto Miwa, and Yutaka Sasaki.

2015. Word Embedding-based Antonym

Detection using Thesauri and Distributional

Information. In Proceedings of the 2015 Con-

ference of the North American Chapter of the

Association for Computational Linguistics:

Human Language Technologies, pages 984–989,

Denver, Colorado. Association for Computa-

tional Linguistics.

Dominique Osborne, Shashi Narayan, and Shay B.

Cohen. 2016. Encoding Prior Knowledge with

Eigenword Embeddings. Transactions of the

Association for Computational Linguistics,

4:417–430.

Ankur Parikh, Oscar Täckström, Dipanjan Das,

and Jakob Uszkoreit. 2016. A Decomposable

Attention Model for Natural Language Infer-

ence. In Proceedings of the 2016 Conference

on Empirical Methods in Natural Language

Processing, pages 2249–2255, Austin, Texas.

Association for Computational Linguistics.

Ellie Pavlick, PushpendreRastogi, Juri Ganitkevitch,

Benjamin Van Durme, and Chris Callison-Burch.

2015. PPDB 2.0: Better paraphrase ranking,

fine-grained entailment relations, word embed-

dings, and style classification. In Proceedings

of the 53rd Annual Meeting of the Association

for Computational Linguistics and the 7th In-

ternational Joint Conference on Natural Lan-

guage Processing (Volume 2: Short Papers),

pages 425–430, Beijing, China. Association for

Computational Linguistics.

JeffreyPennington, RichardSocher, and Christopher

Manning. 2014. Glove: Global Vectors for

Word Representation. In Proceedings of the

2014 Conference on Empirical Methods

in Natural Language Processing (EMNLP),

pages 1532–1543, Doha, Qatar. Association for

Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer,

Matt Gardner, Christopher Clark, Kenton Lee,

and Luke Zettlemoyer. 2018. Deep Contex-

tualized Word Representations. In Proceedings

of the 2018 Conference of the North American

Chapter of the Association for Computational

Linguistics: Human Language Technologies,

Volume 1 (Long Papers), pages 2227–2237.

New Orleans, Louisiana. Association for Com-

putational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin

Lopyrev, and Percy Liang. 2016. SQuAD:

100,000+ Questions for Machine Comprehen-

sion of Text. In Proceedings of the 2016

Conference on Empirical Methods in Natural

Language Processing, pages 2383–2392.

Stephen Roller, Douwe Kiela, and Maximilian

Nickel. 2018. Hearst Patterns Revisited: Auto-

matic Hypernym Detection from Large Text

Corpora. In Proceedings of the 56th Annual

Meeting of the Association for Computa-

tional Linguistics (Volume 2: Short Papers),

pages 358–363. Melbourne, Australia. Associ-

ation for Computational Linguistics.

Sascha Rothe, Sebastian Ebert, and Hinrich

Schütze. 2016. Ultradense Word Embeddings

by Orthogonal Transformation. arXiv:1602.

07572 [cs].

Sascha Rothe and Hinrich Schütze. 2015.

AutoExtend: Extending Word Embeddings to

Embeddings for Synsets and Lexemes. In

Proceedings of the 53rd Annual Meeting of

the Association for Computational Linguistics

and the 7th International Joint Conference on

Natural Language Processing (Volume 1: Long

Papers), pages 1793–1803, Beijing, China.

Association for Computational Linguistics.

Enrico Santus, Alessandro Lenci, Qin Lu, and

Sabine Schulte im Walde. 2014. Chasing

Hypernyms in Vector Spaces with Entropy.

In Proceedings of the 14th Conference of

the European Chapter of the Association for

Computational Linguistics, Volume 2: Short

Papers, pages 38–42, Gothenburg, Sweden.

Association for Computational Linguistics.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi,

and Hannaneh Hajishirzi. 2016. Bidirectional

Attention Flow for Machine Comprehension.

arXiv:1611.01603 [cs].

Vered Shwartz, Yoav Goldberg, and Ido Dagan.

2016. Improving Hypernymy Detection with

327

an Integrated Path-based and Distributional

Method. In Proceedings of the 54th Annual

Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers),

pages 2389–2398.

Vered Shwartz, Enrico Santus, and Dominik

Schlechtweg. 2017. Hypernyms under Siege:

Linguistically-motivated Artillery for Hyper-

nymy Detection. In Proceedings of the 15th

Conference of the European Chapter of

the Association for Computational Linguis-

tics: Volume 1, Long Papers, pages 65–75.

