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Abstract

We study the influence of context on sentence

acceptability. First we compare the acceptabil-

ity ratings of sentences judged in isolation,

with a relevant context, and with an irrelevant

context. Our results show that context induces

a cognitive load for humans, which com-

presses the distribution of ratings. Moreover,

in relevant contexts we observe a discourse

coherence effect that uniformly raises ac-

ceptability. Next, we test unidirectional and

bidirectional language models in their ability to

predict acceptability ratings. The bidirectional

models show very promising results, with the

best model achieving a new state-of-the-art for

unsupervised acceptability prediction. The two

sets of experiments provide insights into the

cognitive aspects of sentence processing and

central issues in the computational modeling

of text and discourse.

1 Introduction

Sentence acceptability is the extent to which a

sentence appears natural to native speakers of a

language. Linguists have often used this property

to motivate grammatical theories. Computational

language processing has traditionally been more

concerned with likelihood—the probability of a

sentence being produced or encountered. The

question of whether and how these properties

are related is a fundamental one. Lau et al.

(2017b) experiment with unsupervised language

models to predict acceptability, and they obtained

an encouraging correlation with human ratings.

This raises foundational questions about the nature

of linguistic knowledge: If probabilistic models

can acquire knowledge of sentence acceptability

from raw texts, we have prima facie support for

an alternative view of language acquisition that

does not rely on a categorical grammaticality

component.

It is generally assumed that our perception of

sentence acceptability is influenced by context.

Sentences that may appear odd in isolation can

become natural in some environments, and sen-

tences that seem perfectly well formed in some

contexts are odd in others. On the computational

side, much recent progress in language modeling

has been achieved through the ability to incor-

porate more document context, using broader

and deeper models (e.g., Devlin et al., 2019;

Yang et al., 2019). While most language modeling

is restricted to individual sentences, models can

benefit from using additional context (Khandelwal

et al., 2018). However, despite the importance of

context, few psycholinguistic or computational

studies systematically investigate how context

affects acceptability, or the ability of language

models to predict human acceptability judgments.

Tworecent studies that explore the impact of doc-

ument context on acceptability judgments both

identify a compression effect (Bernardy et al.,

2018; Bizzoni and Lappin, 2019). Sentences per-

ceived to be low in acceptability when judged

without context receive a boost in acceptability

when judged within context. Conversely, those

with high out-of-context acceptability see a reduc-

tion in acceptability when context is presented. It

is unclear what causes this compression effect. Is

it a result of cognitive load, imposed by additional
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processing demands, or is it the consequence of

an attempt to identify a discourse relation between

context and sentence?

We address these questions in this paper. To

understand the influence of context on human

perceptions, we ran three crowdsourced experi-

ments to collect acceptability ratings from human

annotators. We develop a methodology to ensure

comparable ratings for each target sentence in

isolation (without any context), in a relevant three-

sentence context, and in the context of sentences

randomly sampled from another document. Our

results replicate the compression effect, and

careful analyses reveal that both cognitive load

and discourse coherence are involved.

To understand the relationship between sen-

tence acceptability and probability, we conduct

experiments with unsupervised language models

to predict acceptability. We explore traditional

unidirectional (left-to-right) recurrent neural

network models, and modern bidirectional

transformer models (e.g., BERT). We found that

bidirectional models consistently outperform

unidirectional models by a wide margin, calling

into question the suitability of left-to-right bias for

sentence processing. Our best bidirectional model

achieves simulated human performance on the

prediction task, establishing a new state-of-the-art.

2 Acceptability in Context

2.1 Data Collection

To understand how humans interpret acceptability,

we require a set of sentences with varying degrees

of well-formedness. Following previous studies

(Lau et al., 2017b; Bernardy et al., 2018), we

use round-trip machine translation to introduce a

wide range of infelicities into naturally occurring

sentences.

We sample 50 English (target) sentences and

their contexts (three preceding sentences) from the

English Wikipedia.1 We use Moses to translate

the target sentences into four languages (Czech,

Spanish, German, and French) and then back to

1We preprocess the raw dump with WikiExtractor

(https://github.com/attardi/wikiextractor),

and collect paragraphs that have ≥ 4 sentences with each

sentence having ≥ 5 words. Sentences and words are tok-

enized with spaCy (https://spacy.io/) to check for

these constraints.

English.2 This produces 250 sentences in total

(5 languages including English) for our test set.

Note that we only do round-trip translation for the

target sentences; the contexts are not modified.

We use Amazon Mechanical Turk (AMT) to

collect acceptability ratings for the target sen-

tences.3 We run three experiments where we

expose users to different types of context. For the

experiments, we split the test set into 25 HITs of

10 sentences. Each HIT contains 2 original English

sentences and 8 round-trip translated sentences,

which are different from each other and not de-

rived from either of the originals. Users are asked

to rate the sentences for naturalness on a 4-point

ordinal scale: bad (1.0), not very good (2.0),

mostly good (3.0), and good (4.0). We recruit 20

annotators for each HIT.

In the first experiment we present only the tar-

get sentences, without any context. In the second

experiment, we first show the context paragraph

(three preceding sentences of the target sentence),

and ask users to select the most appropriate

description of its topic from a list of four candi-

date topics. Each candidate topic is represented by

three words produced by a topic model.4 Note that

the context paragraph consists of original English

sentences which did not undergo translation. Once

the users have selected the topic, they move to the

next screen where they rate the target sentence for

naturalness.5 The third experiment has the same

format as the second, except that the three sen-

tences presented prior to rating are randomly sam-

pled from another Wikipedia article.6 We require

annotators to perform a topic identification task

prior to rating the target sentence to ensure that

they read the context before making acceptability

judgments.

