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Abstract

Recent years have seen a growing interest

within the natural language processing (NLP)

community in evaluating the ability of seman-

tic models to capture human meaning represen-

tation in the brain. Existing research has mainly

focused on applying semantic models to de-

code brain activity patterns associated with

the meaning of individual words, and, more

recently, this approach has been extended to

sentences and larger text fragments. Our work

is the first to investigate metaphor process-

ing in the brain in this context. We evaluate

a range of semantic models (word embed-

dings, compositional, and visual models) in

their ability to decode brain activity associated

with reading of both literal and metaphoric

sentences. Our results suggest that composi-

tional models and word embeddings are able

to capture differences in the processing of lit-

eral and metaphoric sentences, providing sup-

port for the idea that the literal meaning is

not fully accessible during familiar metaphor

comprehension.

1 Introduction

Distributional semanticsaims to represent the mean-

ing of linguistic fragments as high-dimensional

dense vectors. It has been successfully used to

model the meaning of individual words in seman-

tic similarity and analogy tasks (Mikolov et al.,

2013; Pennington et al., 2014); as well as the

meaning of larger linguistic units in a variety of

tasks, such as translation (Bahdanau et al., 2014)

and natural language inference (Bowman et al.,

2015). Recent research has also demonstrated the

ability of distributional models to predict patterns

of brain activity associated with the meaning of

words, obtained via functional magnetic resonance

imaging (fMRI) (Mitchell et al., 2008; Devereux

et al., 2010; Pereira et al., 2013). Following in their

steps, Anderson et al. (2017b) have investigated

visually grounded semantic models in this context.

They found that while both visual and text-based

models can equally decode concrete words, text-

based models show an overall advantage over vi-

sual models when decoding more abstract words.

Other research has shown that data-driven

semantic models can also successfully predict pat-

terns of brain activity associated with the pro-

cessing of sentences (Pereira et al., 2018) and

larger narrative text passages (Wehbe et al., 2014;

Huth et al., 2016). Recently, Jain and Huth (2018)

investigated long short-term memory (LSTM)

recurrent neural networks and showed that seman-

tic models that incorporate larger-sized context

windows outperform those with smaller-sized

context windows, as well as the baseline bag-

of-words model, in predicting brain activity

associated with narrative listening. This suggests

that compositional semantic models are suffi-

ciently advanced to study the impact of linguistic

context on semantic representation in the brain. In

this paper, we investigate the extent to which lex-

ical and compositional semantic models are able

to capture differences in human meaning represen-

tations, resulting from meaning disambiguation of

literal and metaphoric uses of words in context.

Metaphoric uses of words involve a transfer

of meaning, arising through semantic composition

(Mohammad et al., 2016). For instance, the mean-

ing of the verb push is not intrinsically metaphor-

ical; yet it receives a metaphorical interpretation
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when we talk about pushing agendas, push-

ing drugs, or pushing ourselves. Theories of

metaphor comprehension differ in terms of the

kinds of processes (and stages) involved in ar-

riving at the metaphorical interpretation, mainly

whether or not the abstract meaning is indirectly

accessed via processing the literal meaning first

or directly accessible largely bypassing the lit-

eral meaning (Bambini et al., 2016). To this ex-

tent, the role that access to and retrieval of the

literal meaning plays during metaphor processing

is often debated. On the one hand, metaphor com-

prehension involves juxtaposing two unlike things

and this may invite a search for common relational

structure through a process of direct comparison.

Inferences flow from the vehicle to the topic giv-

ing rise to the metaphoric interpretation (Gentner

and Bowdle, 2005). In a slightly different vein,

Lakoff (1980) suggest that metaphor comprehen-

sion involves systematic mappings (between a

concrete domain onto another typically more ab-

stract domain) that become established through

co-occurrences over the course of experience.

This draws on mental imagery or the re-activation

of neural representations involved during pri-

mary experience (i.e., sensorimotor simulation)

allowing appropriate inferences to be made. Other

theories, however, suggest that the literal mean-

ing in metaphor comprehension may be largely

bypassed if the abstract meaning is directly or

immediately accessible involving more categori-

cal processing (Glucksberg, 2003). For example,

the word used metaphorically could be imme-

diately recognized as belonging to an abstract

superordinate category of which both the vehi-

cle and topic belong. Alternatively, it has been

suggested that more familiar metaphors involve

categorical processing, while comparatively novel

metaphor will involve initially greater processing

of the literal meaning (Desai et al., 2011).

To contribute to our understanding of metaphor

comprehension, including the accessibility of the

literal meaning, we investigate whether semantic

models are able to decode patterns of brain activ-

ity associated with literal and metaphoric sentence

comprehension, using the fMRI dataset of Djokic

et al. (forthcoming). This dataset contains neural

activity associated with the processing of both

literal and familiar metaphorical uses of hand-

action verbs (such as push, grasp, squeeze, etc.)

in the context of their nominal object. We exper-

iment with several kinds of semantic models: (1)

word-based models, namely, word embeddings of

the verb and the nominal object; (2) compositional

models, namely, vector addition and an LSTM

recurrent neural network; and (3) visual models,

learning visual representations of the verb and

its nominal object. This choice of models allows

us to investigate: (1) the role of the verb and

its nominal object (captured by their respective

word embeddings) in the interpretation of literal

and metaphoric sentences; (2) the extent to which

compositional models capture the patterns of hu-

man meaning representation in case of literal and

metaphoric use; and (3) the role of visual infor-

mation in literal and metaphor interpretation. We

test these models in their ability to decode brain

activity associated with literal and metaphoric

sentence comprehension, using the similarity de-

coding method of Anderson et al. (2016). We per-

form decoding at the whole brain level, as well

as within specific regions implicated in linguistic,

motor and visual processing.