Valencia, Spain. Association for Computational

Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason

Chuang, Christopher D. Manning, Andrew Ng,

and Christopher Potts. 2013. Recursive Deep

Models for Semantic Compositionality Over a

Sentiment Treebank. In Proceedings of the 2013

Conference on Empirical Methods in Natural

Language Processing, pages 1631–1642.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng,

Hao Tian, Hua Wu, and Haifeng Wang. 2019.

ERNIE 2.0: A Continual Pre-training Frame-

work for Language Understanding. arXiv:1907.

12412 [cs].

Martin Sundermeyer, Ralf Schlüter, and Hermann

Ney. 2012. LSTM neural networks for language

modeling. In Thirteenth Annual Conference

of the International Speech Communication

Association.

Alexandru Tifrea, Gary Bécigneul, and Octavian-

Eugen Ganea. 2018. Poincaré GloVe: Hyper-

bolic Word Embeddings.arXiv:1810.06546 [cs].

Erik F. Tjong Kim Sang and Fien De Meulder.

2003. Introduction to the CoNLL-2003 Shared

Task: Language-independent Named Entity Rec-

ognition. In Proceedings of the Seventh Con-

ference on Natural Language Learning at

HLT-NAACL 2003 - Volume 4, CONLL ’03,

pages 142–147, Edmonton, Canada. Associa-

tion for Computational Linguistics.

Ivan Vendrov, Ryan Kiros, Sanja Fidler, and

Raquel Urtasun. 2015. Order-Embeddings of

Images and Language. arXiv:1511.06361 [cs].

Luke Vilnis and Andrew McCallum. 2014. Word

Representations via Gaussian Embedding.

arXiv:1412.6623 [cs].

Ivan Vulić, Daniela Gerz, Douwe Kiela, Felix Hill,

and Anna Korhonen. 2017. HyperLex: A Large-

Scale Evaluation of Graded Lexical Entailment.

Computational Linguistics, 43(4):781–835.

Ivan Vulić and Nikola Mrkšić. 2017. Specialising

Word Vectors for Lexical Entailment. arXiv:

1710.06371 [cs].

Zhiguo Wang, Wael Hamza, and Radu Florian.

2017. Bilateral Multi-perspective Matching for

Natural Language Sentences. In Proceedings of

the 26th International Joint Conference on Arti-

ficial Intelligence, IJCAI’17, pages 4144–4150,

Melbourne, Australia. AAAI Press.

Julie Weeds, Daoud Clarke, Jeremy Reffin,

David Weir, and Bill Keller. 2014. Learn-

ing to Distinguish Hypernymsand Co-Hyponyms.

In Proceedings of COLING 2014, the 25th

International Conference on Computational

Linguistics: Technical Papers, pages 2249–2259.

John Wieting, Mohit Bansal, Kevin Gimpel,

and Karen Livescu. 2015. From Paraphrase

Database to Compositional Paraphrase Model

and Back. Transactions of the Association for

Computational Linguistics, 3:345–358.

Chang Xu, Yalong Bai, Jiang Bian, Bin Gao,

Gang Wang, Xiaoguang Liu, and Tie-Yan

Liu. 2014. RC-NET: A General Framework

for Incorporating Knowledge into Word

Representations. In Proceedings of the 23rd

ACM International Conference on Conference

on Information and Knowledge Management -

CIKM ’14, pages 1219–1228, Shanghai, China.

ACM Press.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime

Carbonell, Russ R Salakhutdinov, and Quoc V.

Le. 2019. XLNet: Generalized Autoregressive

Pretraining for Language Understanding. In

H. Wallach, H. Larochelle, A. Beygelzimer,

F. d’ Alché-Buc, E. Fox, and R. Garnett, editors,

Advances in Neural Information Processing

328

Systems 32, pages 5753–5763. Curran Asso-

ciates, Inc.

Mo Yu and Mark Dredze. 2014. Improving Lex-

ical Embeddings with Semantic Knowledge.

In Proceedings of the 52nd Annual Meeting

of the Association for Computational Linguis-

tics (Volume 2: Short Papers), pages 545–550,

Baltimore, Maryland. Association for Compu-

tational Linguistics.

329

	Introduction
	Related Work
	Model
	Task Definition
	Learning Lexical Subspaces in the Distributional Space
	Abstract Lexical Relation Loss
	Negative Sampling
	Relation-Specific Losses
	Total Lexical Subspace Loss

	Preserving the Distributional Space
	Overall Loss Function

	Training Setup
	Training Dataset
	Lexical Resource
	Models and Hyperparameters

	Baselines
	Evaluations
	Intrinsic Tasks
	Extrinsic Tasks

	Results
	Analysis
	LexSub Subspace Neighborhoods (Q1)
	Lexical Relation Prediction Task (Q2)
	Preserving the Distributional Space (Q3)

	Conclusion