For each sentence, we aggregate the ratings

from multiple annotators by taking the mean.

Henceforth we refer to the mean ratings collected

from the first (no context), second (real context),

and third (random context) experiments as H
∅,

2We use the pre-trained Moses models from http://

www.statmt.org/moses/RELEASE-4.0/models/

for translation.
3https://www.mturk.com/.
4We train a topic model with 50 topics on 15 K Wikipedia

documents with Mallet (McCallum, 2002) and infer topics

for the context paragraphs based on the trained model.
5Note that we do not ask the users to judge the naturalness

of the sentence in context; the instructions they see for the

naturalness rating task is the same as the first experiment.
6Sampled sentences are sequential, running sentences.
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H
+, and H

−, respectively. We rolled out the

experiments on AMT over several weeks and pre-

vented users from doing more than one exper-

iment. Therefore a disjoint group of annotators

performed each experiment.

To control for quality, we check that users are

rating the English sentences ≥ 3.0 consistently.

For the second and third experiments, we also

check that users are selecting the topics appro-

priately. In each HIT one context paragraph has

one real topic (from the topic model), and three

fake topics with randomly sampled words as the

candidate topics. Users who fail to identify the

real topic above a confidence level are filtered out.

Across the three experiments, over three quarters

of workers passed our filtering conditions.

To calibrate for the differences in rating scale

between users, we follow the postprocessing

procedure of Hill et al. (2015), where we calculate

the average rating for each user and the overall

average (by taking the mean of all average ratings),

and decrease (increase) the ratings of a user by 1.0

if their average rating is greater (smaller) than the

overall average by 1.0.7 To reduce the impact of

outliers, for each sentence we also remove ratings

that are more than 2 standard deviations away

from the mean.8

2.2 Results and Discussion

We present scatter plots to compare the mean

ratings for the three different contexts (H
∅, H

+,

and H
−) in Figure 1. The black line represents the

diagonal, and the red line represents the regression

line. In general, the mean ratings correlate strongly

with each other. Pearson’s r for H
+ vs. H

∅ = 0.940,

H
− vs. H

∅ = 0.911, and H
− vs. H

+ = 0.891.

The regression (red) and diagonal (black) lines

in H
+ vs. H

∅ (Figure 1a) show a compression

effect. Bad sentences appear a little more natural,

and perfectly good sentences become slightly

less natural, when context is introduced.9 This

is the same compression effect observed by

7No worker has an average rating that is greater or smaller

than the overall average by 2.0.
8This postprocessing procedure discarded a total of 504

annotations/ratings (approximately 3.9%) over 3 experi-

ments. The final average number of annotations for a sentence

in the first, second, and third experiments is 16.4, 17.8, and

15.3, respectively.
9On average, good sentences (ratings ≥ 3.5) observe a

rating reduction of 0.08 and bad sentences (ratings ≤ 1.5) an

increase of 0.45.

Bernardy et al. (2018). It is also present in the

graph for H
− vs. H

∅ (Figure 1b).

Two explanations of the compression effect

seem plausible to us. The first is a discourse

coherence hypothesis that takes this effect to be

caused by a general tendency to find infelicitous

sentences more natural in context. This hypothesis,

however, does not explain why perfectly natural

sentences appear less acceptable in context. The

second hypothesis is a variant of a cognitive load

account. In this view, interpreting context imposes

a significant burden on a subject’s processing

resources, and this reduces their focus on the

sentence presented for acceptability judgments. At

the extreme ends of the rating scale, as they require

all subjects to be consistent in order to achieve the

minimum/maximum mean rating, the increased

cognitive load increases the likelihood of a subject

making a mistake. This increases/lowers the mean

rating, and creates a compression effect.

The discourse coherence hypothesis would

imply that the compression effect should appear

with real contexts, but not with random ones,

as there is little connection between the target

sentence and a random context. By contrast, the

cognitive load account predicts that the effect

should be present in both types of context, as it

depends only on the processing burden imposed

by interpreting the context. We see compression

in both types of contexts, which suggests that

the cognitive load hypothesis is the more likely

account.

However, these two hypotheses are not

mutually exclusive. It is, in principle, possible that

both effects—discourse coherence and cognitive

load—are exhibited when context is introduced.

To better understand the impact of discourse

coherence, consider Figure 1c, where we compare

H
− vs. H

+. Here the regression line is parallel to

and below the diagonal, implying that there is a

consistent decrease in acceptability ratings from

H
+ to H

−. As both ratings are collected with some

form of context, the cognitive load confound is

removed. What remains is a discourse coherence

effect. Sentences presented in relevant contexts

undergo a consistent increase in acceptability

rating.

To analyze the significance of this effect, we

use the non-parametric Wilcoxon signed-rank test

(one-tailed) to compare the difference between

H
+ and H

−. This gives a p-value of 1.9 × 10−8,
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Figure 1: Scatter plots comparing human acceptability ratings.

indicating that the discourse coherence effect is

significant.

Returning to Figures 1a and 1b, we can see

that (1) the offset of the regression line, and (2)

the intersection point of the diagonal and the

regression line, is higher in Figure 1a than in

Figure 1b. This suggests that there is an increase

of ratings, and so, in addition to the cognitive load

effect, a discourse coherence effect is also at work

in the real context setting.