Our results demonstrate that several of our se-

mantic models are able to predict patterns of brain

activity associated with the meaning of literal and

metaphorical sentences. We find that (1) com-

positional semantic models are superior in decod-

ing both literal and metaphorical sentences as

compared to the lexical (i.e., word-based) mod-

els; (2) semantic representations of the verb are

superior compared to that of the nominal object in

decoding literal phrases, whereas semantic repre-

sentations of the object are superior to that of the

verb in decoding metaphorical phrases; and (3) lin-

guistic models capture both language-related and

sensorimotor representations for literal sentences—

in contrast, for metaphoric sentences, linguistic

models capture language-related representations

and the visual models captured sensorimotor rep-

resentations in the brain. Although the results do

not offer straightforward conclusions regarding

the role of the literal meaning in metaphor compre-

hension, they provide some support to the idea that

lexical-semantic relations associated with the lit-

eral meaning are not fully accessible during famil-

iar metaphor comprehension, particularly within

action-related brain regions.

2 Related Work

2.1 Decoding Brain Activity

Mitchell et al. (2008) were the first to show that

distributional representations of concrete nouns
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built from co-occurrence counts with 25 experi-

ential verbs could predict brain activity elicited by

these nouns. Later studies used the fMRI data of

Mitchell et al. (2008) as a benchmark for testing a

range of semantic models including topic model-

based semantic features learned from Wikipedia

(Pereira et al., 2013), feature-norm based semantic

features (Devereux et al., 2010), and skip-gram

word embeddings (Bulat et al., 2017). Anderson

et al. (2013) demonstrate that visually grounded

semantic models can also decode brain activity

associated with concrete words and show the best

results using multimodal models. Additionally,

Anderson et al. (2015) show that text-based mod-

els are superior in predicting brain activity of

concrete words in brain areas related to linguis-

tic processing, and the visual models in those re-

lated to visual processing. Lastly, Anderson et al.

(2017b) use image and text-based semantic models

to decode an fMRI dataset containing nouns with

varying degree of concreteness. They show that

text-based models have an advantage decoding

the more abstract words over the visual models,

supporting the view that concrete concepts involve

linguistic and visual codes, while abstract concepts

mainly linguistic codes (Paivio, 1971).
Subsequent studies have focused on evaluating

the ability of distributional semantic models to

encode brain activity elicited by larger text

fragments. Pereira et al. (2018) showed that a

regression model trained to map between word

embeddings and the fMRI patterns of words could

predict neural representations for unseen sen-

tences. Adding to this, both Wehbe et al. (2014)

and Huth et al. (2016) showed that distributional

semantic models could predict neural activity

associated with narrative comprehension. For in-

stance, Wehbe et al. (2014) showed that a re-

gression model that learned a mapping between

several story features (distributional semantics,

syntax, and discourse-related) and fMRI patterns

associated with narrative reading could distinguish

between two stories. These findings suggest that

encoding models using word embeddings as fea-

tures can predict brain activity associated with

larger linguistic units. Other researchers have

evaluated models that more directly consider the

role played by the linguistic context and syntax

(Anderson et al., 2019; Jain and Huth, 2018).

Jain and Huth (2018) showed that a regression-

based model mapping between fMRI patterns

associated with narrative listening and contextual

features obtained from an LSTM language model

outperformed the bag-of-words model. Moreover,

the performance increased when using LSTMs

with larger context-windows.

In parallel to this work, several other works have

been successful in decoding word-level and sen-

tential meanings using semantic models based on

human behavioral data. Chang et al. (2010) use

taxonomic encodings of McRae et al. (2005),

while Fernandino et al. (2015) use semantic mod-

els based on human-elicited salience scores for

sensorimotor attributes to decode neural activity

associated with concrete concepts. Interestingly,

the latter report that their model is unable to

decode brain activity associated with the meaning

of more abstract concepts. Lastly, other research

has achieved similar success in decoding sen-

tential meanings using neuro-cognitively driven

features that more closely reflect human experi-

ence (Anderson et al., 2017a; Wang et al., 2017;

Just et al., 2017). For example, Anderson et al.

(2017a) showed that a multiple-regression model

trained to map between 65-dimensional experien-

tial attribute model of word meaning (e.g., motor,

spatial, social-emotional) and the fMRI activa-

tions associated with words could predict neural

activation of unseen sentences. These findings

highlight the importance of considering the neu-

rocognitive constraints on semantic representation

in the brain.

2.2 Semantic Representation in the Brain

Semantic processing is thought to depend on a

number of brain regions functioning in concert

as a unified semantic network linking language,

memory, and modality-specific systems in the

brain (Binder et al., 2009). Xu et al. (2016) provide

evidence in support of at least three functionally

segregated systems that together comprise such

a semantic network. A left-lateralized language-

based system spanning frontal-temporal (e.g., left

inferior frontal gyrus [LIFG], left posterior mid-

dle temporal gyrus [LMTP]), but also parietal

areas, is associated with lexical-semantics and

syntactic processing. It preferentially responds to

language tasks when compared to non-linguistic

tasks of similar complexity (Fedorenko et al.,

2011). Notably, both Devereux et al. (2014) and

Anderson et al. (2015) found that linguistic models

could decode concrete concepts within brain areas

in this system, mainly the LMTP. Importantly,
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this system works in tandem with a memory-

based simulation system that interacts directly

with medial-temporal areas critical in memory

(and multimodal) processing. The memory-based

simulation system retrieves memory images rele-

vant to a concept and includes occipital areas such

as the superior lateral occipital cortex, implicated

in visual processing and which Anderson et al.

(2015) showed could decode concrete concepts

with visual models. This system also recruits

modality-specific information. In line with this,

Carota et al. (2017) showed that the semantic sim-

ilarity of text-based models correlates with fMRI

patterns of action words not only in language-

related areas, but also in motor areas (left precen-

tral gyrus [LPG], left premotor cortex [LPM]).

Lastly, a fronto-parietal semantic control system

manages interactions between these two systems,

such as directing attention to different aspects of

meaning depending on the linguistic context.

Prior neuroimaging experiments show that

concrete concepts activate the relevant modality-

specific systems in the brain (Barsalou, 2008, 2009),

while the processing of abstract concepts has been

found to engage mainly language-related brain re-

gions in the left hemisphere and areas implicated in

cognitive control (Binder et al., 2005; Sabsevitz et al.,

2005). Relatedly, action-related words and literal

phrases activate motor regions (e.g., to ac-

cess motoric features of verbs) (Pulvermuller, 2005;

Kemmerer et al., 2008). In contrast, the degree

to which action-related metaphors engage motor

brain regions appears to depend on novelty, with

more familiar metaphors (Desai et al., 2011) show-

ing little to no activity in motor areas. In sum,

concrete language involves modality-specific and

language-related brain regions, while abstract

language mainly language areas (Hoffman et al.,

2015).

To assess the role of linguistic versus visual

information in literal and metaphor decoding, we

investigated the extent to which our semantic

models were able to decode literal and metaphoric

sentences not only across the whole brain (and

brain’s lobes), but also within specific brain

regions of interest (ROIs) implicated in visual,

action, and language processing. The visual ROIs

include high-level visual brain regions (left lateral

occipital temporal cortex, left ventral temporal

cortex), part of the ventral visual stream implicated

in object recognition (Bugatus et al., 2017).

The action ROIs include sensorimotor brain re-

gions (LPG, LPM) implicated in action-semantics

(Kemmerer et al., 2008). Lastly, the language-

related ROIs include areas of the classic language

network (LIFG, LMTP) implicated in lexico-

semantic and syntactic processing (Foderenko et al.,

2012).

We expect to find that lexical and compositional

semantic models can capture differences in the

processing of literal and metaphoric language in

the brain. In line with the idea that literal language

co-occurs more directly with our everyday percep-

tual experience, we expect that visual models will

show an overall advantage in literal but perhaps

not metaphor decoding across the whole brain

(particularly within Occipital and Temporal lobes)

and in visual (action) ROIs compared to language-

related ROIs. In contrast, for metaphor decoding

we expect that linguistic models will mainly show

an advantage in language-related ROIs compared

with visual (and action) ROIs due to their more

abstract nature. Lastly, we expect compositional

models to be superior to lexical models in met-

aphor decoding, which relies on semantic com-

position for meaning disambiguation in context.

This allows investigating whether metaphor com-

prehension involves lingering access to the literal

meaning including more grounded visual and

sensorimotor representations.

3 Brain Imaging Data

Stimuli consisted of sentences divided into five

main conditions: 40 affirmative literal, 40 negated

literal, 40 affirmative metaphor, 40 negated meta-

phor, and 40 affirmative literal paraphrases of the

metaphor.

Stimuli Stimuli consisted of sentences divided

into five main conditions: 40 affirmative literal,

40 negated literal, 40 affirmative metaphor, 40

negated metaphor, and 40 affirmative literal para-

phrases of the metaphor (used as control). A total

of 31 unique hand- action verbs were used (9 verbs

were re-used twice per condition). For each verb,

the authors created four conditions: affirmative

literal, affirmative metaphoric, negated literal, and

negated metaphoric. All sentences were in the

third person singular, present tense, progressive,

see Figure 1. Stimuli were created by the au-

thors and normed for psycholinguistic variables

(i.e., length, familiarity, concreteness) by an
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Figure 1: Sample stimuli for the verb push.

independent set of participants in a behavioral

experiment.

Participants Fifteen adults (8 women, ages 18

to 35) were involved in the fMRI study. All

participants were right-handed, native English

speakers.

Experimental Paradigm Participants were in-

structed to passively read the object of the sentence

(e.g., ‘‘the yellow lemon’’), briefly shown on

screen first, followed by the sentence (e.g., ‘‘She’s

squeezing the lemon’’). The object was shown on

screen for 2 s, followed by a 0.5 s interval, then

the sentence was presented for 4 s followed by

a rest of 8 s. A total of 5 runs were completed,

each lasting 10.15 minutes (3 participants only

completed 4 runs). Stimulus presentation was

randomized across participants.

fMRI data acquisition fMRI images were ac-

quired with a Siemens MAGNETOM Trio 3T

System with a 32-channel head matrix coil. High-

resolution anatomical scans were acquired with

a structural T1-weighted magnetization prepared

rapid gradient echo (MPRAGE) with TR =

1950 ms, TE = 2.26 ms, flip angle 10%, 256 ×

256 mm matrix, 1 mm resolution, and 208 coro-

nal slices. Whole brain functional images were

obtained with a T2* weighted single-shot gradient-

recalled echoplanar imaging, echo-planar sequence

(EPI) using blood oxygenation-level-dependent

contrast with TR = 2000 ms, TE = 30 ms, flip

angle 90 degrees, 64×64 mm matrix, 3.5 mm

resolution. Each functional image consisted of 37

contiguous axial slices, acquired in interleaved

mode.

4 Semantic Models

4.1 Linguistic Models

All our linguistic models are based on GloVe

(Pennington et al., 2014) 100-dimensional (dim)

word vectors provided by the authors, trained

on Wikipedia and the Gigaword corpus.1 We

investigate the following semantic models:

Individual Word Vectors In this model, stim-

ulus phrases are represented as the individual D-

dim word embeddings for their verb and direct

object. We will refer to these models as VERB and

OBJECT, respectively.

Concatenation We then experiment with mod-

elling phrase meanings as the 2D-dim concat-

enation of their verb and direct object embeddings

(VERBOBJECT).

Addition This model takes the embeddings

w1, . . . ,wn for the words of the stimulus phrase,

and computes the stimulus phrase representation

as their average: h = 1

n

∑
n

i=1
wi.

LSTM As a more sophisticated compositional

model, we take the LSTM recurrent neural net-

work architecture of Hochreiter and Schmidhuber

(1997). We trained the LSTM on a natural lan-

guage inference task (Bowman et al., 2015), as

it is a complex semantic task where we expect

rich meaning representations to play an important

role. Given two sentences, the goal of natural

language inference is to decide whether the first

entails or contradicts the second, or whether they

are unrelated. We used the LSTM to compute

compositional representations for each sentence,

and then used a single-layer perceptron classifier

(Bowman et al., 2016) to predict the correct re-

lationship. The inputs to the LSTM were the same

100-dim GloVe embeddings used for the other

models, and were updated during training. The model

was optimized using Adam (Kingma and Ba, 2014).