We performed hypothesis tests to compare the

regression lines in Figures 1a and 1b to see if

their offsets (constants) and slopes (coefficients)

are statistically different.10 The p-value for the

offset is 1.7 × 10−2, confirming our qualitative

observation that there is a significant discourse

coherence effect. The p-value for the slope,

however, is 3.6× 10−1, suggesting that cognitive

load compresses the ratings in a consistent way

for both H
+ and H

−, relative to H
∅.

To conclude, our experiments reveal that con-

text induces a cognitive load for human process-

ing, and this has the effect of compressing the

acceptability distribution. It moderates the ex-

tremes by making very unnatural sentences appear

more acceptable, and perfectly natural sentences

slightly less acceptable. If the context is relevant to

the target sentence, then we also have a discourse

coherence effect, where sentences are perceived

to be generally more acceptable.

10We follow the procedure detailed in https://

statisticsbyjim.com/regression/comparing-

regression-lines/ where we collate the data points

in Figures 1a and 1b and treat the in-context ratings (H
+

and H
−) as the dependent variable, the out-of-context ratings

(H
∅) as the first independent variable, and the type of the

context (real or random) as the second independent variable,

to perform regression analyses. The significance of the offset

and slope can be measured by interpreting the p-values of

the second independent variable, and the interaction between

the first and second independent variables, respectively.

3 Modeling Acceptability

In this section, we explore computational models

to predict human acceptability ratings. We are

interested in models that do not rely on explicit

supervision (i.e., we do not want to use the

acceptability ratings as labels in the training data).

Our motivation here is to understand the extent

to which sentence probability, estimated by an

unsupervised model, can provide the basis for

predicting sentence acceptability.

To this end, we train language models

(Section 3.1) using unsupervised objectives (e.g.,

next word prediction), and use these models

to infer the probabilities of our test sentences.

To accommodate sentence length and lexical

frequency we experiment with several simple

normalization methods, converting probabilities

to acceptability measures (Section 3.2). The

acceptability measures are the final output of our

models; they are what we use to compare to human

acceptability ratings.

3.1 Language Models

Our first model is an LSTM language model (LSTM:

Hochreiter and Schmidhuber, 1997; Mikolov

et al., 2010). Recurrent neural network models

(RNNs) have been shown to be competitive in this

task (Lau et al., 2015; Bernardy et al., 2018), and

they serve as our baseline.

Our second model is a joint topic and language

model (TDLM: Lau et al., 2017a). TDLM combines

topic model with language model in a single

model, drawing on the idea that the topical con-

text of a sentence can help word prediction in

the language model. The topic model is fashioned

as an auto-encoder, where the input is the docu-

ment’s word sequence and it is processed by

convolutional layers to produce a topic vector

to predict the input words. The language model
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functions like a standard LSTM model, but it

incorporates the topic vector (generated by its

document context) into the current hidden state to

predict the next word.
We train LSTM and TDLM on 100K uncased

English Wikipedia articles containing approxi-

mately 40M tokens with a vocabulary of 66K

words.11

Next we explore transformer-based models, as

they have become the benchmark for many NLP

tasks in recent years (Vaswani et al., 2017; Devlin

et al., 2019; Yang et al., 2019). The transformer

models that we use are trained on a much larger

corpus, and they are four to five times larger with

respect to their model parameters.

Our first transformer is GPT2 (Radford et al.,

2019). Given a target word, the input is a sequence

of previously seen words, which are then mapped

to embeddings (along with their positions) and

fed to multiple layers of ‘‘transformer blocks’’

before the target word is predicted. Much of its

power resides in these transformer blocks: Each

provides a multi-headed self-attention unit over

all input words, allowing it to capture multiple

dependencies between words, while avoiding the

need for recurrence. With no need to process a

sentence in sequence, the model parallelizes more

efficiently, and scales in a way that RNNs cannot.

GPT2 is trained on WebText, which consists of

over 8 million web documents, and uses Byte

Pair Encoding (BPE: Sennrich et al., 2016) for

tokenization (casing preserved). BPE produces

sub-word units, a middle ground between word

and character, and it provides better coverage for

unseen words. We use the released medium-sized

model (‘‘Medium’’) for our experiments.12

Our second transformer is BERT (Devlin et al.,

2019). Unlike GPT2, BERT is not a typical language

model, in the sense that it has access to both

left and right context words when predicting the

target word.13 Hence, it encodes context in a

bidirectional manner.

To train BERT, Devlin et al. (2019) propose

a masked language model objective, where a

random proportion of input words are masked

11We use Stanford CoreNLP (Manning et al., 2014) to

tokenize words and sentences. Rare words are replaced by a

special UNK symbol.
12https://github.com/openai/gpt-2.
13Note that context is burdened with two senses in the

paper. It can mean the preceding sentences of a target sen-

tence, or the neighbouring words of a target word. The

intended sense should be apparent from the usage.

and the model is tasked to predict them based on

non-masked words. In addition to this objective,

BERT is trained with a next sentence prediction

objective, where the input is a pair of sentences,

and the model’s goal is to predict whether the

latter sentence follows the former. This objective

is added to provide pre-training for downstream

tasks that involve understanding the relationship

between a pair of sentences (e.g., machine com-

prehension and textual entailment).

The bidirectionality of BERT is the core feature

that produces its state-of-the-art performance on

a number of tasks. The flipside of this encoding

style, however, is that BERT lacks the ability to

generate left-to-right and compute sentence prob-

ability. We discuss how we use BERT to produce

a probability estimate for sentences in the next

section (Section 3.2).

In our experiments, we use the largest pre-

trained model (‘‘BERT-Large’’),14 which has a

similar number of parameters (340M) to GPT2. It is

trained on Wikipedia and BookCorpus (Zhu et al.,

2015), where the latter is a collection of fiction

books. Like GPT2, BERT also uses sub-word token-

ization (WordPiece). We experiment with two

variants of BERT: one trained on cased data (BERTCS),

and another on uncased data (BERTUCS). As our

test sentences are uncased, a comparison between

these two models allows us to gauge the impact of

casing in the training data.

Our last transformer model is XLNET (Yang et al.,

2019). XLNET is unique in that it applies a novel

permutation language model objective, allowing it

to capture bidirectional context while preserving

key aspects of unidirectional language models

(e.g., left-to-right generation).

The permutation language model objective

works by first generating a possible permutation

(also called ‘‘factorization order’’) of a sequence.

When predicting a target word in the sequence,

the context words that the model has access to are

determined by the factorization order. To illustrate

this, imagine we have the sequence x = [x1, x2,
x3, x4]. One possible factorization order is: x3 →
x2 → x4 → x1. Given this order, if predicting

target word x4, the model only has access to

context words {x3, x2}; if the target word is x2,

it sees only {x3}. In practice, the target word is

set to be the last few words in the factorization

14https://github.com/google-research/bert.
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Model
Configuration Training Data

Architecture Encoding #Param. Casing Size Tokenization Corpora

LSTM RNN Unidir. 60M Uncased 0.2GB Word Wikipedia

TDLM RNN Unidir. 80M Uncased 0.2GB Word Wikipedia

GPT2 Transformer Unidir. 340M Cased 40GB BPE WebText

BERTCS Transformer Bidir. 340M Cased 13GB WordPiece Wikipedia, BookCorpus

BERTUCS Transformer Bidir. 340M Uncased 13GB WordPiece Wikipedia, BookCorpus

XLNET Transformer Hybrid 340M Cased 126GB
Sentence- Wikipedia, BookCorpus, Giga5

Piece ClueWeb, Common Crawl

Table 1: Language models and their configurations.

order (e.g., x4 and x1), and so the model always

sees some context words for prediction.
As XLNET is trained to work with different

factorization orders during training, it has expe-

rienced both full/bidirectional context and partial/

unidirectional context, allowing it to adapt to tasks

that have access to full context (e.g., most language

understanding tasks), as well as those that do not

(e.g., left-to-right generation).

Another innovation of XLNET is that it in-

corporates the segment recurrence mechanism of

Dai et al. (2019). This mechanism is inspired by

truncated backpropagation through time used for

training RNNs, where the initial state of a sequence

is initialized with the final state from the previous

sequence. The segment recurrence mechanism

works in a similar way, by caching the hidden

states of the transformer blocks from the previous

sequence, and allowing the current sequence to

attend to them during training. This permits XLNET

to model long-range dependencies beyond its

maximum sequence length.

We use the largest pre-trained model (‘‘XLNet-

Large’’),15 which has a similar number of param-

eters to our BERT and GPT2 models (340M). XLNET

is trained on a much larger corpus combining

Wikipedia, BookCorpus, news and web articles.

For tokenization, XLNET uses SentencePiece

(Kudo and Richardson, 2018), another sub-word

tokenization technique. Like GPT2, XLNET is trained

on cased data.

Table 1 summarizes the language models. In

general, the RNN models are orders of magnitude

smaller than the transformers in both model

parameters and training data, although they are

trained on the same domain (Wikipedia), and use

uncased data as the test sentences. The RNN

models also operate on a word level, whereas the

transformers use sub-word units.

15https://github.com/zihangdai/xlnet.

3.2 Probability and Acceptability Measure

Given a unidirectional language model, we can

infer the probability of a sentence by multiplying

the estimated probabilities of each token using

previously seen (left) words as context (Bengio

et al., 2003):

→
P (s) =

|s|∏

i=0

P (wi|w<i) (1)

where s is the sentence, and wi a token in s.

LSTM, TDLM, and GPT2 are unidirectional models,

so they all compute sentence probability as

described. XLNET’s unique permutational language

model objective allows it to compute probability

in the same way, and to explicitly mark this

we denote it as XLNETUNI when we infer sentence

probability using only left context words.

BERT is trained with bidirectional context, and as

such it is unable to compute left-to-right sentence

probability.16 We therefore compute sentence

probability as follows:

↔
P (s) =

|s|∏

i=0

P (wi|w < i, w > i) (2)

With this formulation, we allow BERT to have

access to both left and right context words

when predicting each target word, since this

is consistent with the way in which it was

trained. It is important to note, however, that

sentence probability computed this way is not

a true probability value: These probabilities do

not sum to 1.0 over all sentences. Equation (1),

in contrast, does guarantee true probabilities.

Intuitively, the sentence probability computed

with this bidirectional formulation is a measure

16Technically we can mask all right context words and

predict the target words one at a time, but because the model

is never trained in this way, we found that it performs poorly

in preliminary experiments.
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of the model’s confidence in the likelihood of the

sentence.

To compute the true probability, Wang and

Cho (2019) show that we need to sum the

pre-softmax weights for each token to score a

sentence, and then divide the score by the total

score of all sentences. As it is impractical to

compute the total score of all sentences (an

infinite set), the true sentence probabilities for

these bidirectional models are intractable. We use

our non-normalized confidence scores as stand-ins

for these probabilities.

For XLNET, we also compute sentence probab-

ility this way, applying bidirectional context, and

we denote it as XLNETBI. Note that XLNETUNI and

XLNETBI are based on the same trained model.

They differ only in how they estimate sentence

probability at test time.