We extracted 100-dim vector representations from

the hidden state of the LSTM for the verb-object

phrases in our stimulus set.

4.2 Visually Grounded Models

We use the MMfeat toolkit (Kiela, 2016) to obtain

visual representations in line with Anderson et al.

(2017b). We retrieved 10 images for each word

or phrase in our dataset using Google Image

Search. We then extracted an embedding for each

of the images from a deep convolutional neural

network that was trained on the ImageNet classi-

fication task (Russakovsky et al., 2015). We used

an architecture consisting of five convolutional

1https://nlp.stanford.edu/projects/

glove/.
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layers, followed by two fully connected rectified

linear unit layers and a softmax layer for clas-

sification. To obtain an embedding for a given

image we performed a forward pass through

the network and extracted the 4096-dim fully

connected layer that precedes the softmax layer.

The visual representation of a word or a phrase is

computed as the mean of its 10 individual image

representations.

We experiment with word-based models

(VISUAL VERB and VISUAL OBJECT) and the follow-

ing three visual compositional models:

Concatenation This model represents the stim-

ulus phrase as the concatenation of the two D-dim

visual representations for the verb and the object

(VISUAL VERBOBJECT).

Addition We take the average of the visual

representations for the verb and object to give the

representation for the phrase (VISUAL ADDITION).

Phrase We obtain visual representations for the

phrase, by querying Google images for the verb-

object phrase directly (VISUAL PHRASE).

5 Decoding Brain Activity

5.1 fMRI Data Processing

For our experiments we limited analysis to the 12

individuals who completed all runs. The runs were

combined across time to form each participant’s

dataset and preprocessed (high-pass filtered, motion-

corrected, linearly detrended) with FSL.2

General Linear Modeling After fMRI prepro-

cessing, we selected sentences within the affir-

mative literal and affirmative metaphoric conditions

representative of the 31 unique verbs as conditions

of interest for all our experiments. We fit a model

of the hemodynamic response function to each

stimulus presentation using a univariate general

linear model with PyMVPA.3 The entire stimulus

presentation was modeled as an event lasting 6 s

after taking into account the hemodynamic lag of

4 s. The model parameters (Beta weights) were

normalized to Z-scores. Each stimulus presen-

tation was then represented as a single volume

containing voxel-wise Z-score maps for each

of the 31 affirmative literal and 31 metaphoric

sentences. The affirmative literal or metaphoric

2https://fsl.fmrib.ox.ac.uk/fsl/fslwiki.
3http://www.pymvpa.org/.

neural estimates were then used to perform

similarity-based decoding, separately.

Voxel Selection We performed feature selection

by selecting the top 35% of voxels that showed the

highest sensitivity (F-statistics) using a univari-

ate ANOVA as a feature-wise measure with two

groups: the 31 affirmative literal sentences versus

31 affirmative metaphoric sentences. F-statistics

were computed for each feature as the standard

fraction of between and within group variances

using PyMVPA. This selected voxels sensitive to

univariate activation differences between literal

and metaphoric categories.

5.2 Defining Regions of Interest

Following Anderson et al. (2013), we performed

decoding at the whole-brain level and across four

gross anatomical divisions: the frontal, temporal,

occipital, and parietal lobes. The masks were cre-

ated using the Montreal Neurological Institute

(MNI) Structural Atlas in FSL. We also defined

the following a priori ROIs to compare the perfor-

mance of literal and metaphoric decoding in visual

and sensorimotor brain regions vs. language-related

brain areas implicated in lexical-semantic process-

ing: (1) visual ROIs (left lateral occipital temporal

cortex [LLOCT], left ventral temporal cortex

(LVT)); (2) action ROIs (LPG, LPM); (3) language-

related ROIs (LMTP, LIFG). The LLOTC and

LVT were created manually in FSL using the

anatomical landmarks of Bugatus et al. (2017).

The LPG and LPM were created using the Juelich

Histological Atlas thresholded at 25% in FSL. The

LMTP and LIFG were created using the Harvard-

Oxford Cortical Probabilistic Atlas thresholded at

25% in FSL. Masks were transformed from MNI

standard space into the participant’s functional

space.

5.3 Similarity-Based Decoding

We use similarity-based decoding (Anderson et al.,

2016) to evaluate to what extent the represen-

tations produced by our semantic models are

able to decode brain activity patterns associated

with our stimuli. We first compute two similarity

matrices (k stimuli × k stimuli), containing sim-

ilarities between all stimulus phrases in the data-

set: the model similarity matrix (where similarities

are computed using the semantic model vectors)

and the brain similarity matrix (where similarities

are computed using the brain activity vectors). The
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MODELS Frontal Parietal Temporal Occipital Whole-Brain

OBJECT 0.55 0.53 0.50 0.40 0.50

VERB 0.67 0.69* 0.62 0.65 0.63

VERBOBJECT 0.57 0.57 0.51 0.55 0.52

ADDITION 0.72* 0.72* 0.69* 0.70* 0.69*

LSTM 0.58 0.50 0.55 0.56 0.53

VISUAL OBJECT 0.60 0.51 0.70* 0.69* 0.66

VISUAL VERB 0.41 0.44 0.59 0.66 0.50

VISUAL VERBOBJECT 0.49 0.49 0.61 0.63 0.55

VISUAL ADDITION 0.58 0.48 0.68* 0.65 0.57

VISUAL PHRASE 0.56 0.52 0.44 0.42 0.45

Table 1: Literal Decoding. Leave-2-out decoding accuracies, significant values (p < 0.05) surviving

FDR correction for multiple comparisons indicated in bold by an asterisk (*).

similarities were computed using Pearson correla-

tion coefficient as a measure. We then perform the

decoding using a leave-two-out decoding scheme

in this similarity space. Specifically, from the set

of all possible pairs of stimuli (the number of

possible pairs for k = 31 stimuli is 465), a

single pair is selected at a time. Model similarity-

codes are obtained for each stimulus in the

pair by extracting the relevant column vectors

for those stimuli from the model similarity-

matrix. In the same way, neural similarity-codes

are extracted from the neural similarity-matrix.