Sentence probability (estimated either using

unidirectional or bidirectional context) is affected

by its length (e.g., longer sentences have lower

probabilities), and word frequency (e.g., the cat is

big vs. the yak is big). To modulate for these

factors we introduce simple normalization tech-

niques. Table 2 presents five methods to map

sentence probabilities to acceptability measures:

LP, MeanLP, PenLP, NormLP, and SLOR.

LP is the unnormalized log probability. Both

MeanLP and PenLP are normalized on sentence

length, but PenLP scales length with an exponent

(α) to dampen the impact of large values (Wu et al.,

2016; Vaswani et al., 2017). We setα = 0.8 in our

experiments. NormLP normalizes using unigram

sentence probability (i.e., Pu(s) =
∏|s|

i=0 P (wi)),

while SLOR utilizes both length and unigram

probability (Pauls and Klein, 2012).

When computing sentence probability we have

the option of including the context paragraph that

the human annotators see (Section 2). We use the

superscripts ∅, +, − to denote a model using no

context, real context, and random context, respect-

ively (e.g., LSTM
∅, LSTM

+, and LSTM
−). Note that

these variants are created at test time, and are all

based on the same trained model (e.g., LSTM).

For all models except TDLM, incorporating the

context paragraph is trivial. We simply prepend it

to the target sentence before computing the latter’s

probability. For TDLM
+ or TDLM

−, the context

paragraph is treated as the document context,

from which a topic vector is inferred and fed to

Acc. Measure Equation

LP logP (s)

MeanLP
logP (s)

|s|

PenLP
logP (s)

((5 + |s|)/(5 + 1))α

NormLP −
logP (s)

logPu(s)

SLOR
logP (s)− logPu(s)

|s|

Table 2: Acceptability measures for predicting

the acceptability of a sentence;P (s) is the sen-

tence probability, computed using Equa-

tion (1) or Equation (2) depending on the

model; Pu(s) is the sentence probability esti-

mated by a unigram language model; and

α =0.8.

the language model for next-word prediction. For

TDLM
∅, we set the topic vector to zeros.

3.3 Implementation

For the transformer models (GPT2, BERT, and

XLNET), we use the implementation of pytorch-

transformers.17

XLNET requires a long dummy context prepended

to the target sentence for it to compute the sentence

probability properly.18 Other researchers have

found a similar problem when using XLNET for

generation.19 We think that this is likely due

to XLNET’s recurrence mechanism (Section 3.1),

where it has access to context from the previous

sequence during training.

For TDLM, we use the implementation provided

by Lau et al. (2017a),20 following their optimal

hyper-parameter configuration without tuning.

We implement LSTM based on Tensorflow’s

Penn Treebank language model.21 In terms of

17https://github.com/huggingface/pytorch-

transformers. Specifically, we employ the following

pre-trained models:gpt2-medium for GPT2, bert-large-

cased for BERTCS, bert-large-uncased for BERTUCS,

and xlnet-large-cased for XLNETUNI/XLNETBI.
18In the scenario where we include the context paragraph

(e.g., XLNET
+
UNI

), the dummy context is added before it.
19https://medium.com/@amanrusia/xlnet-speaks-

comparison-to-gpt-2-ea1a4e9ba39e.
20https://github.com/jhlau/topically-driven-

language-model.
21https://github.com/tensorflow/models/

blob/master/tutorials/rnn/ptb/ptb word lm.py.
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hyper-parameters, we follow the configuration of

TDLM where applicable. TDLM uses Adam as the

optimizer (Kingma and Ba, 2014), but for LSTM

we use Adagrad (Duchi et al., 2011), as it produces

better development perplexity.

For NormLP and SLOR, we need to compute

Pu(s), the sentence probability based on a unigram

language model. As the language models are

trained on different corpora, we collect unigram

counts based on their original training corpus. That

is, for LSTM and TDLM, we use the 100K English

Wikipedia corpus. For GPT2, we use an open

source implementation that reproduces the origi-

nal WebText data.22 For BERT we use the full

Wikipedia collection and crawl smashwords.

com to reproduce BookCorpus.23 Finally, for

XLNET we use the combined set of Wikipedia,

WebText, and BookCorpus.24

Source code for our experiments is publicly

available at: https://github.com/jhlau/

acceptability-prediction-in-context.

3.4 Results and Discussion

We use Pearson’s r to assess how well the models’

acceptability measures predict mean human ac-

ceptability ratings, following previous studies

(Lau et al., 2017b; Bernardy et al., 2018).

Recall that for each model (e.g., LSTM), there are

three variants with which we infer the sentence

probability at test time. These are distinguished

by whether we include no context (LSTM
∅), real

context (LSTM
+), or random context (LSTM

−). There

are also three types of human acceptability ratings

(ground truth), where sentences are judged with

no context, (H
∅), real context (H

+), and random

context (H
−). We present the full results in Table 3.

To get a sense of what the correlation

figures indicate for these models, we compute

two human performance estimates to serve as

upper bounds on the accuracy of a model. The

first upper bound (UB1) is the one-vs-rest

annotator correlation, where we select a

random annotator’s rating and compare it to

the mean rating of the rest, using Pearson’s

r. We repeat this for a large number of trials

22https://skylion007.github.io/OpenWebTextCorpus/.
23We use the scripts in https://github.com/

soskek/bookcorpus to reproduce BookCorpus.
24

XLNET also uses Giga5 and ClueWeb as part of its training

data, but we think that our combined collection is sufficiently

large to be representative of the original training data.