Correlations with the stimuli pairs themselves

are removed to not bias decoding. The model

similarity-codes of the two held-out stimuli are

correlated with their respective neural similarity-

codes. If the correct labeling scheme produces

a higher sum of correlation coefficients than the

incorrect labeling scheme, this is counted as a

correct classification, and otherwise as incor-

rect. When this procedure is completed for all

possible held-out pairs, the number of correct

classifications over the total number of possible

pairs yields a decoding accuracy. We perform

group-level similarity-decoding by first averaging

the neural similarity-codes across participants to

yield group-level neural similarity-codes across

participants to yield group-level neural similarity-

codes equivalent to a fixed-effects analysis as in

Anderson et al. (2016). The group-level neural

similarity-codes and model similarity-codes are

then used to perform leave-two-out decoding as

described above.

5.4 Statistical Significance

Statistical significance was carried out as in

Anderson et al. (2016) using a non-parametric

permutation test. The null-hypothesis is that there

is no correspondence between the model-based

similarity-codes and the group-level neural similarity

codes. The null-distribution was estimated using a

permutation scheme. We randomly shuffled the

rows and columns of the model-based similarity

matrix, leaving the neural similarity-matrix fixed.

Following each permutation (n= 10,000), we per-

form group-level similarity-decoding obtaining

10,000 decoding accuracies we would expect by

chance using random labeling. The probability (p-

value) of obtaining a decoding accuracy under the

null-distribution is then at least as large as the ob-

served accuracy score. We correct for the number of

statistical tests performed using False-Discovery-

Rate (FDR) with a corrected error probability

threshold of p = 0.05 (Benjamini and Hochberg,

1995).

6 Experiments and Results

We use group-level similarity-decoding to decode

brain activity associated with literal and metaphoric

sentences using each of our semantic models.

We perform decoding at the sentence level for

literal and metaphor conditions (affirmative only),

separately. Decoding was performed at the whole-

brain level and across the brain’s lobes, as well as

within a priori defined ROIs implicated in visual,

action and language-related processing.

6.1 Linguistic Models

Literal sentences When decoding literal sen-

tences with linguistic models across the brain’s

lobes we found significant decoding accuracies

surviving FDR correction for multiple testing for

the ADDITION and VERB models, see Table 1. A
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MODELS Frontal Parietal Temporal Occipital Whole-Brain

OBJECT 0.61 0.62 0.68* 0.52 0.58

VERB 0.53 0.45 0.62 0.41 0.49

VERBOBJECT 0.68* 0.53 0.72* 0.67 0.60

ADDITION 0.71* 0.63 0.77* 0.75* 0.71*

LSTM 0.58 0.51 0.62 0.53 0.55

VISUAL OBJECT 0.59 0.59 0.60 0.42 0.56

VISUAL VERB 0.70* 0.66 0.67 0.58 0.63

VISUAL VERBOBJECT 0.67 0.64 0.64 0.49 0.62

VISUAL ADDITION 0.59 0.62 0.60 0.57 0.58

VISUAL PHRASE 0.70* 0.63 0.63 0.67 0.66

Table 2: Metaphor Decoding. Leave-2-out decoding accuracies, significant values (p < 0.05) surviving

FDR correction for multiple comparisons are indicated in bold by an asterisk (*).

two-way ANOVA without replication showed a

main effect for model F(4,16) = 38.22, p <

0.001 but not brain lobe. Post-hoc two-tailed

t-tests surviving correction for multiple testing

confirmed a significant advantage for the ADDITION

model over other models. Lastly, the VERB model

showed a significant decoding advantage over

all other models except the ADDITION model. A

post-hoc unpaired t-test confirmed a significant

advantage for the VERB model in literal versus

metaphor decoding (t = 3.97, p < 0.01, df =

8). The results suggest that the ADDITION and

VERB models are superior compared to other

models in decoding literal sentences. Furthermore,

they suggest that the VERB model more closely

captures the variance associated with the literal

compared to metaphoric category.

Metaphoric Sentences When decoding meta-

phor with linguistic models we found signifi-

cant decoding accuracies for the ADDITION,

VERBOBJECT, and OBJECT models, mainly in the

Temporal lobe, see Table 2. A two-way ANOVA

showed a main effect of model F(4,16) = 18.77 ,

p < 0.001, and brain lobe F(4,16) = 7.58, p <

0.01. Post-hoc t-tests showed a significant advan-

tage for the ADDITION model over other models.

We also found that the VERBOBJECT model signif-

icantly outperformed the LSTM (t = 3.89,

p < 0.05, df = 4) and VERB (t = 4.36, p <

0.05, df = 4) models, while the OBJECT model also

outperformed the VERB model (t = 5.42, p < 0.01,

df = 4). Thus, models that incorporate the object

directly (i.e., OBJECT, VERBOBJECT), outperform

the VERB model. A post-hoc unpaired t-test con-

firmed that the performance of the OBJECT model

was higher in metaphor versus literal decoding

(t = 2.88, p < 0.05, df = 8). The results sug-

gest that the ADDITION, VERBOBJECT, and OBJECT

models are superior compared with other models

in decoding metaphoric sentences and, further-

more, that the OBJECT model more closely captures

the variance associated with the metaphor versus

literal category.

Lastly, additional post-hoc t-tests showed that

the Temporal lobe significantly outperformed

other lobes (except the Occipital lobe) across the

models. This suggests an advantage for linguistic

models in temporal areas, possibly pointing to an

increased dependence on memory and language

processing associated with medial and lateral

temporal areas, respectively.

6.2 Visual Models

Literal Sentences When decoding literal sen-

tences with visual models, we found significant

decoding accuracies for the VISUAL OBJECT and

VISUAL ADDITION models, mainly in Occipital and

Temporal lobes, see Table 1. A two-way ANOVA

showed a main effect of model, but this did not

survive multiple-testing correction. The results

suggest that visual models can decode brain

activity associated with concrete concepts only in

occipital-temporal areas, part of the ventral visual

stream, possibly pointing to increased reliance on

these areas for object recognition, but see ROI

analysis in section 6.4.

Metaphoric sentences When decoding meta-

phoric sentences with visual models in the brain,

we found significant decoding accuracies for both

the VISUAL VERB and VISUAL PHRASE model in the
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Visual Action-related Language-related

MODELS LLOCT LVT LPG LPM LMTP LIFG

OBJECT 0.59 0.59 0.52 0.62 0.45 0.47

VERB 0.73* 0.72* 0.68* 0.77* 0.69* 0.60

VERBOBJECT 0.63 0.61 0.59 0.71* 0.47 0.51

ADDITION 0.74* 0.76* 0.74* 0.78* 0.69* 0.73*

LSTM 0.53 0.62 0.58 0.56 0.68* 0.61

VISUAL OBJECT 0.68* 0.71* 0.50 0.42 0.67* 0.57

VISUAL VERB 0.55 0.62 0.43 0.48 0.49 0.40

VISUAL VERBOBJECT 0.56 0.62 0.47 0.45 0.51 0.41

VISUAL ADDITION 0.48 0.69* 0.56 0.42 0.65 0.49

VISUAL PHRASE 0.40 0.40 0.41 0.54 0.44 0.44

Table 3: Region of Interest: Literal Decoding. Leave-2-out decoding accuracies, significant values (p > 0.05)

surviving FDR correction for multiple comparisons for the ROIs indicated in bold by an asterisk (*).

Frontal lobe, see Table 2. A two-way ANOVA

showed a main effect of model F(4,16) = 6.12,

p < 0.01 and brain lobe F(4,16) = 5.21, p <

0.01. Post-hoc t-tests showed that both the VISUAL

VERB (t = 5.40, p < 0.01, df = 4) and VISUAL

VERBOBJECT (t = 8.49, p < 0.01, df = 4) models

outperformed the VISUAL OBJECT model across the

lobes. This suggests that visual information about

the verb is more relevant to metaphor decod-

ing than that of the object. Relatedly, when com-

paring the performance of visual and linguistic

models across the lobes, we found that the OBJECT

model significantly outperformed the VISUAL OBJECT

model across the lobes, surviving correction for

multiple comparisons. In sum, these results sug-

gest that visual information corresponds more

strongly to the concrete verb, whereas linguistic

information corresponds more strongly with the

abstract object in metaphor decoding, but see ROI

analysis section 6.3. We found a main effect of

brain lobe that did not survive multiple-testing

correction.

6.3 Region of Interest (ROI) analysis

Literal Sentences When comparing the perfor-

mance of linguistic models across the ROIs, we

found that the performance of linguistic models

within language-related ROIs was on par with that

within vision and action ROIs, see Table 3. This

suggests that the linguistic models may be captur-

ing sensorimotor and visual representations in the

brain during literal sentence processing. Adding

to this, we observed that linguistic models sig-

nificantly outperformed visual models in action

ROIs (t = 6.83, p < 0.001, df = 9), suggesting

that the linguistic models are more closely able to

capture the motoric features and action semantics

relevant to literal sentence processing when com-

pared even to the more visually grounded models.

The results suggest that the visual models may

correlate with information in action-related brain

regions (e.g., sensorimotor representations). In

sum, the results suggest that literal sentence pro-

cessing involves both language-related and per-

ceptual/sensorimotor representations (relevant to

action semantics) in the brain.

Metaphoric Sentences When comparing the

performance of linguistic models across the ROIs

(see Table 4), we observed that linguistic models

were superior in decoding metaphoric sentences

in language-related ROIs compared to visual (t =

3.11, p < 0.05, df = 9) and action ROIs (t =

2.97, p < 0.05, df = 9). This suggests that lin-

guistic models mainly capture language-related

representations in the brain during metaphor pro-

cessing. Interestingly, we did observe that the

visual models significantly outperformed the

linguistic models in action related ROIs (t =

3.91, p < 0.01, df = 9) for metaphor decoding.

Relatedly, we also observed that visual models

were superior in decoding metaphoric sentences

in action compared with language-related ROIs

(t = 3.06, p < 0.05, df = 9), in contrast to literal

sentences as described above.

A post-hoc unpaired t-test confirmed that the

performance of visual models in action ROIs
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Visual Action-related Language-Related

MODELS LLOCT LVT LPG LPM LMTP LIFG

OBJECT 0.62 0.63 0.46 0.53 0.67* 0.67*

VERB 0.54 0.58 0.56 0.60 0.75* 0.57

VERBOBJECT 0.63 0.62 0.49 0.54 0.77* 0.64

ADDITION 0.69* 0.65 0.51 0.59 0.73* 0.70*

LSTM 0.56 0.47 0.54 0.64 0.61 0.51

VISUAL OBJECT 0.63 0.56 0.68* 0.64 0.73* 0.52

VISUAL VERB 0.65 0.66 0.69* 0.75* 0.55 0.63

VISUAL VERBOBJECT 0.70* 0.65 0.68* 0.74* 0.62 0.67*

VISUAL ADDITION 0.74* 0.57 0.69* 0.63 0.62 0.59

VISUAL PHRASE 0.58 0.62 0.61 0.54 0.60 0.54

Table 4: Region of Interest: Metaphor Decoding. Leave-2-out decoding accuracies, significant values (p < 0.05)

surviving FDR correction for multiple comparisons for the ROIs indicated in bold by an asterisk (*).

was significantly higher in metaphor versus literal

decoding (t = 8.92, p < 0.001, df = 18). The results

suggest that the visual models may correlate with

information in action-related brain (e.g., sen-

sorimotor representations). The significant val-

ues reported are those that survived correction for

multiple comparisons in the ROI analysis.