(1,000) to get a robust estimate of the mean

correlation. UB1 can be interpreted as the average

human performance working in isolation. The

second upper bound (UB2) is the half-vs.-half

annotator correlation. For each sentence we ran-

domly split the annotators into two groups, and

compare the mean rating between groups, again

using Pearson’s r and repeating it (1,000 times)

to get a robust estimate. UB2 can be taken as

the average human performance working collab-

oratively. Overall, the simulated human perfor-

mance is fairly consistent over context

types (Table 3), for example, UB1 = 0.75,

0.73, and 0.75 for H
∅, H

+, and H
−,

respectively.

When we postprocess the user ratings, re-

member that we remove the outlier ratings

(≥ 2 standard deviation) for each sentence

(Section 2.1). Although this produces a cleaner set

of annotations, this filtering step does (artificially)

increase the human agreement or upper bound

correlations. For completeness we also present

upper bound variations where we do not remove

the outlier ratings, and denote them as UB
∅

1 and

UB
∅

2 . In this setup, the one-vs.-rest correlations

drop to 0.62–0.66 (Table 3). Note that all model

performances are reported based on the outlier-

filtered ratings, although there are almost no

perceivable changes to the performances when

they are evaluated on the outlier-preserved ground

truth.

Looking at Table 3, the models’ performances

are fairly consistent over different types of ground

truths (H
∅, H

+, and H
−). This is perhaps not

very surprising, as the correlations among the

human ratings for these context types are very

high (Section 2).

We now focus on the results with H
∅ as ground

truth (‘‘Rtg’’ = H
∅). SLOR is generally the best

acceptability measure for unidirectional models,

with NormLP not far behind (the only exception

is GPT2∅). The recurrent models (LSTM and TDLM)

are very strong compared with the much larger

transformer models (GPT2 and XLNETUNI). In fact

TDLM has the best performance when context is

not considered (TDLM
∅, SLOR = 0.61), suggesting

that model architecture may be more important

than number of parameters and amount of training

data.

For bidirectional models, the unnormalized LP

works very well. The clear winner here, however,
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Rtg Encod. Model LP MeanLP PenLP NormLP SLOR

H
∅

Unidir.

LSTM
∅ 0.29 0.42 0.42 0.52 0.53

LSTM
+ 0.30 0.49 0.45 0.61 0.63

TDLM
∅ 0.30 0.49 0.45 0.60 0.61

TDLM
+ 0.30 0.50 0.45 0.59 0.60

GPT2∅ 0.33 0.34 0.56 0.38 0.38

GPT2+ 0.38 0.59 0.58 0.63 0.60

XLNET
∅

UNI
0.31 0.42 0.51 0.51 0.52

XLNET
+
UNI

0.36 0.56 0.55 0.61 0.61

Bidir.

BERT
∅

CS
0.51 0.54 0.63 0.55 0.53

BERT
+
CS

0.53 0.63 0.67 0.64 0.60

BERT
∅

UCS
0.59 0.63 0.70 0.63 0.60

BERT
+
UCS

0.60 0.68 0.72 0.67 0.63

XLNET
∅

BI
0.52 0.51 0.66 0.53 0.53

XLNET
+
BI

0.57 0.65 0.73 0.66 0.65

—
UB1 / UB

∅

1 0.75 / 0.66

UB2 / UB
∅

2 0.92 / 0.88

H
+

Unidir.

LSTM
∅ 0.29 0.44 0.43 0.52 0.52

LSTM
+ 0.31 0.51 0.46 0.62 0.62

TDLM
∅ 0.30 0.50 0.45 0.59 0.59

TDLM
+ 0.30 0.50 0.46 0.58 0.58

GPT2∅ 0.32 0.33 0.56 0.36 0.37

GPT2+ 0.38 0.60 0.59 0.63 0.60

XLNET
∅

UNI
0.30 0.42 0.50 0.49 0.51

XLNET
+
UNI

0.35 0.56 0.55 0.60 0.61

Bidir.

BERT
∅

CS
0.49 0.53 0.62 0.54 0.51

BERT
+
CS

0.52 0.63 0.66 0.63 0.58

BERT
∅

CS
0.58 0.63 0.70 0.63 0.60

BERT
+
CS

0.60 0.68 0.73 0.67 0.63

XLNET
∅

BI
0.51 0.50 0.65 0.52 0.53

XLNET
+
BI

0.57 0.65 0.74 0.65 0.65

—
UB1 / UB

∅

1 0.73 / 0.66

UB1 / UB
∅

2 0.92 / 0.89

H
−

Unidir.

LSTM
∅ 0.28 0.44 0.43 0.50 0.50

LSTM
− 0.27 0.41 0.40 0.47 0.47

TDLM
∅ 0.29 0.52 0.46 0.59 0.58

TDLM
− 0.28 0.49 0.44 0.56 0.55

GPT2∅ 0.32 0.34 0.55 0.35 0.35

GPT2− 0.30 0.42 0.51 0.44 0.41

XLNET
∅

UNI
0.30 0.44 0.51 0.49 0.49

XLNET
−
UNI

0.29 0.40 0.49 0.46 0.46

Bidir.

BERT
∅

CS
0.48 0.53 0.62 0.53 0.49

BERT
−
CS

0.49 0.52 0.61 0.51 0.47

BERT
∅

UCS
0.56 0.61 0.68 0.60 0.56

BERT
−
UCS

0.56 0.58 0.66 0.57 0.53

XLNET
∅

BI
0.49 0.48 0.62 0.49 0.48

XLNET
−
BI

0.50 0.51 0.64 0.51 0.50

—
UB1 / UB

∅

1 0.75 / 0.68

UB2 / UB
∅

2 0.92 / 0.88

Table 3: Modeling results. Boldface indicates optimal performance in each row.
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is PenLP. It substantially and consistently out-

performs all other acceptability measures. The

strong performance of PenLP that we see here

illuminates its popularity in machine translation

for beam search decoding (Vaswani et al., 2017).