7 Discussion

Addition vs. LSTM We found that the ADDI-

TION model outperformed both lexical models and

the VERBOBJECT model. This suggests that com-

positional semantic models that average seman-

tic representations of the individual words in a

phrase can decode brain activity associated with

sentential meanings, irrespective of whether action-

verbs are used in a literal or metaphoric context.

The findings complement prior work showing that

regression-based models that use word embed-

dings as features can predict brain activity asso-

ciated with larger linguistic units (Wehbe et al.,

2014; Huth et al., 2016; Pereira et al., 2018).

The LSTM, however, did not outperform the

other models. This is surprising given prior work

showing that contextual representations from an

unsupervised LSTM language model outperform

the bag-of-words model (Jain and Huth, 2018).

The authors show increasing performance gains

using representations from the second layer with

longer context lengths (i.e., > 3 words). However,

using the representations from the last layer

together with a shorter context window sometimes

showed inferior performance compared to the

word-embedding encoding model. The latter find-

ing is more closely aligned with our own param-

eters and findings. It is possible that the LSTM

model shows the largest performance gain over

the bag-of-words model when predicting brain

activity associated with narrative listening (i.e.,

where the subject must keep track of entities and

events over longer periods). In contrast, our sen-

tence comprehension task depends on the next

word for meaning disambiguation. It is also pos-

sible that semantic models trained in the NLI task

may not be ideally suited for capturing differ-

ences in literal and metaphor processing.

The Role of the Verb and the Object We found

that the VERB model outperformed the other

models (except the ADDITION model) in literal

decoding. In contrast, in metaphor decoding we

observed that models that incorporate the object

directly (i.e., VERBOBJECT and OBJECT models)

outperformed the VERB model. Moreover, the

performance of the VERB model was higher in

literal versus metaphor decoding, while we found

the opposite pattern in metaphor decoding where

the OBJECT model had an advantage. It is possible

that the VERB model more closely captures the vari-

ance associated with the overall concrete meaning

in the brain. In support of this, the performance of

the linguistic models including that of the VERB

model was higher in action-related brain regions

in literal compared to metaphoric decoding. On

the other hand, the OBJECT model may best capture

the variance associated with the overall abstract

meaning in the brain. The objects (topic) in
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metaphoric sentences tend to be more abstract and

capture the overall aboutness of the metaphoric

meaning to a greater extent than the verb (vehicle).

In support of this, in metaphor decoding the

linguistic models exhibited a higher performance

in language-related areas than within visual and

action-related areas. Critically, we restricted anal-

ysis to voxels showing maximum variance be-

tween the univariate brain response of literal and

metaphoric categories. Thus, the results mainly

highlight models that can decode literal and

metaphoric sentences to the extent that they are

able to identify the largest differences between

literal and metaphor processing in the brain, more

generally. Therefore, the results do not necessarily

suggest that the VERB model, for example, is not an

adequate representation for metaphoric sentences,

just that when distinguishing literal and meta-

phoric processing in the brain it more closely

aligns with representations for literal sentences.
Alternatively, the VERB model may be superior

in capturing the variance associated with the literal

case, in particular compared to the OBJECT model,

as the verbs were found to be significantly more

frequent than their arguments for literal sen-

tences in the training corpus. However, we also

found that the metaphoric uses of the verbs are

significantly more frequent than the literal uses

in the training corpus likely due to the fact

that written language often reflects more abstract

topics. However, we found that the VERB model

showed higher performance in literal compared

to metaphoric decoding suggesting that frequency

of usage in the corpus does not always impact

decoding as might be expected. Importantly, the

literal and metaphorical sentences did not dif-

fer in familiarity (i.e., subjective frequency) nor

did we find significant differences in the cloze

probabilities between the literal and metaphoric

phrases in the training corpus suggesting this

broader factor is not at play.

Taken together, the results with the linguis-

tic models suggest that one of the main ways

lexical-semantic similarity differs in literal versus

metaphor processing in the brain is along the

concrete versus abstract dimension, as we might

expect. The results are in line with prior neuro-

scientific studies showing that concrete concepts

recruit more sensorimotor areas, whereas abstract

concepts rely more heavily on language-related

brain regions (Hoffman et al., 2015). More spe-

cifically, the findings are in agreement with the

idea that action-related words and sentences are

embedded in action-perception circuits in the brain

due to co-occurrences between the words and the

action-percepts they denote (Pulvermuller, 2005).

However, the extent to which action-perception

circuits are recruited may be modulated by the

linguistic context (Desai et al., 2013).

These results also shed light on possible factors

underlying the performance advantage we ob-

served for the ADDITION model over the lexical

models (and VERBOBJECT model). The ADDITION

model enhances common features present in the

individual word embeddings of the verb and

the object. Therefore, given the preference we

observed for the VERB over the OBJECT in literal

decoding (and vice versa for metaphor decoding),

this suggests that adding the complimentary

embedding largely enhances lexical-semantic re-

lations already present in either the VERB or

OBJECT alone rather than provide other significant

dimensions of variance, per se. For literal de-

coding, the OBJECT may enhance variance already

associated with the VERB by narrowing the range

of relevant object-directed actions (e.g., actions

on inanimate versus animate objects) highlighting

more concrete information. In contrast, for meta-

phor decoding it is more likely that the VERB

enhances variance associated with the OBJECT by

narrowing in on abstract uses as opposed to literal

uses of each object (e.g., ‘‘writing the poem’’

versus ‘‘grasping the poem’’), highlighting more

abstract information in the process. It should be

noted that this effect may be due to the fact that

we used familiar metaphors well represented in

the corpus, which will need to be investigated in

future work.

Visual Models We observed that the VISUAL

OBJECT and VISUAL ADDITION models performed

well in temporal-occipital areas. These results are

in line with prior work showing that visual models

can decode brain activity associated with concrete

concepts in lateral occipital-temporal areas part

of the ventral visual stream implicated in object

recognition (Anderson et al., 2015). However,

this was not specific to literal decoding. In fact,

we observed that the VISUAL VERB and VISUAL

VERBOBJECT models outperformed the VISUAL

OBJECT model in metaphor decoding. Overall, we

found that the visual models outperformed lin-

guistic models in action-related ROIs in metaphor

decoding. The performance of visual models in
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action ROIs was also significantly higher in

metaphor versus literal decoding. The latter sug-

gests that the visual models correlate with sen-

sorimotor features and may play a role in metaphor

processing in the brain. This could possibly sug-

gest that different aspects of the literal meaning of

the verb (distinct from its prototypical or salient

literal use) may play a role in metaphor processing

in the brain. These less salient motoric aspects of

the literal meaning captured by the visual verb

models could reflect (a) more abstract sensori-

motor representations such as information about

higher-level action goals or (b) social-emotional

factors associated with each action, such as infor-

mation about people, bodies, or faces tied to inter-

oceptive experience.

It could also be the case that these aspects

of the literal meaning are not necessarily less

salient or prototypical, but are simply distinct from

the specific literal uses of verbs in our stimuli

(which contained primarily verb predicates with

inanimate objects as arguments). It is possible

that verb predicates with animate objects as argu-

ments involving social interactions may also be

relevant to the metaphoric meaning. Indeed, an

important embodied dimension of variance for ab-

stract concepts is social-emotional information

(Barsalou, 2009).

Additionally, it is possible that differences in

overall visual statistics between our images for

objects versus verbs across literal and metaphorical

sentences may have biased decoding. Kiela et al.

(2014) show that images for concrete objects

are more internally homogenous (less dis-

persed) than that for abstract concepts, which may

have impacted the performance of the VISUAL

OBJECT model in metaphor decoding. Importantly,

however, differences in literal and metaphor de-

coding with the VISUAL VERB model should not

necessarily be impacted by this as the verbs

used were the same. Therefore, the fact that

the visual models in action-related areas over-

all had higher decoding accuracies in metaphor

compared to literal decoding suggests that this

effect is not influenced by image dispersion. Ra-

ther this effect suggests that the VISUAL VERB

may capture sensorimotor features relevant to

metaphor decoding. Future studies will need to

more carefully consider these possible confound-

ing factors and possibly experiment with video

data in place of images.

Accessibilty of the Literal Meaning When only

looking at the linguistic models, the results ap-

pear largely in line with the direct view or a

categorical processing of familiar metaphor in

which the literal meaning is not fully accessible.

The VERB model showed a clear advantage in lit-

eral compared to metaphor decoding. Moreover,

the VERB model showed significant decoding accu-

racies in motor areas only in the literal but not

metaphoric case, suggesting that the literal mean-

ing is not being fully simulated in the metaphoric

case. This aligns with neuroimaging work showing

that literal versus familiar metaphoric actions more

reliably activate motor areas (Desai et al., 2011).

Importantly, however, we found evidence that

the VERB model showed some significant decoding

accuracies for metaphor decoding in language-

related brain regions (e.g., LMTP). Future work

will need to determine whether this reflects dis-

tinct aspects of the literal meaning relevant to

metaphor processing or reflects lexico-semantic

information associated primarily with the more

abstract sense of the verb. Adding to this, the

poor temporal resolution of fMRI does not permit

looking at different temporal processing stages

and, therefore, cannot rule out the idea that the

literal meaning is initially fully accessed and, sub-

sequently, (partially) discarded or suppressed.

We also found further evidence to suggest that

the linguistic context may modulate which rep-

resentations associated with the verb are most

accessible. Mainly, we found that visual models

including the VISUAL VERB model were superior

in decoding metaphoric versus literal sentences

in action-related brain areas. This suggests that

different aspects of the literal meaning (possibly

less salient or prototypical literal meanings) may

play a role in processing the metaphoric meaning.

Thus, while the results do not definitively adju-

dicate between different putative stages of meta-

phor processing, they, nevertheless, inform our

understanding of the debate in that they suggest

that future studies will need to consider (control

for) contextual effects of literality and their role

in the study of metaphor comprehension. For

instance, it may be useful to present subjects

in the scanner with single words (grasp, push,

etc.) to assess a prototypical brain response and

then look at how different contexts (literal or

metaphorical) modulate that response over time.

This may reveal different kinds of processing
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stages and the influence of bottom up (immedi-

ate and automatic) versus top down (context and

inference-driven) influences at play during literal

versus metaphor processing. This would permit

more carefully assessing the role of the literal

meaning in metaphor comprehension.

8 Conclusion and Future Directions

We presented the first study evaluating a range

of semantic models in their ability to decode

brain activity when reading literal and metaphoric

sentences. We found evidence to suggest that com-

positional models can decode sentences irre-

spective of figurativeness in the brain and that

at least for the linguistic models the VERB model

may be more closely associated with the literal

(concrete) meaning and the OBJECT model more

closely associated with the metaphoric (abstract)

meaning. This includes a closer relationship be-

tween the VERB model and action-related brain

regions in the brain during literal sentence pro-

cessing, in line with neuroimaging work show-

ing that literal versus familiar metaphoric actions

more reliably activate sensorimotor areas. This

adds support to the idea that the literal meaning

may not be as accessible for familiar metaphors.

Taken together, the linguistic model results are in

line with prior neuroscientific studies suggesting

that differences between literal and metaphoric

sentence processing align with concrete versus

abstract concept processing in the brain, mainly

with a greater reliance of concrete concepts on

sensorimotor areas, while abstract concepts rely

more heavily on language-related brain regions.

Interestingly, however, the results with the visual

models point to the need to also consider how

metaphor (abstract language) may be grounded

in more abstract knowledge about actions or

social-interaction.

Future studies will need to further investigate

the accessibility of the literal meaning (and ab-

stract meaning) in metaphor comprehension us-

ing a larger dataset. For example, by considering a

wider range of metaphors (e.g., metaphoric uses of

objects) representing different semantic domains

and different degrees of ambiguity. Also, it may

be useful to consider event embeddings optimized

towards learning representations of events and

their thematic roles that may be better able to deal

with different verb senses by learning non-linear

compositions of predicates and their arguments

(Tilk et al., 2016).
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