With the exception of PenLP, the gain from

normalization for the bidirectional models is

small, but we don’t think this can be attributed

to the size of models or training corpora, as the

large unidirectional models (GPT2 and XLNETUNI)

still benefit from normalization. The best model

without considering context is BERT
∅

UCS
with a

correlation of 0.70 (PenLP), which is very close

to the idealized single-annotator performance UB1

(0.75) and surpasses the unfiltered performance

UB
∅

1 (0.66), creating a new state-of-the-art for

unsupervised acceptability prediction (Lau et al.,

2015, 2017b; Bernardy et al., 2018). There is still

room to improve, however, relative to the collab-

orative UB2 (0.92) or UB
∅

2 (0.88) upper bounds.

We next look at the impact of incorporating

context at test time for the models (e.g., LSTM
∅ vs.

LSTM
+ or BERT

∅

UCS
vs. BERT

+
UCS

). To ease interpret-

ability we will focus on SLOR for unidirectional

models, and PenLP for bidirectional models.

Generally, we see that incorporating context

always improves correlation, for both cases where

we use H
∅ and H

+ as ground truths, suggesting that

context is beneficial when it comes to sentence

modeling. The only exception is TDLM, where

TDLM
∅ and TDLM

+ perform very similarly. Note,

however, that context is only beneficial when it

is relevant. Incorporating random contexts (e.g.,

LSTM
∅ vs. LSTM

− or BERT
∅

UCS
vs. BERT

−
UCS

with H− as

ground truth) reduces the performance for all

models.25

Recall that our test sentences are uncased

(an artefact of Moses, the machine translation

system that we use). Whereas the recurrent models

are all trained on uncased data, most of the

transformer models are trained with cased data.

BERT is the only transformer that is pre-trained

on both cased (BERTCS) and uncased data (BERTUCS).

To understand the impact of casing, we look

at the performance of BERTCS and BERTUCS with

H
∅ as ground truth. We see an improvement

25There is one exception: XLNET
∅

BI
(0.62) vs. XLNET

−
BI

(0.64).

As we saw previously in Section 3.3, XLNET requires a long

dummy context to work, and so this observation is perhaps

unsurprising, because it appears that context—whether it is

relevant or not—seems to always benefit XLNET.

of 5–7 points (depending on whether context is

incorporated), which suggests that casing has a

significant impact on performance. Given that

XLNET
+
BI

already outperforms BERT
+
UCS

(0.73 vs.

0.72), even though XLNET
+
BI

is trained with cased

data, we conjecture that an uncased XLNET is

likely to outperform BERT
∅

UCS
when context is not

considered.

To summarize, our first important result is the

exceptional performance of bidirectional models.

It raises the question of whether left-to-right bias is

an appropriate assumption for predicting sentence

acceptability. One could argue that this result

may be due to our experimental setup. Users

are presented with the sentence in text, and they

have the opportunity to read it multiple times,

thereby creating an environment that may simulate

bidirectional context. We could test this conjecture

by changing the presentation of the sentence,

displaying it one word at a time (with older

words fading off), or playing an audio version

(e.g., via a text-to-speech system). However, these

changes will likely introduce other confounds

(e.g., prosody), but we believe it is an interesting

avenue for future work.

Our second result is more tentative. Our experi-

ments seem to indicate that model architecture is

more important than training or model size. We

see that TDLM, which is trained on data orders

of magnitude smaller and has model parameters

four times smaller in size (Table 1), outperforms

the large unidirectional transformer models. To

establish this conclusion more firmly we will need

to rule out the possibility that the relatively good

performance of LSTM and TDLM is not due to a

cleaner (e.g., lowercased) or more relevant (e.g.,

Wikipedia) training corpus. With that said, we

contend that our findings motivate the construc-

tion of better language models, instead of increas-

ing the number of parameters, or the amount of

training data. It would be interesting to examine

the effect of extending TDLM with a bidirectional

objective.

Our final result is that our best model, BERTUCS,

attains a human-level performance and achieves

a new state-of-the-art performance in the task of

unsupervised acceptability prediction. Given this

level of accuracy, we expect it would be suitable

for tasks like assessing student essays and the

quality of machine translations.
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4 Linguists’ Examples

One may argue that our dataset is potentially

biased, as round-trip machine translation may in-

troduce particular types of infelicities or unusual

features to the sentences (Graham et al., 2019).

Lau et al. (2017b) addressed this by creating a

dataset where they sample 50 grammatical and

50 ungrammatical sentences from Adger (2003)’s

syntax textbook, and run a crowdsourced ex-

periment to collect their user ratings. Lau

et al. (2017b) found that their unsupervised

language models (e.g., simple recurrent networks)

predict the acceptability of these sentences with

similar performances, providing evidence that

their modeling results are robust.

We test our pre-trained models using this

linguist-constructed dataset, and found similar

observations: GPT2, BERTCS, and XLNETBI produce a

PenLP correlation of 0.45, 0.53, and 0.58, respec-

tively. These results indicate that these language

models are able to predict the acceptability of

these sentences reliably, consistent with our mod-

eling results with round-trip translated sentences

(Section 3.4). Although the correlations are gen-

erally lower, we want to highlight that these

linguists’ examples are artificially constructed to

illustrate specific syntactic phenomena, and so

this constitutes a particularly strong case of out-

of-domain prediction. These texts are substantially

different in nature from the natural text that the

pre-trained language models are trained on (e.g.,

the linguists’ examples are much shorter—less

than 7 words on average—than the natural texts).

5 Related Work

Acceptability is closely related to the concept

of grammaticality. The latter is a theoretical

construction corresponding to syntactic well-

formedness, and it is typically interpreted as a

binary property (i.e., a sentence is either gram-

matical or ungrammatical). Acceptability, on the

other hand, includes syntactic, semantic, prag-

matic, and non-linguistic factors, such as sentence

length. It is gradient, rather than binary, in nature

(Denison, 2004; Sorace and Keller, 2005; Sprouse,

2007).

Linguists and other theorists of language have

traditionally assumed that context affects our per-

ception of both grammaticality (Bolinger, 1968)

and acceptability (Bever, 1970), but surprisingly

little work investigates this effect systematically,

or on a large scale. Most formal linguists rely

heavily on the analysis of sentences taken in

isolation. However, many linguistic frameworks

seek to incorporate aspects of context-dependence.

Dynamic theories of semantics (Heim, 1982;

Kamp and Reyle, 1993; Groenendijk and Stokhof,

1990) attempt to capture intersentential corefer-

ence, binding, and scope phenomena. Dynamic

Syntax (Cann et al., 2007) uses incremental

tree construction and semantic type projection to

render parsing and interpretation discourse depen-

dent. Theories of discourse structure characterize

sentence coherence in context through rhetori-

cal relations (Mann and Thompson, 1988; Asher

and Lascarides, 2003), or by identifying open

questions and common ground (Ginzburg, 2012).

While these studies offer valuable insights into a

variety of context related linguistic phenomena,

much of it takes grammaticality and acceptabil-

ity to be binary properties. Moreover, it is not

formulated in a way that permits fine-grained

psychological experiments, or wide coverage

computational modeling.

Psycholinguistic work can provide more ex-

perimentally grounded approaches. Greenbaum

(1976) found that combinations of particular syn-

tactic constructions in context affect human judg-

ments of acceptability, although the small scale

of the experiments makes it difficult to draw

general conclusions. More recent work investi-

gates related effects, but it tends to focus on very

restricted aspects of the phenomenon. For exam-

ple, Zlogar and Davidson (2018) investigate the

influence of context on the acceptability of ges-

tures with speech, focussing on interaction with

semantic content and presupposition. The prim-

ing literature shows that exposure to lexical and

syntactic items leads to higher likelihood of their

repetition in production (Reitter et al., 2011), and

to quicker processing in parsing under certain cir-

cumstances (Giavazzi et al., 2018). Frameworks

such as ACT-R (Anderson, 1996) explain these

effects through the impact of cognitive activation

on subsequent processing. Most of these studies

suggest that coherent or natural contexts should

increase acceptability ratings, given that the lin-

guistic expressions used in processing become

more activated. Warner and Glass (1987) show

that such syntactic contexts can indeed affect

grammaticality judgments in the expected way for
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garden path sentences. Cowart (1994) uses com-

parison between positive and negative contexts,

investigating the effect of contexts containing

alternative more or less acceptable sentences. But

he restricts the test cases to specific pronoun

binding phenomena. None of the psycholinguistic

work investigates acceptability judgments in real

textual contexts, over large numbers of test cases

and human subjects.

Some recent computational work explores the

relation of acceptability judgments to sentence

probabilities. Lau et al. (2015, 2017b) show that

the output of unsupervised language models

can correlate with human acceptability ratings.

Warstadt et al. (2018) treat this as a semi-

supervised problem, training a binary classifier

on top of a pre-trained sentence encoder to

predict acceptability ratings with greater accuracy.

Bernardy et al. (2018) explore incorporating

context into such models, eliciting human

judgments of sentence acceptability when the

sentences were presented both in isolation and

within a document context. They find a compres-

sion effect in the distribution of the human

acceptability ratings. Bizzoni and Lappin (2019)

observe a similar effect in a paraphrase accept-

ability task.

One possible explanation for this compression

effect is to take it as the expression of cognitive

load. Psychological research on the cognitive load

effect (Sweller, 1988; Ito et al., 2018; Causse et al.,

2016; Park et al., 2013) indicates that performing

a secondary task can degrade or distort subjects’

performance on a primary task. This could cause

judgments to regress towards the mean. However,

the experiments of Bernardy et al. (2018) and

Bizzoni and Lappin (2019) do not allow us to

distinguish this possibility from a coherence or

priming effect, as only coherent contexts were

considered. Our experimental setup improves on

this by introducing a topic identification task and

incoherent (random) contexts in order to tease the

effects apart.

6 Conclusions and Future Work

We found that processing context induces a

cognitive load for humans, which creates a

compression effect on the distribution of accept-

ability ratings. We also showed that if the context

is relevant to the sentence, a discourse coherence

effect uniformly boosts sentence acceptability.

Our language model experiments indicate that

bidirectional models achieve better results than

unidirectional models. The best bidirectional

model performs at a human level, defining a new

state-of-the art for this task.

In future work we will explore alternative ways

to present sentences for acceptability judgments.

We plan to extend TDLM, incorporating a bidi-

rectional objective, as it shows significant

promise. It will also be interesting to see if our

observations generalize to other languages, and

to different sorts of contexts, both linguistic and

non-linguistic.
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Tomáš Mikolov, Martin Karafiát, Lukáš Burget,
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